
HAL Id: hal-02171978
https://hal.sorbonne-universite.fr/hal-02171978

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSCE-FFNN-v1: the reconstruction of surface ocean
pCO2

Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, Carlos Mejia

To cite this version:
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, Carlos Mejia. LSCE-FFNN-v1: the recon-
struction of surface ocean pCO2. Geoscientific Model Development, 2019, 12 (5), pp.2091-2105.
�10.5194/gmd-12-2091-2019�. �hal-02171978�

https://hal.sorbonne-universite.fr/hal-02171978
https://hal.archives-ouvertes.fr


Geosci. Model Dev., 12, 2091–2105, 2019
https://doi.org/10.5194/gmd-12-2091-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

LSCE-FFNN-v1: a two-step neural network model
for the reconstruction of surface ocean pCO2
over the global ocean
Anna Denvil-Sommer1, Marion Gehlen1, Mathieu Vrac1, and Carlos Mejia2

1Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL),
CNRS/CEA/UVSQ/Univ. Paris-Saclay, Orme des Merisiers, Gif Sur Yvette, 91191, France
2Sorbonne Université, CNRS, IRD, MNHN, Institut Pierre Simon Laplace (IPSL), Paris, 75005, France

Correspondence: Anna Denvil-Sommer (anna.sommer.lab@gmail.com)

Received: 28 September 2018 – Discussion started: 7 November 2018
Revised: 17 April 2019 – Accepted: 23 April 2019 – Published: 29 May 2019

Abstract. A new feed-forward neural network (FFNN)
model is presented to reconstruct surface ocean partial pres-
sure of carbon dioxide (pCO2) over the global ocean. The
model consists of two steps: (1) the reconstruction of pCO2
climatology, and (2) the reconstruction of pCO2 anomalies
with respect to the climatology. For the first step, a grid-
ded climatology was used as the target, along with sea sur-
face salinity (SSS), sea surface temperature (SST), sea sur-
face height (SSH), chlorophyll a (Chl a), mixed layer depth
(MLD), as well as latitude and longitude as predictors. For
the second step, data from the Surface Ocean CO2 Atlas (SO-
CAT) provided the target. The same set of predictors was
used during step (2) augmented by their anomalies. During
each step, the FFNN model reconstructs the nonlinear re-
lationships between pCO2 and the ocean predictors. It pro-
vides monthly surface ocean pCO2 distributions on a 1◦×1◦

grid for the period from 2001 to 2016. Global ocean pCO2
was reconstructed with satisfying accuracy compared with
independent observational data from SOCAT. However, er-
rors were larger in regions with poor data coverage (e.g.,
the Indian Ocean, the Southern Ocean and the subpolar Pa-
cific). The model captured the strong interannual variability
of surface ocean pCO2 with reasonable skill over the equa-
torial Pacific associated with ENSO (the El Niño–Southern
Oscillation). Our model was compared to three pCO2 map-
ping methods that participated in the Surface Ocean pCO2
Mapping intercomparison (SOCOM) initiative. We found a
good agreement in seasonal and interannual variability be-
tween the models over the global ocean. However, important
differences still exist at the regional scale, especially in the

Southern Hemisphere and, in particular, in the southern Pa-
cific and the Indian Ocean, as these regions suffer from poor
data coverage. Large regional uncertainties in reconstructed
surface ocean pCO2 and sea–air CO2 fluxes have a strong
influence on global estimates of CO2 fluxes and trends.

1 Introduction

The global ocean is a major sink of excess CO2 that has been
emitted to the atmosphere since the beginning of the indus-
trial revolution. In 2011, the best estimate of the ocean in-
ventory of anthropogenic carbon (Cant) amounted to 155±
30 PgC or 28 % of the cumulated total CO2 emissions at-
tributed to human activities since 1750 (Ciais et al., 2013).
Between 2000 and 2009, the yearly average ocean Cant up-
take was 2.3± 0.7 PgC yr−1 (Ciais et al., 2013). However,
these global estimates hide substantial regional and interan-
nual fluctuations (Rödenbeck et al., 2015), which need to be
quantified in order to track the evolution of the Earth’s carbon
budget (e.g., Le Quéré et al., 2018).

Until recently, most estimates of interannual sea–air CO2
flux variability were based on atmospheric inversions (Peylin
et al., 2005, 2013; Rödenbeck et al., 2005) or global ocean
circulation models (Orr et al., 2001; Aumont and Bopp,
2006; Le Quéré et al., 2010). However, models tend to un-
derestimate the variability of sea–air CO2 fluxes (Le Quéré
et al., 2003), whereas atmospheric inversions suffer from a
sparse network of atmospheric CO2 measurements (Peylin et
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al., 2013). These approaches are increasingly complemented
by data-based techniques relying on in situ measurements of
CO2 fugacity or partial pressure (e.g., Takahashi et al., 2002,
2009; Nakaoka et al., 2013; Schuster et al., 2013; Land-
schützer et al., 2013, 2016; Rödenbeck et al., 2014, 2015;
Bitting et al., 2018; Fay et al., 2014). These techniques rely
on a variety of data-interpolation approaches developed to
provide estimates in time and space of surface ocean pCO2
(Rödenbeck et al., 2015) such as statistical interpolation, lin-
ear and nonlinear regressions, or model-based regressions
or tuning (Rödenbeck et al., 2014, 2015). These methods,
and their advantages and disadvantages, are compared and
discussed in Rödenbeck et al. (2015). This intercomparison
did not allow for the identification of a single optimal tech-
nique but rather pleaded in favor of exploiting the ensemble
of methods.

Artificial neural networks (ANNs) have been widely used
to reconstruct surface ocean pCO2; Lefèvre et al.(2005),
Friedrich and Oschlies (2009b), Telszewski et al. (2009),
Landschützer et al. (2013) Nakaoka et al. (2013), Zeng et
al. (2014) and Bitting et al. (2018) used ANNs to study
the open ocean, whereas Laruelle et al. (2017) studied the
coastal region using this method. ANNs fill the spatial and
temporal gaps based on calibrated nonlinear statistical re-
lationships between pCO2 and its oceanic and atmospheric
drivers. The existing products usually present monthly fields
with a 1◦× 1◦ spatial resolution and capture a large part of
the temporal–spatial variability. Methods based on ANNs are
able to represent the relationships between pCO2 and a va-
riety of predictor combinations, but they are sensitive to the
number of data used in the training algorithm and can gener-
ate artificial variability in regions with sparse data coverage
(Bishop, 2006).

This study proposes an alternative implementation of a
neural network applied to the reconstruction of surface ocean
pCO2 over the period from 2001 to 2016. It belongs to
the category of feed-forward neural networks (FFNN) and
consists of a two-step approach: (1) the reconstruction of
monthly climatologies of global surface ocean pCO2 based
on data from Takahashi et al. (2009), and (2) the reconstruc-
tion of monthly anomalies (with respect to the monthly cli-
matologies) on a 1◦× 1◦ grid exploiting the Surface Ocean
CO2 Atlas (SOCAT) (Bakker et al., 2016). The model is eas-
ily applied to the global ocean without any boundaries be-
tween the ocean basins or regions. However, as previously
mentioned, it is still sensitive to the observational coverage.
This limitation is partly overcome by the two-step approach,
as the reconstruction of monthly climatologies draws on a
global ocean gridded climatology (Takahashi et al., 2009);
therefore, the FFNN output is kept close to realistic val-
ues. Furthermore, the reconstruction of monthly climatolo-
gies during the first step allows for a potential change in sea-
sonal cycle in response to climate change to be taken into
account when applied to time slices or to model output pro-
viding the drivers, but no carbon cycle variables.

The remainder of this paper is structured as follows:
Sect. 2 introduces datasets used during this study and de-
scribes the neural network; Sect. 3 presents results for its
validation and qualification, as well as its comparison to
three mapping methods as part of the Surface Ocean pCO2
Mapping intercomparison (SOCOM) exercise (Rödenbeck et
al., 2015). Finally, results and perspectives are summarized
in the last section.

2 Data and methods

2.1 Data

The standard set of variables known to represent the physi-
cal, chemical and biological drivers of surface ocean pCO2
– mean state and variability – (Takahashi et al., 2009; Land-
schützer et al., 2013) were used as input variables (or predic-
tors) for training the FFNN algorithm. These are sea surface
salinity (SSS), sea surface temperature (SST), mixed layer
depth (MLD), chlorophyll a concentration (Chl a) and the at-
mospheric CO2 mole fraction (xCO2, atm). Based on Rodgers
et al. (2009) who reported a strong correlation between natu-
ral variations in dissolved inorganic carbon (DIC) and sea
surface height (SSH), SSH was added as a new driver to
this list. Initial tests suggested that the inclusion of the SSH
did not significantly improve the accuracy of reconstructed
pCO2 at the global scale. At the basin and regional scale,
however, adding the SSH improved the spatial pattern of re-
constructed pCO2 and the accuracy of our method.

For the first step, the reconstruction of monthly climatolo-
gies, the Takahashi et al. (2009) monthly pCO2 gridded cli-
matology (1◦×1◦) was used as the target. The original clima-
tology was constructed by an advection-based interpolation
method on a 4◦× 5◦ grid. It was interpolated on the 1◦× 1◦

SOCAT grid, which is also the resolution of the final output
for the FFNN.

For the second step, the target was provided by the SOCAT
v5 observational database (Bakker et al., 2016). We used a
gridded version of this dataset that was derived by combin-
ing all SOCAT data collected within a 1◦× 1◦ box during
a specific month. SOCAT v5 represents global observations
of the sea surface fugacity of CO2 (fCO2) over the period
from 1970 to 2016. It includes data from moorings, ships and
drifters. These data are irregularly distributed over the global
ocean with 188 274 gridded measurements over the North-
ern Hemisphere and 76 065 over the Southern Hemisphere.
In order to ensure a satisfying spatial and temporal data cov-
erage, we limited the reconstruction to the period from 2001
to 2016, which represents ∼ 77 % of the database (Fig. 1a).

c The following formula is used to convert fCO2 to pCO2
(Körtzinger, 1999):

fCO2 = pCO2 exp
(
p
B + 2δ
RT

)
, (1)
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Figure 1. Spatial distribution of SOCAT data (number of measure-
ments per grid point): (a) for the 2001–2016 period; (b) for all
months of January for the 2001–2016 period; (c) for all months
of December–January–February for the 2001–2016 period. Please
note that the color bar under panel (c) refers to both (b) and (c).

where fCO2 and pCO2 are in micro-atmospheres (µatm),
p is the total pressure (Pa), R = 8.314 J K−1 is the gas
constant and T is the absolute temperature (K). Parameter
B (m3 mol−1) is estimated as B = (−1636.75+ 12.040T −
3.27957× 10−2T 2

+ 3.16528 ×10−5T 3)× 10−6. The pa-
rameter δ is the cross-virial coefficient (m3 mol−1): δ =
(57.7− 0.118T )× 10−6. The total pressure is from the
Jena database (6 h, 5◦× 5◦; http://www.bgc-jena.mpg.de/
CarboScope/?ID=s, last access: 13 September 2017) based

on the National Center for Environmental Prediction (NCEP)
reanalysis (Kalnay et al., 1996) .

Monthly global reprocessed products of physical
variables from ARMOR3D L4 distributed through
the Copernicus Marine Environment Monitoring Ser-
vice (CMEMS; 0.25◦× 0.25◦; http://marine.copernicus.
eu/services-portfolio/access-to-products/?option=com_
csw&view=details&product_id=MULTIOBS_GLO_PHY_
REP_015_002, last access: 27 October 2017) were used
for SSS, SST and SSH (Guinehut et al., 2012). The
GlobColour project provided monthly chlorophyll (Glob-
Colour “CHL” data) distributions at a 1◦× 1◦ resolution
(http://www.globcolour.info/products_description.html,
last access: 31 October 2017). For MLD, daily data
from the “Estimating the Circulation and Climate of
the Ocean” (ECCO2) project Phase II (Cube 92), at a
0.25◦× 0.25◦ resolution (Menemenlis et al., 2008) were
used. For atmospheric xCO2, the 6h data from Jena
CO2 inversion s76_v4.1 on a 5◦× 5◦ grid were selected
(http://www.bgc-jena.mpg.de/CarboScope/?ID=s, last ac-
cess: 13 September 2017). Finally, an ice mask based on
daily “Operational Sea Surface Temperature and Sea Ice
Analysis” (OSTIA) data with a gridded 0.05◦× 0.05◦

resolution (Donlon et al., 2011) was applied.
MLD and CHL data were log-transformed before their

use in the FFNN algorithm because of their skewed distribu-
tion. In regions with no CHL data (high latitudes in winter)
log(CHL)= 0 was applied. It does not introduce discontinu-
ities, as log(CHL) is close to zero in the adjacent region.

All data were averaged or interpolated on a 1◦× 1◦ grid
and, depending on the resolution of the dataset, averaged
over the month. It is worth noting that all datasets have to be
normalized (i.e., centered to zero-mean and reduced to unit
standard deviation) before their use in the FFNN algorithm,
for example,

SSSn =
SSS−SSS
SD(SSS)

.

Normalization ensures that all predictors fall within a com-
parable range and avoids giving more weight to predictors
with large variability ranges (Kallache et al., 2011).

As surface ocean pCO2 also varies spatially, geographical
positions, latitude (lat) and longitude (long), after conversion
to radians were included as predictors. In order to normalize
(lat, long) the following transformation is proposed:

latn = sin
(
lat ·π/180◦

)
longn, 1 = sin

(
long ·π/180◦

)
longn, 2 = cos

(
long ·π/180◦

)
Two functions sin and cos for longitudes are used to preserve
its periodical 0 to 360◦ behavior and thus to consider the dif-
ference of positions before and after the 0◦ longitude. For
step 2, data required for training were colocated at the SO-
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CAT data positions that are used as a target for the FFNN
model. Details are provided in the next section.

2.2 Methods

2.2.1 Network configuration and evaluation protocol

In this work, we use Keras, a high-level neural network
Python library (“Keras: the Python Deep Learning library”,
Chollet, 2015; https://keras.io) to build and train the FFNN
models. The identification of an optimal configuration is the
first step in the FFNN model building. This includes the
choice of the number and size of hidden layers (i.e., inter-
mediate layers between input and output layers), the connec-
tion type, the activation functions, the loss function and op-
timization algorithm, as well as the learning rate and other
low-level parameters. Based on a series of tests and their sta-
tistical results (RMSE, correlation and bias) a hyperbolic tan-
gent was chosen as an activation function for neurons in hid-
den layers, and a linear function was chosen for the output
layer. As an optimization algorithm, the mini-batch gradient
descent or “RMSprop” was used (adaptive learning rates for
each weight, Chollet, 2015; Hinton et al., 2012). The num-
ber of layers and neurons utilized depends on the problem.
For totally connected layers (i.e., a neuron in a hidden layer
is connected to all neurons in the precedent layer and con-
nects all neurons in the next one), which is the case here, it
is enough to have only one single hidden layer, although two
or more can help the approximation of complex functions (or
complex relationships between the input and the output of
the problem).

The number of FFNN layers and the number of neurons
depends on the complexity of the problem: the more layers
and neurons, the better the accuracy of the output. However,
the size also depends on the number of patterns (data) used
for training. The empirical rule recommends having a factor
of 10 between the number of patterns (data) and the num-
ber of connections, or weights to adjust (in line with Amari
et al., 1997, we use a factor of 10 that necessitates a cross-
validation to avoid overfitting). This limits the size, the num-
ber of parameters and incidentally the number of neurons of
the FFNN. This empirical rule was followed in this study.

1. Step 1: reconstruction of monthly climatologies. FFNN
reconstructs a normalized monthly surface ocean pCO2
climatology as a nonlinear function of normalized SSS,
SST, SSH, Chl a, MLD climatologies and geographical
position (lat and long):

pCO2, n

=
(
SSSn,SSTn,SSHn,Chln,MLDn, longn, latn

)
. (2)

Surface ocean pCO2 from Takahashi et al. (2009) pro-
vided the target. The dataset was divided into 50 % for
FFNN training and 25 % for its evaluation. This 25 %
did not participate in the training. This set is used to

monitor the performance of the training process and to
drive its convergence. The remaining 25 % (each fourth
point) of the dataset was used after training for the
FFNN model validation. More details about the FFNN
training process can be found in Rumelhart et al. (1986)
and Bishop (1995). Validation and evaluation datasets
were chosen quasi-regularly in space and time to take all
regions and seasonal variability into account. In order to
improve the accuracy of the reconstruction, the model
was applied separately for each month. We have devel-
oped a FFNN model with five layers (three hidden lay-
ers). Twelve models with a common architecture were
trained. Tests with one model for 12 months showed a
slight decrease in accuracy (not presented here). About
17 500 data were available for each month to train the
model, resulting in monthly FFNN models with about
1856 parameters.

2. Step 2: reconstruction of anomalies. During the second
step, normalized pCO2 anomalies were reconstructed
as a nonlinear function of normalized SSS, SST, SSH,
Chl a, MLD, xCO2 and their anomalies, as well as ge-
ographic position:

pCO2, anom, n

=
(
SSSn,SSTn,SSHn,Chln,MLDn,xCO2, n,

SSSanom, n,SSTanom, n,SSHanom, n,Chlanom, n,

MLDanom, n,xCO2,anom, n, longn, 1, longn, 2, latn
)

(3)

Surface ocean pCO2 anomalies were computed as the
differences between colocated pCO2 values based on
SOCAT observations and monthly pCO2 climatologies
reconstructed during the first step that provided the tar-
gets:

pCO2, anom = pCO2,SOCAT−pCO2, clim,FFNN. (4)

The set of target data was again divided into 50 % for
the training algorithm, 25 % for evaluation and 25 % for
model validation. As in step (1) the model was trained
separately for each climatological month. Thus, there
were 12 models sharing a common architecture but
trained on different data. In this step, in order to increase
the amount of data during training and introduce infor-
mation on the seasonal cycle, the model was trained us-
ing pCO2 data from the month in question as a target as
well as data from the previous and following month dur-
ing the entire period from 2001 to 2016. Figure 1b and c
show an example of the data distribution for the months
of January over the period from 2001 to 2016 (Fig. 1b)
and for the 3-month time window including December–
January–February from 2001 to 2016 used in the train-
ing algorithm of the January FFNN model (Fig. 1c). In
this particular example, the choice of 3 months provided
a better cover of the region and doubled the number of
data at high latitudes.
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K-fold cross-validation was used for the evaluation and
the validation of the FFNN architecture. Cross-validation re-
lied on K = 4 different subsamples of the dataset to draw
25 % of independent data for validation (Fig. S1 in the Sup-
plement). Each sampling fold was tested on five runs of the
FFNN for each month. Each of these five runs was charac-
terized by different initial values that were randomly chosen.
From these five results, the best was chosen based on root-
mean-square error (RMSE), the r2 and the bias.

The final model architecture at step 2 had three layers (one
hidden layer). About 10 000 samples were available for train-
ing for each month; thus, a model with 541 parameters was
developed. Note that a higher number of parameters did not
show a significant improvement in the accuracy.

2.2.2 Reconstruction of surface ocean pCO2

The previous section presented the development of the “op-
timal” architecture of a FFNN model for the reconstruction
of global surface ocean pCO2 and the estimation of its accu-
racy. This FFNN model was used to provide the final product
for scientific analysis and comparison with other mapping
approaches. In order to provide the final output, the selected
FFNN architecture was trained on all available data: 100 %
of data for training, 100 % for evaluation and 100 % for vali-
dation. The network was executed five times (different initial
values) and the best model was selected based on validation
results considering the root-mean-square error (RMSE), the
r2 and the bias computed between the network output and the
SOCAT-derived surface ocean pCO2 data. The final model
output is referred to as the LSCE-FFNN product.

2.3 Computation of sea–air CO2 fluxes

The sea–air CO2 flux, f , was calculated following Röden-
beck et al. (2015) as

f = kρL
(
pCO2−pCOatm

2
)
, (5)

where k is the piston velocity estimated according to Wan-
ninkhof (1992):

k = 0u2
(

ScCO2/ScRef
)−0.5

. (6)

The global scaling factor 0 was chosen as in Rödenbeck et
al. (2014) with the global mean CO2 piston velocity equal-
ing 16.5 cm h−1. Sc corresponds to the Schmidt number es-
timated according to Wanninkhof (1992). The wind speed
was computed from 6-hourly NCEP wind speed data (Kalnay
et al., 1996). ρ is seawater density in Eq. (5) and L is the
temperature-dependent solubility (Weiss, 1974). pCO2 cor-
responds to the surface ocean pCO2 output of the mapping
method. pCOatm

2 was derived from the atmospheric CO2
mixing ratio fields provided by the Jena inversion s76_v4.1
(http://www.bgc-jena.mpg.de/CarboScope/).

3 Results

3.1 Validation

The subset of data used for network validation, which was
25 % of the total, represented independent observations, as
they did not participate in training during model develop-
ment (see Section 2.2.1). The skill of the FFNN to recon-
struct monthly climatologies of surface ocean pCO2 was as-
sessed by comparing colocated reconstructed pCO2 and cor-
responding values from Takahashi et al. (2009). The global
climatology was reconstructed with satisfying accuracy dur-
ing step 1 with a RMSE of 0.17 µatm and an r2 of 0.93.
The model output of step 2 was assessed usingK-fold cross-
validation as previously presented: K = 4 different subsets
of independent data were drawn from the dataset and the net-
work was run five times on each subset. From these 20 re-
sults the best one was chosen based on the RMSE, the r2 and
mean absolute error (MAE) (the bias is presented in Table S1
in the Supplement). A combination of the four best model
output was used for the statistical analysis summarized in
Table 1. Metrics were computed over the full period (2001–
2016) and with reference to SOCAT observations (indepen-
dent data only). At the global scale, the analysis yielded a
RMSE of ∼ 17.97 µatm, whereas the MAE was 11.52 µatm
and the r2 was 0.76. These results were comparable to those
obtained by Landschützer et al. (2013) for the assessment
of a surface ocean pCO2 reconstruction based on an alter-
native neural network-based approach. The RMSE between
the SOCAT data and the pCO2 climatology from Takahashi
et al. (2009) equalled 41.87 µatm, which was larger than er-
rors computed for the regional comparison between FFNN
and SOCAT (Table 1). We also estimated the RMSE for the
case where 100 % of the data were used for training, which
equalled 14.8 µatm and confirmed the absence of overfitting.

Figure 2a shows the time mean difference between the
estimated pCO2 and pCO2 from SOCAT v5 data used
for validation: meant

(
pCO2, i, j,FFNN−pCO2, i, j,SOCAT

)
.

Large differences occurred at high latitudes, in equatorial
regions, and along the Gulf Stream and Kuroshio currents
– the regions with strong horizontal gradients of pCO2.
Moreover, the standard deviation of the residuals (Fig. 2b)
in these regions was larger, indicating that the model fails
to accurately reproduce the temporal variability. The re-
duced skill of the model in these regions reflects the poor
data coverage along with a strong seasonal variability (e.g.,
the Southern Ocean) and/or high kinetic energy (e.g., the
Southern Ocean and the Kuroshio and Gulf Stream cur-
rents) (Fig. 1a). At the scale of oceanic regions, (Table 1)
the largest RMSE and MAE values were computed for the
Pacific subpolar ocean (RMSE= 34.77 µatm and MAE=
23.12 µatm), whereas the lowest correlation coefficient was
obtained for the equatorial Atlantic Ocean (r2

= 0.57). These
low scores directly reflect low data density and are to be
contrasted with those obtained over regions with better data
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Table 1. Statistical validation of LSCE-FFNN. Comparison between reconstructed surface ocean pCO2 and pCO2 values from the SOCAT
v5 database not used in the training algorithm for the period from 2001 to 2016 over the global ocean (except for regions with ice cover) and
for large oceanographic regions. The number of measurements per region is given in parentheses in the first column.

Model Latitude boundaries RMSE r2 MAE
(µatm) (µatm)

FFNN Global 17.97 0.76 11.52
Arctic (150) 76–90◦ N 22.05 0.54 17.1
Subpolar Atlantic (21903) 49–76◦ N 22.99 0.76 15.04
Subpolar Pacific (4529) 49–76◦ N 34.77 0.65 23.12
Subtropical Atlantic (41331) 18–49◦ N 17.28 0.69 11.27
Subtropical Pacific (41867) 18–49◦ N 15.86 0.77 9.9
Equatorial Atlantic (7300) 18◦ S–18◦ N 17.27 0.57 11.44
Equatorial Pacific (27092) 18◦ S–18◦ N 15.73 0.79 10.33
South Atlantic (3002) 44–18◦ S 17.81 0.63 12.28
South Pacific (12934) 44–18◦ S 13.52 0.63 9.36
Indian Ocean (2871) 44◦ S–30◦ N 17.25 0.62 11.6
Southern Ocean (16334) 90–44◦ S 17.4 0.58 11.92

coverage (e.g., the subtropical North Pacific with RMSE=
15.86 µatm, MAE= 9.9 µatm and r2

= 0.77, or the subpo-
lar Atlantic with RMSE= 22.99 µatm, MAE= 15.04 µatm
and r2

= 0.76). Despite large time mean differences com-
puted over the eastern equatorial Pacific, scores are satisfying
at the regional scale indicating error compensation by im-
proved scores over the western basin (RMSE= 15.73 µatm,
MAE= 10.33 µatm and r2

= 0.79). Scores are low in the
Southern Hemisphere (Table 1) and time mean differences
are large (Fig. 2a) reflecting sparse data coverage (Fig. 1a).

3.2 Qualification

This section presents the assessment of the final time se-
ries of reconstructed surface ocean pCO2. The time series
was computed using the best monthly models as described in
Sect. 2.2, as well as 100 % of the data for learning, evaluation
and validation.

Results of the LSCE-FFNN mapping model were com-
pared to three published mapping methods which partic-
ipated in the “Surface Ocean pCO2 Mapping Intercom-
parison” (SOCOM) exercise presented in Rödenbeck et
al. (2015) (http://www.bgc-jena.mpg.de/SOCOM/). These
methods are as follows: (1) Jena-MLS oc_v1.5 (Rödenbeck
et al., 2014), which is a statistical interpolation scheme (data-
driven mixed-layer scheme; principal drivers used in param-
eterization: ocean-internal carbon sources/sinks, SST, wind
speed, mixed-layer depth climatology and alkalinity clima-
tology); (2) JMA-MLR (updated version up to 2016) (Iida
et al., 2015), which is based on multi-linear regressions with
SST, SSS and Chl a as independent variables; and (3) ETH-
SOMFFN v2016 (Landschützer et al., 2014), which is a two-
step neural network model with SST, SSS, MLD, Chl a and
xCO2 as drivers. The time series of pCO2 and sea–air CO2
flux (f ) were assessed over 17 biomes defined by Fay and

McKinley (2014) (Fig. 3, Table 2). These biomes were de-
rived based on coherence in SST, Chl a, the ice fraction, and
the maximum MLD and represent regions of coherent bio-
geochemical dynamics.

We followed the protocol and diagnostics proposed in Rö-
denbeck et al. (2015) for the comparison of each of the re-
spective mapping methods with one another, with respect
to observations. The following diagnostics were computed:
(1) the relative interannual variability (IAV) mismatch Riav

(in percent), and (2) the amplitude of interannual variations.
The relative interannual variability (IAV) mismatch Riav (in
percent) is the ratio of the mismatch amplitude M iav of the
difference between the model output and the observations
(its temporal standard deviation) and the mismatch amplitude
M iav

benchmark of the “benchmark”. The latter was derived from
the mean seasonal cycle of the corresponding model output
where the trend of increasing yearly atmospheric pCO2 was
added (see details in Rödenbeck et al., 2015). It corresponds
to a climatology corrected for increasing atmospheric CO2,
but without interannual variability.

Riav
=

M iav

M iav
benchmark

· 100%, (7)

where

M iav
= SD

(
mean

(
pCO2,Model−pCO2,SOCAT

))
,

M iav
benchmark = SD(mean(Dseason)) .

Here “mean” is a mean over the region and year, and

Dseason =
(
pCO2,SS+ trend

(
CO2, atm

))
−pCO2,SOCAT,

pCO2,SS is the seasonal cycle of pCO2 from the correspond-
ing mapping method. CO2, atm estimates from xCO2 Jena
CO2 inversion s76_v4.1 were used.
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Figure 2. Time mean differences (µatm) between monthly LSCE-FFNN pCO2 and SOCAT pCO2 data used for evaluation of the model
over the period from 2001 to 2016 (a) and its standard deviation (b).

Figure 3. Map of biomes (following Rodenbeck et al., 2015; Fay
and McKinley, 2014) used for comparison. See Table 2 for biome
names.

Riav provides information on the capability of each
method to reproduce the IAV compared to observations: a
smaller Riav represents a better fit compared with the refer-
ence. The amplitude of the interannual variations (Aiav) of
sea–air flux of CO2 (its 2-month running mean) is estimated
as the temporal standard deviation over the period.

3.2.1 Interannual variability

The time series of globally averaged surface ocean pCO2
over the period from 2001 to 2016 are presented in Fig. 4
for LSCE-FFNN and the three other models. Surface ocean
pCO2 (µatm) varied between the four mapping methods in
the range of ±7 µatm (Fig. 4a). Modeled pCO2 values were
at the lower end for ETH-SOMFFN and JMA-MLR, whereas
LSCE-FFNN and Jena-MLS13 computed higher values. The
same behavior was found for the 12-month running mean
time series (Fig. 4b). Figure 4c shows the 12-month run-

Table 2. Biomes from Fay and McKinley (2014) used for time se-
ries comparison (Fig. 3).

Number Name

1 (Omitted) North Pacific ice
2 Subpolar seasonally stratified North Pacific
3 Subtropical seasonally stratified North Pacific
4 Subtropical permanently stratified North Pacific
5 Equatorial West Pacific
6 Equatorial East Pacific
7 Subtropical permanently stratified South Pacific
8 (Omitted) North Atlantic ice
9 Subpolar seasonally stratified North Atlantic
10 Subtropical seasonally stratified North Atlantic
11 Subtropical permanently stratified North Atlantic
12 Equatorial Atlantic
13 Subtropical permanently stratified South Atlantic
14 Subtropical permanently stratified Indian Ocean
15 Subtropical seasonally stratified Southern Ocean
16 Subpolar seasonally stratified Southern Ocean
17 Southern Ocean ice

ning mean of the difference between computed pCO2 and
SOCAT data (model – SOCAT) over the globe. JMA-MLR
mostly underestimated observed pCO2 with a strong inter-
annual variability of the misfit, especially at the end of the
period, with up to −5 µatm. The difference between ETH-
SOMFFN output and SOCAT data fluctuated in the range
of ±1 µatm, with an increase in amplitude up to −2 µatm
from 2010 onward. Jena-MLS13 overestimated observations
with the difference in the range of 0–1 µatm. The difference
between LSCE-FFNN and SOCAT varied around zero (be-
tween −0.7 and 1 µatm).

The model was then assessed at biome scale. Results for
all biomes are presented in the Supplement (Figs. S2, S3,
S4). Two biomes with contrasting dynamics are discussed
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Figure 4. Global oceanic pCO2: Jena (red), JMA (blue), ETH-SOMFFN (green) and LSCE-FFNN (black). (a) Global average monthly time
series, (b) the global 12-month running mean average and (c) yearly pCO2 mismatch (difference between mapping methods and SOCAT
data).

hereafter in greater detail: (1) the equatorial East Pacific
(biome 6) characterized by a strong IAV of surface ocean
pCO2 and sea–air CO2 fluxes in response to ENSO, the El
Niño–Southern Oscillation (Feely et al., 1999; Rödenbeck et
al., 2015), and (2) the North Atlantic permanently stratified
biome (biome 11) with a well-marked seasonal cycle, but lit-
tle IAV (Schuster et al., 2013). Results for these biomes are
presented in Fig. 5.

Biome 6 is relatively well-covered by observations and
represents a key region for testing the skill of the model
to reproduce the observed strong IAV linked to ENSO. El
Niño events are characterized by positive SST anomalies,
reduced upwelling and decreased surface ocean pCO2 val-
ues. These episodes could be identified in all model time
series (Fig. 5a) with reduced pCO2 levels in 2004/05 and
2006/07 (weak El Niño), 2002/03 and 2009/10 (moderate El
Niño), and 2015/16 (strong El Niño). JMA-MLR (blue curve
in Fig. 5a) tended to underestimate pCO2 during weak El
Niño events; it was also underestimated during the La Niña
2011–2012 event by Jena-MLS13. LSCE-FFNN and ETH-
SOMFFN, both based on a neural network approach, yielded
similar results despite differences in network architecture and
predictor datasets.

Data coverage is particularly high over Biome 11 (Fig. 5b,
d, f). The seasonal cycle in this biome is dominantly driven
by temperature. Modeled seasonal variability showed good
agreement across the ensemble of methods (Fig. 5b) with an
increase in spring–summer and a decrease in autumn–winter.
However, the amplitude can be different by up to 10 µatm
between different models. The seasonal amplitude of pCO2
computed by JMA-MLR increased from smaller values at the
beginning of the time series to higher values in the middle
of the 2005–2012 period. The variability of seasonal ampli-
tude was the highest for Jena-MLS13 in line with the 12-
month running mean time series (Fig. 5d). Again, similar sea-
sonal amplitude and year-to-year variability of surface ocean
pCO2 were obtained with LSCE-FFNN and ETH-SOMFFN
(Fig. 5b, d). The yearly pCO2 mismatch (Fig. 5f) shows that
observed surface ocean pCO2 was underestimated by JMA-
MLR at the beginning and at the end of the period by up to
−6 µatm, and overestimated during the 2007–2011 period by
up to 8 µatm. Jena-MLS13 shows mostly positive differences
in the range of 0–2 µatm over the full period. LSCE-FFNN
and ETH-SOMFFN vary around zero and between −2 and
2 µatm, respectively, and are close to each other.
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Figure 5. Surface ocean pCO2 in the equatorial East Pacific (biome 6) (a, c, e) and the subtropical permanently stratified North Atlantic
(biome 11) (b, d, f): FFNN (black), JMA (blue), Jena (red) and ETH-SOMFFN (green). (a, b) The monthly time series averaged over the
biome. (c, d) The 12-month running mean averaged over the biome. (e, f) The yearly pCO2 mismatch (difference between the mapping
methods and the SOCAT data).

3.2.2 Sea–air CO2 flux variability

Sea–air exchange of CO2 was estimated using the same gas-
exchange formulation (Eq. 5) and wind speed data (6-hourly
NCEP wind speed) for each mapping data (Rödenbeck et
al., 2005). It is worth noting that the sea–air flux is sen-
sitive to the choice of the wind speed dataset (Roobaert et
al., 2018).

Figure 6a presents the global 12-month running mean of
the sea–air CO2 flux for four mapping methods. All models
showed an increase in CO2 uptake in response to increas-
ing atmospheric CO2 levels, albeit with a strong between-
model variability in multi-annual trends. There is less agree-
ment between the methods compared to reconstructions of

surface ocean pCO2 variability (Fig. 4b). This results from
the contribution of uncertainties in sea–air CO2 flux estima-
tions over regions with poor data coverage (mostly in the
South Hemisphere: the South Pacific, the South Atlantic, the
Indian Ocean and the South Ocean; see Fig. S5). Neverthe-
less, the relative IAV mismatch was less than 30 % for all
methods (Fig. 6b), suggesting a reasonable fit to observa-
tional data. However, the relative IAV mismatch is a global
score, and it is biased towards regions with good data cover-
age (Rödenbeck et al., 2015). The time series reconstructed
in this study is too short to capture decadal variations and,
in particular, the strengthening of the sink from 2000 on-
ward (Landschützer et al., 2016). LSCE-FFNN computed a
slowdown of ocean CO2 uptake between 2010 and 2013 with
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Figure 6. (a) Interannual global ocean sea–air CO2 flux (12-month running mean); (b) the amplitude of interannual CO2 flux plotted against
the relative IAV mismatch amplitude. The weighted mean is given as a horizontal line.

a flux of ∼−1.8 GtC yr−1 compared with ∼−2.2 GtC yr−1

for ETH-SOMFFN. A leveling-off was also found for JMA-
MLR, albeit shifted in time. In general, the amplitudes of re-
constructed CO2 fluxes across all four methods agreed within
0.2 to 0.36 PgC yr−1. The weighted mean of IAV (horizontal
line in Fig. 6b) computed from the four methods included
here was 0.25 PgC yr−1. This value is close to that reported
by Rödenbeck et al. (2015) for the complete ensemble of SO-
COM models (0.31 PgC yr−1) estimated for the period from
1992 to 2009. The largest amplitude was obtained for ETH-
SOMFFN (∼ 0.35 PgC yr−1). Conversely, LSCE-FFNN has
the smallest amplitude with 0.21 PgC yr−1. Jena-MLS13 and
JMA-MLR lie very close to the weighted mean value with
0.26 and 0.22 PgC yr−1, respectively. The weighted mean
and the dispersion of individual models around it, reflect the
period of analysis (2001–2015; ETH-SOMFFN output pro-
vided up to 2015) and the total number of models contribut-
ing to it (see Rödenbeck et al., 2015 for comparison). As
such, it does not provide information on the skill of any par-
ticular model.

The interannual variability of reconstructed sea–air CO2
fluxes (12-month running mean) showed good agreement for
biome 6 (East Pacific equatorial, Fig. 7a). A small discrep-
ancy was found at the beginning of the period. A strong in-
crease was computed by Jena-MLS13 for 2010–2014 that
was also identified in the pCO2 variability (Fig. 5a). Despite
this, Jena-MLS13 had a low relativeRIAV (26 %), which con-
firmed a tendency mentioned in Rödenbeck et al. (2015): that
mapping products with a small relative IAV mismatch show
larger amplitude. LSCE-FFNN and ETH-SOMFFN yielded
comparable results (Fig. 7a, c) with relative IAV mismatches
of 46 % and 53 %, respectively, and with amplitudes of ∼
0.03 PgC yr−1. Interannual variability reproduced by JMA-
MLR falls within the range of the other models (Fig. 7c), but
with a RIAV of ∼ 68 %.

Reconstructed sea–air CO2 fluxes over the North Atlantic
subtropical permanently stratified region (biome 11) show
large between model differences in amplitudes and variabil-

ity. The two models based on a neural network again show
good agreement with an RIAV of 17 % for LSCE-FFNN and
20 % for ETH-SOMFFN. Jena-MLS13 produced a strong
seasonal variability (Fig. 7b) up to 0.06 PgC yr−1, and a small
RIAV of ∼ 11 %. Contrary to the other approaches, JMA-
MLR did not reproduce a decrease in sea–air CO2 in the
middle of the period by up to 0.02 PgC yr−1 (Fig. 7b). The
model is characterized by an RIAV of 46 % and an amplitude
of 0.013 PgC yr−1.

3.2.3 Sea–air CO2 flux trend

The long-term trend of sea–air CO2 fluxes is dominantly
driven by the increase in atmospheric CO2 (see Fig. S7). On
shorter timescales, such as for the period from 2001 to 2016,
the interannual variability at regional scales reflects natural
modes of climate variability and local oceanographic dynam-
ics (Heinze et al., 2015).

Figure 8 shows the significant linear trends (p_val= 0.05)
of sea–air CO2 fluxes for LSCE-FFNN (a), Jena-MLS13 (b),
ETH-SOMFFN (c) and JMA-MLR (d). A total (av-
eraged over the globe) negative trend was computed
for all models, albeit with large regional contrasts,
and LSCE-FFNN falls within this range: Jena-MLS13,
−0.0012 PgC yr−1 yr−1 (−0.0028 PgC yr−1 yr−1, total
value with no significant t test; Fig. S8); LSCE-FFNN,
−0.00087 PgC yr−1 yr−1 (−0.0032 PgC yr−1 yr−1); JMA-
MLR, −0.0013 PgC yr−1 yr−1 (−0.0037 PgC yr−1 yr−1);
ETH-SOMFFN, −0.0025 PgC yr−1 yr−1

(−0.0059 PgC yr−1 yr−1). LSCE-FFNN computed neg-
ative trends over most of the Atlantic basin, the Indian
Ocean and south of 40◦ S, which contrasts with decreasing
fluxes over the Pacific and locally in the Antarctic Circum-
polar Current. At first order, this broad regional pattern
is found in all models. However, regional maxima and
minima are more pronounced in Jena-MLS13 (Fig. 8b) and
ETH-SOMFFN (Fig. 8c), whereas a patchy distribution at
the sub-basin scale is diagnosed for JMA-MLR.
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Figure 7. Global ocean interannual sea–air CO2 flux (12-month running mean) in (a) the equatorial East Pacific (biome 6) and (b) the sub-
tropical permanently stratified North Atlantic (biome 11). The amplitude of interannual CO2 flux plotted against the relative IAV mismatch
amplitude in (c) the equatorial East Pacific (biome 6) and (d) the subtropical permanently stratified North Atlantic (biome 11). The weighted
mean is given as a horizontal line.

Figure 8. Significant (p_val= 0.05) linear trend of fCO2 for the common period (2001–2015) for (a) LSCE-FFNN, (b) Jena-MLS13,
(c) ETH-SOMFFN and (d) JMA-MLR.
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Table 3. Mean of sea–air CO2 flux (PgC yr−1) over the global ocean and per region for the common period (2001–2015). Averages over
the period from 2001 to 2009 are presented in parentheses. The last column presents a comparison with the best estimates from Schuster et
al. (2013) for the Atlantic Ocean (1990–2009).

Region Latitude LSCE-FFNN ETH-SOMFFN Jena-MLS13 JMA-MLR Schuster et al. (2013),
boundaries 1990–2009

Global −1.55 (−1.44) −1.67 (−1.47) −1.55 (−1.41) −1.74 (−1.62) –
Arctic 76–90◦ N −0.001 −0.001 −0.001 −0.001 −0.12± 0.06
Subpolar Atlantic 49–76◦ N −0.15 (−0.15) −0.14 (−0.12) −0.15 (−0.15) −0.16 (−0.15) −0.21± 0.06
Subpolar Pacific 49–76◦ N −0.003 (−0.005) −0.009 (−0.004) −0.006 (−0.004) −0.027 (−0.021) –
Subtropical Atlantic 18–49◦ N −0.21 (−0.19) −0.21 (−0.19) −0.2 (−0.18) −0.21 (−0.2) −0.26± 0.06
Subtropical Pacific 18–49◦ N −0.45 (−0.46) −0.49 (−0.48) −0.47 (−0.46) −0.49 (−0.47) –
Equatorial Atlantic 18◦ S–18◦ N 0.085 (0.09) 0.085 (0.095) 0.08 (0.082) 0.1 (0.11) 0.12± 0.04
Equatorial Pacific 18◦ S–18◦ N 0.42 (0.41) 0.4 (0.4) 0.44 (0.42) 0.38 (0.37) –
South Atlantic 44–18◦ S −0.17 (−0.16) −0.18 (−0.16) −0.18 (−0.17) −0.23 (−0.22) −0.14± 0.04
South Pacific 44–18◦ S −0.33 (−0.34) −0.4 (−0.39) −0.35 (−0.34) −0.49 (−0.47) –
Indian Ocean 44◦ S–30◦ N −0.25 (−0.2) −0.32 (−0.29) −0.27 (−0.26) −0.27 (−0.29) –
Southern Ocean 90–44◦ S −0.38 −0.29 −0.36 −0.26 –

Figure 9. Agreement between the four mapping methods with re-
spect to their linear trend of sea–air CO2 flux. The color bar rep-
resents the number of products that have the same sign of linear
trend.

The agreement in sign of computed linear trends from the
four models is presented in Fig. 9 (total linear trends with no
significant t test). Over most of the ocean, all four models
show very close sea–air CO2 tendency. In the Indian Ocean
(biome 14), in comparison, a positive trend was computed for
JMA-MLR (0.0004 PgC yr−1 yr−1; 0.00006 PgC yr−1 yr−1

with a t test), whereas the other three models present a neg-
ative trend. The differences between models were also found
in the Pacific Ocean, especially the southern Pacific. In the
eastern equatorial Pacific region (biome 6) a total significant
negative trend is presented by all models. All models repro-
duced a maximum in the southern part of biome 6, but they
disagreed about its amplitude and spatial distribution. Almost
everywhere over the Atlantic Ocean the mapping methods
produced the same sign of linear trend (Fig. 9). However,
in the eastern part of the subtropical North Atlantic, Jena-
MLS13 gave a positive linear trend of fCO2 (Fig. 8b).

According to LSCE-FFNN, the global ocean took up
1.55 PgC yr−1 on average between 2001 and 2015.This es-
timate is consistent with results from the other three models
(Table 3; see Table S2 for estimations per biome). The spread
between individual models falls in the range of the error re-
ported in Landschützer et al. (2016),±0.4–0.6 PgC yr−1. Per
biome, estimates of CO2 sea–air fluxes provided by LSCE-
FFNN are also in good agreement with those derived from
the other models.

4 Summary and conclusion

We proposed a new model for the reconstruction of monthly
surface ocean pCO2. The model is applied globally and al-
lows a seamless reconstruction without introducing bound-
aries between the ocean basins or biomes. Our model relies
on a two-step approach based on feed-forward neural net-
works (LSCE-FFNN). The first step corresponds to the re-
construction of a monthly pCO2 climatology. It allows for
the output of the FFNN to be kept close to the observed
values in regions with poor data cover. In the second step,
pCO2 anomalies are reconstructed with respect to the clima-
tology from the first step. The model was applied over the
period from 2001 to 2016. Validation with independent data
at the global scale indicated a RMSE of 17.57 µatm, an r2 of
∼ 0.76 and an absolute bias of 11.52 µatm. In order to assess
the model further, it was compared to three different map-
ping models: ETH-SOMFFN (self-organizing maps+ neural
network), Jena-MLS13 (statistical interpolation) and JMA-
MLR (linear regression) (Rödenbeck et al., 2015). Network
qualification followed the protocol and diagnostics proposed
in Rödenbeck et al. (2015).

Reconstructed surface ocean pCO2 distributions were in
good agreement with other models and observations. The
seasonal variability was reproduced to a satisfying level by
LSCE-FFNN, the yearly pCO2 mismatch varied around zero
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and the relative IAV mismatch was 7 %. LSCE-FFNN proved
skillful in reproducing the interannual variability of surface
ocean pCO2 over the eastern equatorial Pacific in response
to ENSO. Reductions in surface ocean pCO2 during El Niño
events were well reproduced. The comparison between re-
constructed and observed pCO2 values yielded a RMSE of
15.73 µatm, an r2 of 0.79 and an absolute bias of 10.33 µatm
over the equatorial Pacific. The relative IAV misfit in this re-
gion was ∼ 17 %. Despite the overall good agreement be-
tween models, important differences still exist at the regional
scale, especially in the Southern Hemisphere and, in partic-
ular, in the southern Pacific and the Indian Ocean. These
regions suffer from poor data coverage. Large regional un-
certainties in reconstructed surface ocean pCO2 and sea–air
CO2 fluxes have a strong influence on global estimates of
CO2 fluxes and trends.

Code and data availability. Python code for the pCO2 climatology
reconstruction (the first step of LSCE-FFNN model) and Python
code for reconstruction of the pCO2 anomalies (the second step of
LSCE-FFNN model) are provided at the end of the Supplement.

Time series of reconstructed surface ocean pCO2 and CO2
fluxes are distributed through the Copernicus Marine Environ-
ment Monitoring Service (CMEMS), http://marine.copernicus.eu/
services-portfolio/access-to-products/, search keyword: MULTI-
OBS.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-2091-2019-supplement.
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