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Plurisubharmonic geodesics and interpolating sets

Dario Cordero-Erausquin and Alexander Rashkovskii

Abstract

We apply a notion of geodesics of plurisubharmonic functions to
interpolation of compact subsets of Cn. Namely, two non-pluripolar,
polynomially closed, compact subsets of Cn are interpolated as level
sets Lt = {z : ut(z) = −1} for the geodesic ut between their relative
extremal functions with respect to any ambient bounded domain. The
sets Lt are described in terms of certain holomorphic hulls. In the
toric case, it is shown that the relative Monge-Ampère capacities of Lt

satisfy a dual Brunn-Minkowski inequality.

1 Introduction

In the classical complex interpolation theory of Banach spaces, originated by
Calderón [6] (see [2] and, for more recent developments, [8] and references
therein), a given family of Banach spaces Xξ parameterized by boundary
points ξ of a domain C ⊂ C

N gives rise to a family of Banach spaces Xζ for
all ζ ∈ C. A basic setting is interpolation of two spaces, X0 and X1, for a
partition {C0, C1} of ∂C. More specifically, one can take C to be the strip
0 < Re ζ < 1 in the complex plane and C0, C1 the corresponding boundary
lines, then the interpolated norms depend only on t = Im ζ. In the finite
dimensional case Xj = (Cn, ‖ · ‖j), j = 0, 1, they are defined in terms of the
family of mappings C → C

n, bounded and analytic in the strip, continuous
up to the boundary and tending to zero as Im ζ → ∞, see details in [2]. In
this setting, the volume of the unit ball Bt of (Cn, ‖ · ‖t), 0 < t < 1, was
proved in [7] to be a logarithmically concave function of t.

When the given norms ‖·‖j on C
n are toric, i.e., satisfy ‖(z1, . . . , zn)‖j =

‖(|z1|, . . . , |zn|)‖j , the interpolated norms are toric as well and the balls Bt

are Reinhardt domains of C
n obtained as the multiplicative combinations

(geometric means) of the balls B0 and B1. The logarithmic concavity implies
that volumes of the multiplicative combinations

K×
t = K1−t

0 Kt
1 ⊂ R

n (1.1)

of any two convex bounded neighbourhoods K0 and K1 of the origin in R
n

satisfy the Brunn-Minkowski inequality

Vol(K×
t ) ≥ Vol(K0)1−tVol(K1)t, 0 < t < 1. (1.2)
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Note also that in [20]–[22], the interpolated spaces were related to convex
hulls and complex geodesics with convex fibers. In particular, it put the
interpolation in the context of analytic multifunctions.

In this note, we develop a slightly different – albeit close – approach to
the interpolation of compact, polynomially convex subsets of Cn by sets aris-
ing from a notion of plurisubharmonic geodesics. The technique originates
from results on geodesics in the spaces of metrics on compact Kähler mani-
folds due to Mabuchi, Semmes, Donaldson, Berndtsson and others (see [10]
and the bibliography therein). Its local counterpart for plurisubharmonic
functions from Cegrell classes on domains of Cn was introduced in [3] and
[17]. We will need here a special case when the geodesics can be described
as follows.

Let
A = {ζ ∈ C : 0 < log |ζ| < 1}

be the annulus bounded by the circles

Aj = {ζ : log |ζ| = j}, j = 0, 1.

Given two plurisubharmonic functions u0 and u1 in a bounded hyperconvex
domain Ω ⊂ C

n, equal to zero on ∂Ω, we consider the class W (u0, u1) of all
plurisubharmonic functions u(z, ζ) in the product domain Ω ×A, such that
lim supu(z, ζ) ≤ uj(z) for all z ∈ Ω as ζ → Aj . The function

û(z, ζ) = sup{u(z, ζ) : u ∈ W (u0, u1)} (1.3)

belongs to the class and satisfies û(z, ζ) = û(z, |ζ|), which gives rise to the
functions ut(z) := û(z, et), 0 < t < 1, the geodesic between u0 and u1. When
the functions uj are bounded, the geodesic ut tend to uj as t → j, uniformly
on Ω. One of the main properties of the geodesics is that they linearize the
energy functional

E(u) =

∫

Ω
u(ddcu)n, (1.4)

see [3], [17] (where actually more general classes of plurisubharmonic func-
tions are considered).

Given two non-pluripolar compact sets K0,K1 ⊂ C
n, let uj denote the

relative extremal functions of Kj , j = 0, 1, with respect to a bounded hy-
perconvex neighbourhood Ω of K0 ∪K1, i.e.,

uj(z) = ωKj ,Ω(z) = lim sup
y→z

sup{u(y) : u ∈ PSH−(Ω), u|Kj
≤ −1}, (1.5)
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where PSH−(Ω) is the collection of all nonpositive plurisubharmonic func-
tions in Ω. The functions uj belong to PSH−(Ω) and satisfy (ddcuj)

n = 0
on Ω \Kj , see [12].

Assume, in addition, each Kj to be polynomially convex (in the sense
that it coincides with its polynomial hull). This implies ωKj ,Ω′ = −1 on Kj

for some (and thus any) bounded hyperconvex neighborhood Ω′ of Kj and
that ωKj ,Ω′ ∈ C(Ω′). In particular, the functions uj = −1 on Kj and are

continuous on Ω. The geodesics ut converge to uj uniformly as t → j [17]
and so, by the Walsh theorem, the upper envelope û(z, ζ) (1.3) is continuous
on Ω ×A, which, in turn, implies ut ∈ C(Ω × [0, 1]).

As was shown in [18], functions ut in general are different from the
relative extremal functions of any subsets of Ω. Consider nevertheless the
sets where they attain their minimal value, −1:

Lt = {z ∈ Ω : ut(z) = −1}, 0 < t < 1. (1.6)

By the continuity of the geodesic at the endpoints, the sets Lt converge (say,
in the Hausdorff metric) to Kj when t → j ∈ {0, 1} and so, they can be
viewed as interpolations between K0 and K1.

The curve t 7→ Lt can be in a natural way identified with the mul-
tifunction ζ 7→ Kζ := Llog |ζ|. Note however that it is not an analytic
multifunction (for the definition, see, e.g., [13], [19], [14]) because its graph
{(z, ζ) ∈ Ω ×A : û(z, ζ) = −1} is not pseudoconcave.

In Section 2, we show that the interpolating sets Lt can be represented
as sections Kt = {z : (z, et) ∈ K̂} of the holomorphic hull K̂ of the set

KA := (K0 ×A0) ∪ (K1 ×A1) ⊂ C
n+1 (1.7)

with respect to functions holomorphic in C
n × (C \ {0}).

In Section 3, we study the relative Monge-Ampère capacities Cap (Lt,Ω)
of the sets Lt; recall that for K ⋐ Ω,

Cap (K,Ω) = sup{(ddcu)n(K) : u ∈ PSH−(Ω), u|K ≤ −1} = (ddcωK,Ω)n(Ω),

see [12]. It was shown in [17] that the function t 7→ Cap (Lt,Ω) is convex,
which was achieved by using linearity of the energy functional (1.4) along the
geodesics. In the case when Ω is the unit polydisk D

n and Kj are Reinhardt
sets, the convexity of the Monge-Ampère capacities was rewritten in [18]
as convexity of covolumes of certain unbounded convex subsets Pt of the
positive orthant R

n
+ (that is, volumes of their complements to R

n
+). Here,

we use a convex geometry technique to prove Theorem 3.2 stating that
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actually the covolumes of the sets Pt are logarithmically convex. Since in
this case the sets Lt are exactly the geometric means K×

t of K0 and K1,
this implies the dual Brunn-Minkowski inequality for their Monge-Ampère
capacities,

Cap (K×
t ,Dn) ≤ Cap (K0,D

n)1−tCap (K1,D
n)t, 0 < t < 1. (1.8)

In addition, an equality here occurs for some t ∈ (0, 1) if and only if K0 = K1.
It is quite interesting that the volume of K×

t satisfies the opposite Brunn-
Minkowski inequality (1.2), i.e., it is logarithmically concave. Furthermore,
so are the standard logarithmic capacity in the complex plane and the New-
tonian capacity in R

n with respect to the Minkowski addition [4], [5], [16].
The difference here is that the relative Monge-Ampère capacity is, contrary
to the logarithmic or Newton capacities, a local notion, which leads to the
dual Brunn-Minkowski inequality (1.8), exactly like for the covolumes of
coconvex bodies [11].

A natural question that remains open is to know whether the logarithmic
convexity of the relative Monge-Ampère capacities is also true in the general,
non-toric case. No non-trivial examples of (1.8) in this setting are known so
far.

2 Level sets as holomorphic hulls

Let K0,K1 be two non-pluripolar compact subsets of a bounded hyperconvex
domain Ω ⊂ C

n, and let Lt = Lt,Ω be the interpolating sets defined by (1.6)
for the geodesic ut = ut,Ω with the endpoints uj = ωKj,Ω. We start with an
observation that if the sets Kj are polynomially convex, then the sets Lt are
actually independent of the choice of the domain Ω containing K0 ∪K1.

Lemma 2.1 If Ω′ and Ω′′ are bounded hyperconvex neighborhoods of non-
pluripolar, polynomially convex, compact sets K0 and K1, then Lt,Ω′ = Lt,Ω′′.

Proof. By the monotonicity of Ω 7→ ut,Ω, it suffices to show the equality for
Ω′ ⋐ Ω′′. Since ut,Ω′′ ≤ ut,Ω′ , the inclusion Lt,Ω′ ⊂ Lt,Ω′′ is evident. Denote
now

δ = − inf{uj,Ω′′(z) : z ∈ ∂Ω′, j = 0, 1} ∈ (0, 1).

Recall that the geodesics ut,Ω come from the maximal plurisubharmonic
functions ûΩ in Ω × A for the annulus A bounded by the circles Aj where
log |ζ| = j. Then the function

v̂ :=
1

1 − δ
(ûΩ′′ + δ) ∈ PSH(Ω′ ×A) ∩ C(Ω′ ×A)
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satisfies (ddcv̂)n+1 = 0 in Ω′ ×A and

lim v̂(z, ζ) = −1 as (z, ζ) → Kj ×Aj . (2.1)

Moreover, since v̂ ≥ 0 on ∂Ω′ × A and its restriction to each Aj satisfies
(ddcv̂)n = 0 on Aj \Kj , the boundary conditions (2.1) imply

lim v̂(z, ζ) ≥ uj,Ω′ as ζ → Aj .

Therefore, we have v̂ ≥ û in the whole Ω′ × A. If z ∈ Lt,Ω′′ , this gives us
−1 ≥ ut,Ω′(z) and so, z ∈ Lt,Ω′ , which completes the proof. �

Next step is comparing the sets Lt with other interpolating sets, Kt,
defined as follows. Set

K̂ = K̂(Ω) = {(z, ζ) ∈ Ω ×A : u(z, ζ) ≤ M(u) ∀u ∈ PSH−(Ω ×A)}, (2.2)

where M(u) = maxj Mj(u) and

Mj(u) = lim sup u(z, ζ) as (z, ζ) → Kj ×Aj , j = 0, 1.

Note that the set K̂ will not change if one replaces PSH−(Ω × A) by the
collection of all bounded from above (or just bounded) plurisubharmonic
functions on Ω ×A.

Denote by K̂ζ the section of K̂ over ζ ∈ A:

K̂ζ = K̂ζ(Ω) = {z ∈ Ω : (z, ζ) ∈ K̂}, ζ ∈ A.

The set K̂ is invariant under rotation of the ζ-variable, so K̂ζ depends only
on |ζ|. We set then

Kt = K̂et , 0 < t < 1.

Theorem 2.2 If Kj are non-pluripolar, polynomially convex compact sub-
sets of Ω, then Lt = Kt for all 0 < t < 1.

Proof. First, we prove the inclusion

Lt ⊂ Kt, (2.3)

that is,
u(z, t) ≤ M(u) ∀z ∈ Lt (2.4)

for all u ∈ PSH−(Ω × A). By the scalings u 7→ c u, we can assume that
u− minj Mj(u) ≤ 1 on Ω ×A. Then the function

φ(z, ζ) = u(z, ζ) − (1 − log |ζ|)M0(u) − (log |ζ|)M1(u) − 1
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belongs to PSH−(Ω ×A) and

lim supφ(z, ζ) ≤ −1 as (z, ζ) → Kj ×Aj .

In other words, φt(z) := φ(z, et) is a subgeodesic for u0 and u1, so φt ≤ ut.
Therefore, φt ≤ −1 on Lt, which gives us (2.4).

To get the reverse inclusion, assume z ∈ Kt. Then, by definition of K̂,
we get ut(z) ≤ M(ut) = −1 and, since ut ≥ −1 everywhere, ut(z) = −1. �

The set K̂ can actually be represented as a holomorphic hull of the set

KA = (K0 ×A0) ∪ (K1 ×A1),

which is similar to what one gets in the classical interpolation theory. This
can be concluded by standard arguments relating plurisubharmonic and
holomorphic hulls (see, e.g., [15]).

Proposition 2.3 Let K0,K1 be two non-pluripolar, polynomially convex
compact subsets of a bounded hyperconvex domain Ω ⊂ C

n. Then the set K̂
defined by (2.2) is the holomorphic hull of the set KA with respect to the
collection of all functions holomorphic on Ω × C∗ (here C∗ = C \ {0}).

Proof. The domain Ω×C∗ is pseudoconvex, so it suffices to show that K̂ is
the F-hull K̂F of the set (1.7) with respect to F = PSH(Ω × C∗).

Take any hyperconvex domain Ω′ such that K0 ∪ K1 ⊂ Ω′ ⋐ Ω. Since
F forms a subset of the collection of all bounded from above psh functions
on Ω′ × A, we have K̂ ′ := K̂(Ω′) ⊂ K̂F . Moreover, by Lemma 2.1 and
Theorem 2.2, we have K̂ ′ = K̂, which implies K̂ ⊂ K̂F .

Let ut be the geodesic of u0, u1 in Ω. Then its psh image û(z, ζ) can be
extended to Ω × C∗ as Û(z, ζ) = u0(z) − log |ζ| for −∞ < log |ζ| ≤ 0 and
Û(z, ζ) = u1(z) + log |ζ| − 1 for 1 ≤ log |ζ| < ∞. Indeed, the function

v̂(z, ζ) = max{u0(z) − log |ζ|, u1(z) + log |ζ| − 1}

is psh on Ω×A, continuous on Ω×A, and equal to uj on Ω×Aj . Therefore,
it coincides with Û on Ω × (C∗ \ A), Since v̂ ≤ û on Ω × A and v̂ = û on
Ω × ∂A, the claim is proved.

Let (z∗, ζ∗) ∈ K̂F . By the definition of K̂F , since Û ∈ PSH(Ω ×C∗),

û(z∗, ζ∗) = Û(z∗, ζ∗) ≤ sup{Û(z, ζ) : (z, ζ) ∈ KA} = −1,

so z∗ ∈ K̂t with t = log |ζ∗|. �

Finally, since the sets Lt are independent of the choice of Ω, we get the
following description of the interpolated sets Kt.
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Corollary 2.4 Let K0,K1 be two non-pluripolar, polynomially convex com-
pact subsets of Cn and let Ω be a bounded hyperconvex domain containing
K0 ∪K1. Denote by ut the geodesic of the functions uj = ωKj ,Ω, j = 0, 1.
Then for any ζ ∈ A,

Kt = {z ∈ Ω : ut(z) = −1} = {z ∈ C
n : |f(z, ζ)| ≤ ‖f‖KA ∀f ∈ O(Cn×C∗)}

with t = log |ζ|.

Remark. Note that the considered hulls are taken with respect to func-
tions holomorphic in C

n × C∗ and not in C
n+1 (that is, not the polynomial

hulls). This reflects the fact that in the definition of KA, the circles A0 and
A1 may be interchanged. Since for any polynomial P (z, ζ) and any ζ inside
the disc |ζ| < e, we have |P (z, ζ)| ≤ max{|P (z, ξ)| : |ξ| = e}, each section of
the polynomial hull of KA must contain K1, so such a hull does not provide
any interpolation between K0 and K1.

3 Log-convexity of Monge-Ampère capacities

Let, as before, K0 and K1 be non-pluripolar, polynomially convex compact
subsets of a bounded hyperconvex domain Ω ⋐ C

n, ut be the geodesic
between uj = ωKj,Ω, and let Kt be the corresponding interpolating sets as
described in Section 2. As was mentioned, their relative Monge-Ampère
capacities satisfy the inequality

Cap (Kt,Ω) ≤ (1 − t) Cap (K0,Ω) + tCap (K1,Ω).

Let now Ω = D
n and assume the sets Kj to be Reinhardt. The polyno-

mial convexity of Kj means then that their logarithmic images

Qj = LogKj = {s ∈ R
n
− : (es1 , . . . , esn) ∈ Kj}

are complete convex subsets of Rn
−, i.e., Qj+R

n
− ⊂ R

n
−; when this is the case,

we will also say that Kj is complete logarithmically convex. In this situation,
the sets Kt are, as in the classical interpolation theory, the geometric means
of Kj . Note however that our approach extends the classical – convex –
setting to a wider one.

Proposition 3.1 The interpolating sets Kt of two non-pluripolar, complete
logarithmically convex, compact Reinhardt sets K0,K1 ⊂ D

n coincide with

K×
t := K1−t

0 Kt
1 = {z : |zl| = |ηl|

1−t|ξl|
t, 1 ≤ l ≤ n, η ∈ K0, ξ ∈ K1}.
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Proof. We prove this by using the representation of the sets Kt as Lt =
{z : ut(z) = −1} and a formula for the geodesics in terms of the Legendre
transform [9], [17]. By and large, this is Calderón’s method.

As was noted in [17, Thm. 4.3], the inclusion K×
t ⊂ Lt follows from

convexity of the function ǔt(s) = ut(e
s1 , . . . , esn) in (s, t) ∈ Rn

−× (0, 1) since
s ∈ logK×

t implies ǔt(s) ≤ −1. To prove the reverse inclusion, we use a
representation for ǔt given by [18, Thm. 6.1]:

ǔt = L[(1 − t) max{hQ0
+ 1, 0} + tmax{hQ1

+ 1, 0}], 0 < t < 1,

where
L[f ](y) = sup

x∈Rn

{〈x, y〉 − f(x)}

is the Legendre transform of f ,

hQ(a) = sup
s∈Q

〈a, s〉, a ∈ R
n
+

is the support function of a convex set Q ⊂ R
n
−, and Qj = LogKj .

Let z /∈ K×
t , then one can assume that none of its coordinates equals

zero, so the corresponding point ξ = (log |z1|, . . . , log |zn|) ∈ R
n
− does not

belong to Qt = (1 − t)Q0 + tQ1. Therefore there exists b ∈ R
n
+ such that

〈b, ξ〉 > hQt(b) = (1 − t)hQ0
(b) + t hQ1

(b);

by the homogeneity, one can assume hQ0
(b), hQ1

(b) > −1 as well. Then

ǔt(ξ) = sup
a∈Rn

+

[〈a, ξ〉 − (1 − t) max{hQ0
(a) + 1, 0} − tmax{hQ1

(a) + 1, 0}]

> (1 − t)[hQ0
(b) − (hQ0

(b) + 1)] + t[hQ1
(b) − (hQ1

(b) + 1)] = 1,

so ξ does not belong to LogLt and consequently z /∈ Lt. �

The crucial point for the Reinhardt case is a formula from [1, Thm. 7]
(see also [18]) for the Monge-Ampère capacity of complete logarithmically
convex compact sets K ⊂ D

n:

Cap (K,Dn) = n! Covol(Q◦) := n! Vol(Rn
+ \Q◦),

where
Q◦ = {x ∈ R

n
+ : 〈x, y〉 ≤ −1 ∀y ∈ Q}

is the copolar to the set Q = LogK. In particular,

Cap (Kt) = n! Covol(Q◦
t ) (3.1)

for the copolar Q◦
t of the set Qt = (1 − t)Q0 + tQ1.
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Proposition 3.2 We have

Covol(Q◦
t ) ≤ Covol(Q◦

0)1−t Covol(Q◦
1)

t, 0 < t < 1. (3.2)

If an equality here occurs for some t ∈ (0, 1), then Q0 = Q1.

Proof. Let, as before, hQ be the restriction of the support function of a
convex set Q ⊂ R

n
− to R

n
+:

hQ(x) = sup{〈x, y〉 : y ∈ Q}, x ∈ R
n
+.

We have then
∫

Rn
+

ehQt
(x) dx =

∫

Rn
+

dx

∫ ∞

−hQt
(x)

e−s ds =

∫ ∞

0
e−s ds

∫

hQt
(x)≥−s

dx

=

∫ ∞

0
e−sVol({hQt(x) ≥ −s}) ds

= Vol({hQt(x) ≥ −1})

∫ ∞

0
e−ssn ds

= n! Covol(Q◦
t ).

Note that hQt = (1 − t)hQ0
+ t hQ1

. Therefore, by Hölder’s inequality with
p = (1 − t)−1 and q = t−1, we have

∫

Rn
+

ehQt
(x) dx ≤

(∫

Rn
+

ehQ0
(x)dx

)1−t(∫

Rn
+

ehQ1
(x)dx

)t

, (3.3)

which proves (3.2).
An equality in (3.2) implies the equality case in Hölder’s inequality (3.3),

which means the functions ehQ0 and ehQ1 are proportional, so hQ0
(x) =

hQ1
(x) + C for all x ∈ R

n
+. Since both hQ0

(x) and hQ1
(x) converge to 0 as

x → 0 along R
n
+, we get C = 0, which completes the proof. �

Finally, by (3.1), we get

Theorem 3.3 For polynomially convex, non-pluripolar compact Reinhardt
sets Kj ⋐ D

n, the Monge-Ampère capacity Cap (Kt,D
n) is a logarithmically

convex function of t; in other words, the Brunn-Minkowski inequality (1.8)
holds. An equality in (1.8) occurs for some t ∈ (0, 1) if and only if K0 = K1.

Remark. The general situation of compact, polynomially convex Rein-
hardt sets reduces to the case K0,K1 ⊂ D

n because for K in the polydisk
D
n
R of radius R, we have Cap (K,Dn

R) = Cap ( 1
R
K,Dn) and ( 1

R
K)t = 1

R
Kt.
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geometric regularity. Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 3,
451–467.

[6] A.-P. Calderón, Intermediate spaces and interpolation, the complex
method. Studia Math. 24 (1964), 113–190.

[7] D. Cordero-Erausquin, Santaló’s inequality on C
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