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Plurisubharmonic geodesics and interpolating sets

We apply a notion of geodesics of plurisubharmonic functions to interpolation of compact subsets of C n . Namely, two non-pluripolar, polynomially closed, compact subsets of C n are interpolated as level sets L t = {z : u t (z) = -1} for the geodesic u t between their relative extremal functions with respect to any ambient bounded domain. The sets L t are described in terms of certain holomorphic hulls. In the toric case, it is shown that the relative Monge-Ampère capacities of L t satisfy a dual Brunn-Minkowski inequality.

Introduction

In the classical complex interpolation theory of Banach spaces, originated by Calderón [START_REF] Calderón | Intermediate spaces and interpolation, the complex method[END_REF] (see [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF] and, for more recent developments, [START_REF] Cordero-Erausquin | Interpolations, convexity and geometric inequalities[END_REF] and references therein), a given family of Banach spaces X ξ parameterized by boundary points ξ of a domain C ⊂ C N gives rise to a family of Banach spaces X ζ for all ζ ∈ C. A basic setting is interpolation of two spaces, X 0 and X 1 , for a partition {C 0 , C 1 } of ∂C. More specifically, one can take C to be the strip 0 < Re ζ < 1 in the complex plane and C 0 , C 1 the corresponding boundary lines, then the interpolated norms depend only on t = Im ζ. In the finite dimensional case X j = (C n , • j ), j = 0, 1, they are defined in terms of the family of mappings C → C n , bounded and analytic in the strip, continuous up to the boundary and tending to zero as Im ζ → ∞, see details in [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF]. In this setting, the volume of the unit ball B t of (C n , • t ), 0 < t < 1, was proved in [START_REF] Cordero-Erausquin | Santaló's inequality on C n by complex interpolation[END_REF] to be a logarithmically concave function of t.

When the given norms • j on C n are toric, i.e., satisfy (z 1 , . . . , z n ) j = (|z 1 |, . . . , |z n |) j , the interpolated norms are toric as well and the balls B t are Reinhardt domains of C n obtained as the multiplicative combinations (geometric means) of the balls B 0 and B 1 . The logarithmic concavity implies that volumes of the multiplicative combinations

K × t = K 1-t 0 K t 1 ⊂ R n (1.1)
of any two convex bounded neighbourhoods K 0 and K 1 of the origin in R n satisfy the Brunn-Minkowski inequality

Vol(K × t ) ≥ Vol(K 0 ) 1-t Vol(K 1 ) t , 0 < t < 1. (1.2) 1
Note also that in [START_REF] Lodkowski | Polynomial hulls with convex sections and interpolating spaces[END_REF]- [START_REF] Lodkowski | Polynomial hulls with convex fibers and complex geodesics[END_REF], the interpolated spaces were related to convex hulls and complex geodesics with convex fibers. In particular, it put the interpolation in the context of analytic multifunctions.

In this note, we develop a slightly different -albeit close -approach to the interpolation of compact, polynomially convex subsets of C n by sets arising from a notion of plurisubharmonic geodesics. The technique originates from results on geodesics in the spaces of metrics on compact Kähler manifolds due to Mabuchi, Semmes, Donaldson, Berndtsson and others (see [START_REF]Complex Monge-Ampre equations and geodesics in the space of Khler metrics[END_REF] and the bibliography therein). Its local counterpart for plurisubharmonic functions from Cegrell classes on domains of C n was introduced in [START_REF] Berman | Moser-Trudinger type inequalities for complex Monge-Ampre operators and Aubin's "hypothèse fondamentale[END_REF] and [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF]. We will need here a special case when the geodesics can be described as follows.

Let

A = {ζ ∈ C : 0 < log |ζ| < 1}
be the annulus bounded by the circles

A j = {ζ : log |ζ| = j}, j = 0, 1.
Given two plurisubharmonic functions u 0 and u 1 in a bounded hyperconvex domain Ω ⊂ C n , equal to zero on ∂Ω, we consider the class W (u 0 , u 1 ) of all plurisubharmonic functions u(z, ζ) in the product domain Ω × A, such that lim sup u(z, ζ) ≤ u j (z) for all z ∈ Ω as ζ → A j . The function

u(z, ζ) = sup{u(z, ζ) : u ∈ W (u 0 , u 1 )} (1.3)
belongs to the class and satisfies u(z, ζ) = u(z, |ζ|), which gives rise to the functions u t (z) := u(z, e t ), 0 < t < 1, the geodesic between u 0 and u 1 . When the functions u j are bounded, the geodesic u t tend to u j as t → j, uniformly on Ω. One of the main properties of the geodesics is that they linearize the energy functional

E(u) = Ω u(dd c u) n , (1.4) 
see [START_REF] Berman | Moser-Trudinger type inequalities for complex Monge-Ampre operators and Aubin's "hypothèse fondamentale[END_REF], [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF] (where actually more general classes of plurisubharmonic functions are considered). Given two non-pluripolar compact sets K 0 , K 1 ⊂ C n , let u j denote the relative extremal functions of K j , j = 0, 1, with respect to a bounded hyperconvex neighbourhood Ω of K 0 ∪ K 1 , i.e.,

u j (z) = ω K j ,Ω (z) = lim sup y→z sup{u(y) : u ∈ PSH -(Ω), u| K j ≤ -1}, (1.5)
where PSH -(Ω) is the collection of all nonpositive plurisubharmonic functions in Ω. The functions u j belong to PSH -(Ω) and satisfy (dd c u j ) n = 0 on Ω \ K j , see [START_REF] Klimek | Pluripotential theory[END_REF].

Assume, in addition, each K j to be polynomially convex (in the sense that it coincides with its polynomial hull). This implies ω K j ,Ω ′ = -1 on K j for some (and thus any) bounded hyperconvex neighborhood Ω ′ of K j and that ω K j ,Ω ′ ∈ C(Ω ′ ). In particular, the functions u j = -1 on K j and are continuous on Ω. The geodesics u t converge to u j uniformly as t → j [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF] and so, by the Walsh theorem, the upper envelope u(z, ζ)

(1.3) is continuous on Ω × A, which, in turn, implies u t ∈ C(Ω × [0, 1]).
As was shown in [START_REF] Rashkovskii | Copolar convexity[END_REF], functions u t in general are different from the relative extremal functions of any subsets of Ω. Consider nevertheless the sets where they attain their minimal value, -1:

L t = {z ∈ Ω : u t (z) = -1}, 0 < t < 1. (1.6)
By the continuity of the geodesic at the endpoints, the sets L t converge (say, in the Hausdorff metric) to K j when t → j ∈ {0, 1} and so, they can be viewed as interpolations between K 0 and K 1 . The curve t → L t can be in a natural way identified with the multifunction ζ → K ζ := L log |ζ| . Note however that it is not an analytic multifunction (for the definition, see, e.g., [START_REF] Oka | Note sur les familles de finctions analytiques multiformes etc[END_REF], [START_REF] Lodkowski | Analytic set-valued functions and spectra[END_REF], [START_REF] Poletsky | Jensen measures and analytic multifunctions[END_REF]) because its graph

{(z, ζ) ∈ Ω × A : u(z, ζ) = -1} is not pseudoconcave.
In Section 2, we show that the interpolating sets L t can be represented as sections K t = {z : (z, e t ) ∈ K} of the holomorphic hull K of the set

K A := (K 0 × A 0 ) ∪ (K 1 × A 1 ) ⊂ C n+1 (1.7)
with respect to functions holomorphic in C n × (C \ {0}).

In Section 3, we study the relative Monge-Ampère capacities Cap (L t , Ω) of the sets L t ; recall that for K ⋐ Ω,

Cap (K, Ω) = sup{(dd c u) n (K) : u ∈ PSH -(Ω), u| K ≤ -1} = (dd c ω K,Ω ) n (Ω),
see [START_REF] Klimek | Pluripotential theory[END_REF]. It was shown in [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF] that the function t → Cap (L t , Ω) is convex, which was achieved by using linearity of the energy functional (1.4) along the geodesics. In the case when Ω is the unit polydisk D n and K j are Reinhardt sets, the convexity of the Monge-Ampère capacities was rewritten in [START_REF] Rashkovskii | Copolar convexity[END_REF] as convexity of covolumes of certain unbounded convex subsets P t of the positive orthant R n + (that is, volumes of their complements to R n + ). Here, we use a convex geometry technique to prove Theorem 3.2 stating that actually the covolumes of the sets P t are logarithmically convex. Since in this case the sets L t are exactly the geometric means K × t of K 0 and K 1 , this implies the dual Brunn-Minkowski inequality for their Monge-Ampère capacities,

Cap (K × t , D n ) ≤ Cap (K 0 , D n ) 1-t Cap (K 1 , D n ) t , 0 < t < 1. (1.8)
In addition, an equality here occurs for some t ∈ (0, 1) if and only if

K 0 = K 1 .
It is quite interesting that the volume of K × t satisfies the opposite Brunn-Minkowski inequality (1.2), i.e., it is logarithmically concave. Furthermore, so are the standard logarithmic capacity in the complex plane and the Newtonian capacity in R n with respect to the Minkowski addition [START_REF] Borell | Capacitary inequalities of the Brunn-Minkowski type[END_REF], [START_REF] Borell | Hitting probabilities of killed Brownian motion: a study on geometric regularity[END_REF], [START_REF] Ransford | Computation of logarithmic capacity[END_REF]. The difference here is that the relative Monge-Ampère capacity is, contrary to the logarithmic or Newton capacities, a local notion, which leads to the dual Brunn-Minkowski inequality (1.8), exactly like for the covolumes of coconvex bodies [START_REF] Khovanski | On the theory of coconvex bodies[END_REF].

A natural question that remains open is to know whether the logarithmic convexity of the relative Monge-Ampère capacities is also true in the general, non-toric case. No non-trivial examples of (1.8) in this setting are known so far.

Level sets as holomorphic hulls

Let K 0 , K 1 be two non-pluripolar compact subsets of a bounded hyperconvex domain Ω ⊂ C n , and let L t = L t,Ω be the interpolating sets defined by (1.6) for the geodesic u t = u t,Ω with the endpoints u j = ω K j ,Ω . We start with an observation that if the sets K j are polynomially convex, then the sets L t are actually independent of the choice of the domain Ω containing K 0 ∪ K 1 .

Lemma 2.1 If Ω ′ and Ω ′′ are bounded hyperconvex neighborhoods of nonpluripolar, polynomially convex, compact sets K 0 and K 1 , then L t,Ω ′ = L t,Ω ′′ . Proof. By the monotonicity of Ω → u t,Ω , it suffices to show the equality for

Ω ′ ⋐ Ω ′′ . Since u t,Ω ′′ ≤ u t,Ω ′ , the inclusion L t,Ω ′ ⊂ L t,Ω ′′ is evident. Denote now δ = -inf{u j,Ω ′′ (z) : z ∈ ∂Ω ′ , j = 0, 1} ∈ (0, 1).
Recall that the geodesics u t,Ω come from the maximal plurisubharmonic functions u Ω in Ω × A for the annulus A bounded by the circles A j where log |ζ| = j. Then the function

v := 1 1 -δ ( u Ω ′′ + δ) ∈ PSH(Ω ′ × A) ∩ C(Ω ′ × A) satisfies (dd c v) n+1 = 0 in Ω ′ × A and lim v(z, ζ) = -1 as (z, ζ) → K j × A j . (2.1) 
Moreover, since v ≥ 0 on ∂Ω ′ × A and its restriction to each A j satisfies (dd c v) n = 0 on A j \ K j , the boundary conditions (2.1) imply

lim v(z, ζ) ≥ u j,Ω ′ as ζ → A j .
Therefore, we have v ≥ û in the whole Ω ′ × A. If z ∈ L t,Ω ′′ , this gives us -1 ≥ u t,Ω ′ (z) and so, z ∈ L t,Ω ′ , which completes the proof.

Next step is comparing the sets L t with other interpolating sets, K t , defined as follows. Set

K = K(Ω) = {(z, ζ) ∈ Ω × A : u(z, ζ) ≤ M (u) ∀u ∈ PSH -(Ω × A)}, (2.2)
where M (u) = max j M j (u) and

M j (u) = lim sup u(z, ζ) as (z, ζ) → K j × A j , j = 0, 1.
Note that the set K will not change if one replaces PSH -(Ω × A) by the collection of all bounded from above (or just bounded) plurisubharmonic functions on Ω × A.

Denote by K ζ the section of K over ζ ∈ A:

K ζ = K ζ (Ω) = {z ∈ Ω : (z, ζ) ∈ K}, ζ ∈ A.
The set K is invariant under rotation of the ζ-variable, so K ζ depends only on |ζ|. We set then

K t = K e t , 0 < t < 1.
Theorem 2.2 If K j are non-pluripolar, polynomially convex compact subsets of Ω, then L t = K t for all 0 < t < 1.

Proof. First, we prove the inclusion

L t ⊂ K t , (2.3) that is, u(z, t) ≤ M (u) ∀z ∈ L t (2.4)
for all u ∈ PSH -(Ω × A). By the scalings u → c u, we can assume that u -min j M j (u) ≤ 1 on Ω × A. Then the function

φ(z, ζ) = u(z, ζ) -(1 -log |ζ|)M 0 (u) -(log |ζ|)M 1 (u) -1 belongs to PSH -(Ω × A) and lim sup φ(z, ζ) ≤ -1 as (z, ζ) → K j × A j .
In other words, φ t (z) := φ(z, e t ) is a subgeodesic for u 0 and u 1 , so φ t ≤ u t . Therefore, φ t ≤ -1 on L t , which gives us (2.4).

To get the reverse inclusion, assume z ∈ K t . Then, by definition of K, we get u t (z) ≤ M (u t ) = -1 and, since u t ≥ -1 everywhere, u t (z) = -1.

The set K can actually be represented as a holomorphic hull of the set

K A = (K 0 × A 0 ) ∪ (K 1 × A 1 ),
which is similar to what one gets in the classical interpolation theory. This can be concluded by standard arguments relating plurisubharmonic and holomorphic hulls (see, e.g., [START_REF] Range | Holomorphic Functions and Integral Representations in Several Complex Variables[END_REF]).

Proposition 2.3 Let K 0 , K 1 be two non-pluripolar, polynomially convex compact subsets of a bounded hyperconvex domain Ω ⊂ C n . Then the set K defined by (2.2) is the holomorphic hull of the set K A with respect to the collection of all functions holomorphic on Ω × C * (here

C * = C \ {0}).
Proof. The domain Ω × C * is pseudoconvex, so it suffices to show that K is the F-hull K F of the set (1.7) with respect to F = PSH(Ω × C * ).

Take any hyperconvex domain Ω ′ such that K 0 ∪ K 1 ⊂ Ω ′ ⋐ Ω. Since F forms a subset of the collection of all bounded from above psh functions on Ω ′ × A, we have K ′ := K(Ω ′ ) ⊂ K F . Moreover, by Lemma 2.1 and Theorem 2.2, we have

K ′ = K, which implies K ⊂ K F .
Let u t be the geodesic of u 0 , u 1 in Ω. Then its psh image û(z, ζ) can be extended to

Ω × C * as Û (z, ζ) = u 0 (z) -log |ζ| for -∞ < log |ζ| ≤ 0 and Û (z, ζ) = u 1 (z) + log |ζ| -1 for 1 ≤ log |ζ| < ∞. Indeed, the function v(z, ζ) = max{u 0 (z) -log |ζ|, u 1 (z) + log |ζ| -1} is psh on Ω × A, continuous on Ω × A, and equal to u j on Ω × A j . Therefore, it coincides with Û on Ω × (C * \ A), Since v ≤ û on Ω × A and v = û on Ω × ∂A, the claim is proved. Let (z * , ζ * ) ∈ K F . By the definition of K F , since Û ∈ PSH(Ω × C * ), û(z * , ζ * ) = Û (z * , ζ * ) ≤ sup{ Û (z, ζ) : (z, ζ) ∈ K A } = -1, so z * ∈ K t with t = log |ζ * |.
Finally, since the sets L t are independent of the choice of Ω, we get the following description of the interpolated sets K t .

Corollary 2.4 Let K 0 , K 1 be two non-pluripolar, polynomially convex compact subsets of C n and let Ω be a bounded hyperconvex domain containing K 0 ∪ K 1 . Denote by u t the geodesic of the functions u j = ω K j ,Ω , j = 0, 1.

Then for any

ζ ∈ A, K t = {z ∈ Ω : u t (z) = -1} = {z ∈ C n : |f (z, ζ)| ≤ f K A ∀f ∈ O(C n ×C * )} with t = log |ζ|.
Remark. Note that the considered hulls are taken with respect to functions holomorphic in C n × C * and not in C n+1 (that is, not the polynomial hulls). This reflects the fact that in the definition of K A , the circles A 0 and A 1 may be interchanged. Since for any polynomial P (z, ζ) and any ζ inside the disc |ζ| < e, we have |P (z, ζ)| ≤ max{|P (z, ξ)| : |ξ| = e}, each section of the polynomial hull of K A must contain K 1 , so such a hull does not provide any interpolation between K 0 and K 1 .

3 Log-convexity of Monge-Ampère capacities Let, as before, K 0 and K 1 be non-pluripolar, polynomially convex compact subsets of a bounded hyperconvex domain Ω ⋐ C n , u t be the geodesic between u j = ω K j ,Ω , and let K t be the corresponding interpolating sets as described in Section 2. As was mentioned, their relative Monge-Ampère capacities satisfy the inequality Cap (K t , Ω) ≤ (1 -t) Cap (K 0 , Ω) + t Cap (K 1 , Ω).

Let now Ω = D n and assume the sets K j to be Reinhardt. The polynomial convexity of K j means then that their logarithmic images

Q j = Log K j = {s ∈ R n -: (e s 1 , . . . , e sn ) ∈ K j } are complete convex subsets of R n -, i.e., Q j +R n -⊂ R n -;
when this is the case, we will also say that K j is complete logarithmically convex. In this situation, the sets K t are, as in the classical interpolation theory, the geometric means of K j . Note however that our approach extends the classical -convexsetting to a wider one. Proposition 3.1 The interpolating sets K t of two non-pluripolar, complete logarithmically convex, compact Reinhardt sets K 0 , K 1 ⊂ D n coincide with

K × t := K 1-t 0 K t 1 = {z : |z l | = |η l | 1-t |ξ l | t , 1 ≤ l ≤ n, η ∈ K 0 , ξ ∈ K 1 }.
Proof. We prove this by using the representation of the sets K t as L t = {z : u t (z) = -1} and a formula for the geodesics in terms of the Legendre transform [START_REF] Guan | On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles[END_REF], [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF]. By and large, this is Calderón's method.

As was noted in [START_REF] Rashkovskii | Local geodesics for plurisubharmonic functions[END_REF]Thm. 4.3], the inclusion K × t ⊂ L t follows from convexity of the function ǔt (s) = u t (e s 1 , . . . , e sn ) in (s, t) ∈ R n -× (0, 1) since s ∈ log K × t implies ǔt (s) ≤ -1. To prove the reverse inclusion, we use a representation for ǔt given by [START_REF] Rashkovskii | Copolar convexity[END_REF]Thm. 6.1]:

ǔt = L[(1 -t) max{h Q 0 + 1, 0} + t max{h Q 1 + 1, 0}], 0 < t < 1, where L[f ](y) = sup x∈R n { x, y -f (x)} is the Legendre transform of f , h Q (a) = sup s∈Q a, s , a ∈ R n + is the support function of a convex set Q ⊂ R n -, and Q j = Log K j . Let z / ∈ K × t ,
then one can assume that none of its coordinates equals zero, so the corresponding point ξ

= (log |z 1 |, . . . , log |z n |) ∈ R n -does not belong to Q t = (1 -t)Q 0 + tQ 1 . Therefore there exists b ∈ R n + such that b, ξ > h Qt (b) = (1 -t)h Q 0 (b) + t h Q 1 (b);
by the homogeneity, one can assume

h Q 0 (b), h Q 1 (b) > -1 as well. Then ǔt (ξ) = sup a∈R n + [ a, ξ -(1 -t) max{h Q 0 (a) + 1, 0} -t max{h Q 1 (a) + 1, 0}] > (1 -t)[h Q 0 (b) -(h Q 0 (b) + 1)] + t[h Q 1 (b) -(h Q 1 (b) + 1)] = 1,
so ξ does not belong to Log L t and consequently z / ∈ L t .

The crucial point for the Reinhardt case is a formula from [1, Thm. 7] (see also [START_REF] Rashkovskii | Copolar convexity[END_REF]) for the Monge-Ampère capacity of complete logarithmically convex compact sets K ⊂ D n :

Cap (K, D n ) = n! Covol(Q • ) := n! Vol(R n + \ Q • ), where Q • = {x ∈ R n + : x, y ≤ -1 ∀y ∈ Q} is the copolar to the set Q = Log K. In particular, Cap (K t ) = n! Covol(Q • t ) (3.1)
for the copolar Q

• t of the set Q t = (1 -t)Q 0 + t Q 1 . Proposition 3.2 We have Covol(Q • t ) ≤ Covol(Q • 0 ) 1-t Covol(Q • 1 ) t , 0 < t < 1. (3.2)
If an equality here occurs for some t ∈ (0, 1), then

Q 0 = Q 1 .
Proof. Let, as before, h Q be the restriction of the support function of a convex set Q ⊂ R n -to R n + :

h Q (x) = sup{ x, y : y ∈ Q}, x ∈ R n + .

We have then Note that h Qt = (1 -t)h Q 0 + t h Q 1 . Therefore, by Hölder's inequality with p = (1 -t) -1 and q = t -1 , we have

R n + e h Q t (x) dx = R n + dx ∞ -h Q t (x)
R n + e h Q t (x) dx ≤ R n + e h Q 0 (x) dx 1-t R n + e h Q 1 (x) dx t , (3.3) 
which proves (3.2). An equality in (3.2) implies the equality case in Hölder's inequality (3.3), which means the functions e h Q 0 and e h Q 1 are proportional, so h Q 0 (x) = h Q 1 (x) + C for all x ∈ R n + . Since both h Q 0 (x) and h Q 1 (x) converge to 0 as x → 0 along R n + , we get C = 0, which completes the proof. Finally, by (3.1), we get Theorem 3.3 For polynomially convex, non-pluripolar compact Reinhardt sets K j ⋐ D n , the Monge-Ampère capacity Cap (K t , D n ) is a logarithmically convex function of t; in other words, the Brunn-Minkowski inequality (1.8) holds. An equality in (1.8) occurs for some t ∈ (0, 1) if and only if K 0 = K 1 .

Remark. The general situation of compact, polynomially convex Reinhardt sets reduces to the case K 0 , K 1 ⊂ D n because for K in the polydisk D n R of radius R, we have Cap (K,

D n R ) = Cap ( 1 R K, D n ) and ( 1 R K) t = 1 R K t .

e -s ds = ∞ 0 e 0 e 0 e

 000 -s ds h Q t (x)≥-s dx = ∞ -s Vol({h Qt (x) ≥ -s}) ds = Vol({h Qt (x) ≥ -1}) ∞ -s s n ds = n! Covol(Q • t ).
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