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The lung offers one of the largest exchange surfaces of the individual with the elements

of the environment. As a place of important interactions between self and non-self, the

lung is richly endowed in various immune cells. As such, lung natural killer (NK) cells play

major effector and immunoregulatory roles to ensure self-integrity. A better understanding

of their abilities in health and diseases has been made possible over the past decade

thanks to tremendous discoveries in humans and animals. By precisely distinguishing

the different NK cell subsets and dissecting the ontogeny and differentiation of NK cells,

both blood and tissue-resident NK populations now appear to be much more pleiotropic

than previously thought. In light of these recent findings in healthy individuals, this review

describes the different lung NK cell populations quantitatively, qualitatively, phenotypically,

and functionally. Their identification, immunological diversity, and adaptive capacities

are also addressed. For each of these elements, the impact of the mutual interactions

of lung NK cells with environmental and microenvironmental factors are questioned in

terms of functionality, competence, and adaptive capacities. As pulmonary diseases are

major causes of morbidity and mortality worldwide, special attention is also given to

the involvement of lung NK cells in various diseases, including infectious, inflammatory,

autoimmune, and neoplastic lung diseases. In addition to providing a comprehensive

overview of lung NK cell biology, this review also provides insight into the potential of NK

cell immunotherapy and the development of targeted biologics.
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INTRODUCTION

The lung is faced daily with 10,000 liter of inhaled air containing a myriad of particles, potentially
recognized as non-self. This constant exposure of one of the most important interfaces (>200
m2) of the body requires a fine-tuned and rapidly acting immune system to immediately sense
and protect the host at this intimate contact zone. For this purpose, the airways are endowed
with a broad armamentarium of cellular and humoral host defense mechanisms, most of which
belong to the innate arm of the immune system. The complex interplay between resident and
infiltrating immune cells acting in concert with secreted proteins, such as defensins, mucins,
or collectins, shapes the outcome of host-pathogen, host-allergen, and host-particle interactions
within the airway microenvironment. Among the initial checkpoints that encounter inhaled
antigens and trigger pro-inflammatory or tolerogenic/anti-inflammatory downstream immune
responses, natural killer (NK) cells play a key role.

As innate lymphoid cells, NK cells provide a first line defense against infection and cancer.
In comparison to their classic adaptive counterparts, NK cells are considered innate short-lived
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effectors with a turnover time of approximately 2 weeks
(1), compared to months or years for some T-cell subsets
(2). Consistent with the critical nature of NK cell killing,
impaired cytolysis is the primary diagnostic criterion in patients
with functional NK cell deficiencies (3). NK cells also play
regulatory roles via the release of cytokines and chemokines,
and interactions with other immune cells. As such, they are also
involved in various inflammatory and auto-immune diseases, in
which they can act as protectors or promotors.

Under normal immune surveillance, NK cells express
inhibitory receptors, including killer Ig-like receptors (KIRs),
ILT-2, and the CD94:NKG2A heterodimer, which recognize
primarily classical and non-classical major histocompatibility
complex (MHC) class I molecules (4, 5). NK cell activation is
possible when target cells lack expression of MHC-I molecules,
a mechanism so called “missing-self ” recognition. NK cell
activity occurs also when stimulatory signals outweigh MHC
class I inhibition. Several of these activating receptors have
been characterized, including NKG2C, NKG2D, and the natural
cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46,
which ensure “stress-induced” recognition (4).

In addition to the description of this vast network of activating
and inhibitory receptors, the knowledge of NK cell biology has
improved in the past decades in terms of their maturation,
diversity, and adaptive capacities (5), which are, at least in part,
guided by the response to environmental factors, including non-
fatal acute and chronic viral infections (6–8). More recently,
following the identification of specific receptors related to
tissue residency, a great step in understanding the critical role
of NK cells in controlling self and non-self has been taken.
Indeed, more than NK cells from peripheral blood, NK cells
from tissues are directly interacting with normal and abnormal
(micro)environments. As such, the lung contains a high reservoir
of NK cells. Although still poorly understood, studies of NK cells
within this organ, both in normal and pathological situations in
humans, would tremendously increase the knowledge of NK cell
biology. According to these recent advances, the development
of new therapeutic targets could emerge, leading to a better
management of respiratory diseases, which are one of the leading
causes of death worldwide.

To this end, this mini-review will focus only on certain areas,
with the aim of describing the specific roles of NK cells in the
lung based on the most recent and exciting advances in health
and disease.

NK CELLS IN THE NORMAL LUNG

Identification of NK Cell Populations
Despite a princeps study of NK cells in the human lungs in
the 1980s (9), these cells have only recently been characterized

Abbreviations: KIR, Killer Immunoglobulin-like Receptor; MHC-I, Major

Histocompatibility Complex- I; GM-CSF, Granulocyte-Macrophage Colony-

Stimulating Factor; NSCLC, Non-Squamous-Cell Lung Carcinoma; BALF,

Broncho-Alveolar-Lavage Fluid; TME, Tumor Micro-Environment; ADCC,

Antibody-Dependent Cellular Cytotoxicity; COPD, chronic obstructive

pulmonary disease; TNF, Tumor-necrosis Factor; IFN, Interferon; PMA, Phorbol

12-Myristate 13-Acetate.

in normal lungs (10, 11). The proportion of NK cells in this
organ is roughly similar or even slightly higher than in peripheral
blood, ranging from 5 to 20% of the CD45+ lymphocytes (10).
As shown in Figure 1, the vast majority (up to 80%) of lung NK
cells display a mature CD56dimCD16+ phenotype (10, 11). The
remaining subsets are composed of immature CD56brightCD16−

and CD56dimCD16− cells, this latter corresponding either to an
intermediate stage of differentiation (12) or to recently activated
NK cells that have lost cell-surface CD16 expression (13). These
data contrast with NK cells from other tissues, including liver
and secondary lymphoid organs, in which the CD56brightCD16−

subset largely predominates (14–16). Thus, in the lung, the
different populations are present in similar proportions than in
the peripheral blood, suggesting that most NK cells in the lungs
are circulating cells. As a whole, this raises the question of the
existence of resident lung NK cells vs. circulating cells, and of
their identification.

By analogy with tissue resident T lymphocytes, resident lung
NK cells were first identified by the cell surface expression of
CD69 (17, 18), which is involved in maintaining immune cells
within organs through inhibition of sphingosine-1-phosphate
receptor. CD69+ was differentially expressed in lung and
matched peripheral blood NK cells (10). The subset of CD69+

NK cells represents ∼25% of the total of lung NK cells. More
recently, and in light of data regarding NK cells as well as T
cells within other tissues (17), a more precise characterization
of resident lung NK cells has been proposed. This identification
is based on CD49a, known as a1-integrin (11, 19), which
is not expressed by NK cells in the peripheral blood. Based
on this definition, tissue resident lung NK cells reach up to
15% of lung NK cells. In their study, Cooper et al. (11)
also analyzed the expression of CD69 and of a third marker
of residency among NK cells, the aE-integrin also known as
CD103. Both markers are differentially expressed by blood and
lung NK cells. Not surprisingly, the CD49a+ resident NK cells
significantly express both CD69 and CD103 in much higher
proportions than CD49a− NK cells. Of note, these different
markers of lung residency are mostly expressed by the immature
CD56brightCD16− and CD56dimCD16− NK cell subsets, whereas
they are only slightly expressed by mature CD56dimCD16+ NK
cells. Based on this observation, it has been suggested that the
small subset of triple positive CD49a+CD69+CD103+ NK cells
(Figure 2) could define resident NK cells more specifically (11).

From these definitions, it could be considered as a whole that
resident NK cells represent the minority of lung NK cells (one-
quarter of lung NK cells at most). Notably, this fraction in the
lung is significantly smaller than that of other tissues, such as the
liver in which resident NK cells represent 50% of their total (16).
These data also indicate that the vast majority of lung NK cells
(the remaining three-quarters) are circulating NK cells, which are
mainly CD56dimCD16+ NK cells (10).

Phenotypical and Functional
Characterization of Lung NK Cells
In-depth phenotypical analyses of lung NK cells have been
performed among the different lung NK cell subpopulations to
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FIGURE 1 | Lung NK cell subpopulations. Like peripheral blood NK cells, lung NK cells represent 20% of all the Lymphocytes and are composed of three different

subsets: CD56dimCD16+, CD56dimCD16−, and CD56brightCD16− NK cells. Each subset expresses three markers of residency differentially. As a result, most of the

lung NK cells do not express these markers: they form the circulating NK cells. They belong to the CD56dimCD16+ population and disclosed a terminally

differentiated phenotype. In contrast, the cells expressing CD69, CD49a, and/or CD103 are considered as being resident NK cells. Almost all of them are

CD56brightCD16− or in a lesser extend CD56dimCD16− NK cells. They display a less mature phenotype. Among them, triple positive CD49a+CD69+CD103+ are

thought to be more specifically the resident population, representing in fine <3% of the total lung NK cells.

FIGURE 2 | Example of flow cytometry data illustrating the subset of resident lung NK cells. Flow cytometry analyses were performed on BALF in a patient with severe

interstitial lung disease. The expression of the cell surface markers was performed after gating on CD3−CD56+ NK cells. (A) Proportions of CD56dim/bright and

CD16+/− NK cells. (B) High expression of CD69+ on NK cells. (C) Proportions of resident NK cells according to CD103 and CD49a expression. The proportion of

resident lung NK cells was higher than expected on normal lung samples. Numbers represent the % of the different populations.

assess their maturation profile. This has been done according to
previous studies showing that educated NK cells expressing KIRs
and CD57 in association with low expression of NKG2A (12)

would characterize the mature peripheral blood NK cell subset.
It is difficult to perform such studies among each subpopulation
(with respect to their resident or circulating characteristics)

Frontiers in Immunology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 1263

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hervier et al. NK Cells in the Human Lungs

because dissecting them generates small groups, although this
may be possible in the future with the use of mass cytometry. To
date, flow cytometry analyses have focused on lung CD56dim NK
cells, considered herein as being mainly circulating lung NK cells,
revealing that they disclose a terminally differentiated phenotype
(10). It has not yet been clearly determined yet whether the
proportion of these matured NK cells is enriched within the
lungs or as frequent as observations made in the periphery
(10, 11). In addition, these NK cells are hypofunctional against
target cells when considering natural cytotoxicity, ADCC, and
GM-CSF, spontaneously or following stimulation with PMA and
Ionomycin or IFNα treatment (10, 11).

By contrast, when focusing on resident lung CD69+CD56dim

or CD56bright NK cells, it appears that these subpopulations
have not matured to a terminal stage and are phenotypically
similar to their blood counterpart (10). Interestingly, the
CD49a+CD56bright resident NK cells show a higher capacity
to degranulate and to produce interferon (IFN)-γ when in
contact with virally infected autologous macrophages in vitro, as
compared to matched peripheral NK cells (11).

As a whole in the lung, the predominant circulating NK cells
are highly differentiated but hypofunctional, while resident lung
NK cells have the capacity to be hyperfunctional.

Diversity, Education, and Memory of Lung
NK Cells
With recent technological advances, such as mass cytometry
and single cell RNA sequencing (20), NK cell diversity has
been extensively described and now appears dramatically much
more important than previously expected; based on 28 surface
markers, the NK cell repertoire is composed of up to 3 × 104

subpopulations (21). Globally, this diversity should be more
important if the NK cell repertoire is settled at the different
levels (22), including NK cell development, differentiation, and
maturation (12, 21), and also the different functional capacities,
to finally promote efficient innate immune response against
a large variety of stress situations. While NK cell diversity
is partly determined genetically (combination, number, and
polymorphisms of KIRs), its modulation throughout life is
mediated by interactions with the tissue microenvironment (23).
As such, the lung offers one of largest interfaces with elements
of the outside environment and with the microbiota. Although
little is known to date regarding lung microbiota in humans,
its impact on adaptive immunity and lung diseases have been
suggested (24, 25). Despite correlations between microbiota
and cytokines at least produced by NK cells, such as TNFα,
a direct effect on lung NK cell activation or diversity has not
yet been demonstrated (26). Furthermore, lung tissue consists
of many different immune and non-immune cell types, thus
offering many possibilities for acquiring NK cell diversity, both
in normal and pathologic situations. Unlike other tissues, the
lung NK cell diversity and its acquisition have been very little
studied, especially regarding the resident lung populations. NK
cell diversity is, however, perceptible even for the main resident
population within the lung, namely CD49a+CD56brightCD16−

NK cells. According to the residency markers CD69 and CD103,

four different resident subpopulations may be distinguished. The
CD69+CD103+ subset is the most important as compared to
single positive or double negative subsets (11). The respective
significance of these subsets in terms of ontogeny, differentiation,
or functionality remains to be deeply studied.

Effector functions of NK cells are mainly governed by receptor
interactions with MHC molecules. This process, so called
“education,” is essential for ensuring diversity and local immune
surveillance in the lung against different stress situations,
including cancer development (27). Phenotypical analyses of
KIR expression by both circulating and resident NK cells in
the normal lung have clearly demonstrated the presence of
“educated” cells (10). These data suggest that the observed hypo-
functionality of the circulating subset seems not to be related to a
default in the process of education.

The identification of adaptive subpopulations among resident
lung NK cells remains unknown, but could provide essential
informations to search for the constitution of a memory NK
cell signature in the lung. As previously described, most of
the memory NK cells were derived from the expansion of
adaptive CD57+NKG2C+ cells in a context of cytomegalovirus
seropositivity (6, 7). Although NKG2C overexpression has not
been demonstrated in lung NK cells from healthy donors (11),
it could be hypothesized that, as being the site of many viral
infections, the lung would be an interesting tissue in which to
study the acquisition of NK cell memory (28).

LUNG NK CELLS IN DISEASES

Deciphering the distinct roles of lung NK cells in different
pathological situations would help in understanding their
complex functionality. However, studies distinguishing the
roles played by resident vs. circulating lung NK cells in
lung diseases, which requires matched and complex samples
(including peripheral blood, BALF, and/or lung biopsy), have not
yet been performed.

Quantitative Modulation of Lung NK Cells
Regarding the number of NK cells in the lung, one consideration
that might be taken thus far is that the proportions of lung
NK cells and their subpopulations do not appear to vary
throughout life (11). By contrast, witnessing the possible impact
of (micro)environmental factors, active cigarette smoking, and
to a lesser extent, past smoking habit, decrease the number
of lung NK cells (10, 11), whereas they are rapidly and
dramatically increased during influenza virus lung infection. In
different inflammatory diseases, including sarcoidosis, COPD,
hypersensitivity pneumonitis (29), autoimmune diseases, and
idiopathic pulmonary fibrosis, however, conflicting results have
been found regarding the proportions and number of NK cells
within the lungs (Table 1). Irrespective of their circulating or
resident nature, NK cells might be increased or decreased during
these diseases. These differences could have many causes, which
may affect trafficking, homing, or local proliferation (10). Some
have been slightly studied in mice (40, 41), but have not yet been
explored in detail in humans.
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TABLE 1 | Specificities of lung NK cells in non-neoplastic respiratory diseases.

Diseases Quantitative observations Qualitative considerations References

Systemic

Auto-immune

Diseases

Sjögren Syndrome Normal absolute count of

Activated (HLA-DR+) NK cells in

BALF

nd (30)

Systemic Sclerosis Normal absolute count of

Activated (HLA-DR+) NK cells in

BALF

nd (30)

Anti-synthetase

Syndrome

NK cells infiltration of all areas of

lung fibrosis

NK cell expression of Granzyme B, Significant

CD69 expression

(31, 32)

Inflammatory

Diseases and/or

Fibrosing diseases

Behçet Disease Lower proportion of NK cells in

BALF

Lower cytotoxicity (33)

Sarcoidosis Increased number of CD56bright

NK cells in BALF

Immature phenotype with NKG2Ahigh & KIRlow

predominant phenotype. Higher capacity to

produce IFN-γ and TNF-α cytokines

(34–36)

COPD Normal count of CD56+CD16+

lung NK cells

Decreased CD8 expression associated with

poor outcome, Higher cytotoxicity. Normal

expression of the activating receptor NKG2D

but abnormal expression of its ligands MICA/B

by lung epithelial cells.

(37)

Idiopathic

Pulmonary Fibrosis

Presence of NK cells in BALF Predisposing factor involving NKG2D-MICA/B

pathway

(38)

Allergy Asthma

Hypersensitivity

Pneumonitis

Decreased proportion of

CD56dim NK cells in BALF

Higher number of NK cells

in BALF

Increased expression of Granzyme A

nd

(39)

(29)

Infectious

Diseases*

Influenza A Virus** nd Resident NK cells are hyperfunctional after ex

vivo Infection, including degranulation,

granzyme B expression and IFN-gamma

expression

(11)

HCMV◦ Higher proportion of lung

NKG2C+ NK cells (BALF) of

patients with HCMV viremia

following lung transplantation

NKG2C+ NK cells are more mature and have

higher proliferation capacities. All abnormalities

are associated with poor outcomes.

(28)

HLA, Human Leukocyte Antigen; BALF, Broncho-alveolar lavage fluid; nd, not determined; HCMV, Human Cyto-megalo-virus; COPD, chronic obstructive pulmonary disease; *focuses

on human studies although animal models exists for various infections (including Mycobacterium Tuberculosis, Klebsiella Pneumoniae…). **first infectious disease in which analyses

have been performed according to the definition of resident lung NK cells, ◦studies are available only in the context of lung transplantation.

Phenotypical and Functional Changes of
Lung NK Cells in Inflammatory Diseases
In addition to their number, the phenotype and function of NK
cells could also provide information regarding their involvement
in diseases. As natural cytotoxicity has been shown to be
influenced by cigarette smoke, it has been also hypothesized that
the functionality of lung NK cells (10) could be influenced by
environmental factors as well as by the lung microenvironment.
Indeed, broncho-alveolar epithelial cells produce interleukin-15
during inflammation (42), whereas alveolar macrophages, the
main population of immune cells within the lungs, are known
to produce soluble factors likely to alter NK cell functions, such
as transforming growth factor-β (43), following environmental
toxin exposure.

Sarcoidosis (34–36) is a systemic granulomatosis of unknown
origin commonly involving the lungs. During sarcoidosis, the
analyses of lung NK cells from BALF showed an increased
number of CD56bright NK cells, disclosing an immature
phenotype of NKG2A++KIRlow NK cells. Following unspecific
stimulation, these lung NK cells produce a large amount of Th1

cytokines (IFN-γ and TNF-α). Whether this population belongs
to resident or circulating NK cells has not yet been determined.
The consequences of these observed variations have not been
explored either, especially in terms of fibrosis promotion (25).

COPD is closely associated with cigarette smoking, and is
associated with recurrent infections, destruction of the lung
parenchyma (emphysema), and/or airway obstruction. Both

quantitative and qualitative lung NK cell abnormalities have
been described in patients with COPD (37), but they have

not been analyzed with respect to the recent resident or

circulating definition. Despite effects opposite to those attributed
to smoking, lung NK cell cytotoxicity could be enhanced in
patients with COPD, especially against epithelial cells expressing
the NKG2D stress ligands MICA/B. An association between
enhanced stress-induced cytotoxicity and COPD severity has
been observed, supporting a deleterious effect of lung NK cells
in injuring self and promoting emphysema.

Deleterious involvement of stress-induced recognition
could also play a role in the pathogenesis of pulmonary
fibrosis: a possible predisposing factor involving the
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NKG2D/MICA-B pathway has been identified in patients
with idiopathic pulmonary fibrosis (38). Similarly, during
anti-synthetase syndrome, an autoimmune connective
tissue disease associated with interstitial lung disease,
the NKp30 (NCR-3)/BAT-3 axis could promote the
disease (31).

Further studies are required to precisely determine the
respective roles of the different lung NK cell subsets (resident
vs. circulating ones) in these phenomena. Increasing our
understanding of the interactions between lung NK cells and
the (micro)environment (44), as well as the role of resident vs.
circulating lungNK cells inmaintaining immune tolerance, could
also lead to therapeutic strategies targeting NK cells in these
pathological situations.

Lung NK Cells in Infectious Diseases
and Cancer
Immune diversity, and NK cell diversity in particular, are
essential to ensure effective recognition of the non-self. As an
interface with the environment, the lung is the location of
numerous infectious diseases, related to all types of pathogens.
The impact of successive lung infections affecting individuals
throughout life in terms of resident NK cell diversity andmemory
acquisition is one of the most challenging subjects of study
to date. Unfortunately, no study of this kind is yet available
in humans.

NK cell response to influenza virus has, however, been largely
studied in mice, in which protective or detrimental effects were
successively reported due to differences in influenza strain, dose,
and genetic background of the mice. In humans, the majority of
studies investigating NK cell response have used peripheral blood
NK cells from patients or healthy donors following an in vitro
infection (10). Notably, the specific response of resident lung
CD56brightCD49a+ NK cells to influenza virus infection has been
recently explored in vitro (11). In response to influenza infection,
resident NK cells provided significant antiviral activity following
contact with influenza-infected cells, natural cytotoxicity, and
IFN-γ release. These data suggest that NK cell memory of
influenza infection could exist within the human lung. The role
of viral proteins, especially those which are bound by NKp46
and NKp44 (45), such as hemagglutinin, remains to be studied
in light of the resident lung NK cell definition. Deciphering
the mechanisms governing lung NK cell activation in this
context, including cytokine signatures, activation pathways or
transcription factors, would be of interest. In addition, both the
diversity of the resident lung NK cell repertoire and the adaptive
capacities of this specific lung NK cell population remain to
be investigated.

Several lines of evidence also support the notion that NK
cells play an important role in the control of tumor growth.
Early studies dedicated to NK cell infiltration of the tumor
microenvironment (TME) of non-small-cell lung carcinoma
(NSCLC) suggested that NK cell density correlated with overall
survival (46, 47). However, the most recent studies using the
marker NKp46 (rather than the non-specific marker CD57) or
the specific gene expression signature did not show any clear

association between local NK cell infiltration and the clinical
outcome (48–50). This could be explained by the ability of the
TME to locally alter the intra-tumoral NK cell phenotype, as
has been shown in different studies comparing them to matched
normal lung NK cells and/or to peripheral blood NK cells. In
humans, the NK cell population observed in NSCLC displayed
profound alterations in the expression of relevant NK cell
receptors, and more specifically, downregulation of expression
of NKp30, NKp80, DNAM1, and CD16, as well as upregulation
of NKG2A when compared to the normal counterpart (48, 51).
Functionally, intra-tumoral NK cells displayed impaired ability
to degranulate and to produce IFN-γ (48). The influence of
the TME has been further confirmed by microarray analyses
showing a modulation of the transcriptional profile and revealing
a specific signature for intra-tumoral NK cells (52). Nevertheless,
these conclusions were mainly drawn by considering NSCLC-
infiltrating NK cells as a whole population. Although NK cells
from the TME largely express CD69 (48), previously defined
as a marker of residency, none of these studies suggested
the possibility of specific modulation of tissue-resident NK
cells. According to CD49a expression, such a comparison
could now be more easily performed among the NK cell
tumor infiltrate.

Apart from these lung residency considerations, it is
also important to note that modulations of educated KIRs
by intra-tumoral NK cells is a key element of tumor
immune surveillance. Interestingly, the exposure of NK cells
to exogenous MHC-I in mice led to upregulation of the
activating receptors NKp46 and NKG2D and to downregulation
of Ly49C/I inhibitors (the murine equivalent of KIRs inhibitors
in humans) leading to a control of tumor growth (53).
Thus, in addition to the recent development of anti-tumoral
immunotherapies, which only partially affect NK cells, reversing
the immunosuppressive TME to restore NK cell activity would
increase the number of therapeutic strategies. Furthermore,
diverse novel approaches, such as adoptive transfer of autologous,
allogeneic, or engineered NK cells are also currently in
development (54).

CONCLUSIONS AND PERSPECTIVES

In recent years, progress has been made in the characterization
of NK cells in the lung; however, the concept of tissue resident
NK cells has only recently been widely accepted, especially with
the identification of residency markers, such as CD49a. These
cells show important differences with the circulating NK cells
in terms of phenotype and functions, which likely reflect the
impact of the local micro-environment in shaping the tissue-
specific characteristics of resident NK cells. The question of the
ontogeny of tissue-resident NK cells remains complex and only
partially explained (14), especially in the lung. While it is agreed
that CD34+ NK cell progenitors reside in the bone marrow,
there is a less clear understanding of the mechanisms controlling
seeding of NK cells within the tissues. Whether seeding of these
cells into organs generates tissue-specific NK cell maturation, or
whether predefined common lymphoid progenitors with specific
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developmental and homing characteristics (55, 56) would exit
under certain conditions from the bone marrow and specifically
seed into the secondary lymphoid organs and finally into final
sites of maturation remains unknown. Further analyses of the
lung following human allogenic lung transplantation and/or
graft vs. host disease in the lung following bone marrow
transplantation would help improve our understanding of lung
NK cell ontogeny. Armed with this knowledge, NK cell-based

therapeutics (57–59) could be a promising avenue for the
treatment of cancer and self/non-self-inflammation.
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