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SYMBOLIC EXTENSIONS AND UNIFORM GENERATORS FOR

TOPOLOGICAL REGULAR FLOWS.

DAVID BURGUET

Abstract. Building on the theory of symbolic extensions and uniform generators for discrete

transformations we develop a similar theory for topological regular flows. In this context a
symbolic extension is given by a suspension flow over a subshift.
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1. Introduction

Given an invertible dynamical system (X, f) a generator is a finite partition P , which “gen-
erates” the system in the sense that the map from (X, f) to (PZ, σ), with σ being the usual
shift, which associates to any x ∈ X its P -name (P (fkx))k∈Z defines an embedding (where P (x)
denotes the atom of P containing x ∈ X). The nature of the embedding depends on the struc-
ture of the system, e.g. if we consider a measure preserving system (resp. Borel system, resp.
topological system) we require the embedding to be measure theoretical (resp. Borel, resp. topo-
logical). A necessary set-theoretical condition for the existence of a generator is given by the
cardinality of periodic points which has to be smaller than in a full shift over a finite alphabet, i.e.
supn∈N\{0}

1
n log ]{x, fnx = x} < +∞. There are other conditions, of dynamical nature, namely

entropic and expansive properties.

Generators in ergodic theory have a long history. As the entropy is preserved by isomorphism,
an ergodic system with a generator has finite entropy. W.Krieger showed the converse in [19] : any
ergodic system on a Lebesgue space with finite entropy admits a (finite) generator. For topological
systems, expansiveness (which implies finite topological entropy) completely characterizes systems
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2 DAVID BURGUET

with a generator (see [18] and [20]). New developments appear recently for Borel systems. Namely
M.Hochman has proved in [15, 16] that a Borel system admits a generator if and only if the entropy
of its ergodic invariant measures is bounded from above.

When considering the time t-map φt of a (regular) flow (X,Φ) we are interrested in generators
P whose atoms are towers associated to a cross-section, i.e of the form {φt(x), x ∈ A and 0 ≤
t < tS(x)} with A ⊂ S for a cross-section S and its return time tS . As a first step we aim
to represent the system as a suspension flow or equivalently to build a (global) cross-section.
For aperiodic ergodic flows it was achieved by W.Ambrose [2], whereas V.M.Wagh [33] obtained
the analogous result in the Borel case. As shown by D.Rudolph [32] the roof function in this
representation of ergodic flows may be always assumed to be two-valued ; moreover for finite en-
tropy flows the two-partition consisting of the towers with constant return time is generating not
only for the flow, but also for the ergodic time t-maps with t less than the minimal return time.
Recently K.Slutsky [30] built for Borel systems a Borel cross-section with a two-valued return map.

In the present paper we are interested in generators for topological systems. M.Boyle and
T.Downarowicz [5] have developped a new theory of entropy revealing fine properties of expan-
siveness of discrete topological systems. They introduce new entropy invariants which allow in
particular to know whether the system may be encoded with a finite alphabet or not. Formally
such a code is given by a topological extension by a subshift over a finite alphabet, also called
a symbolic extension. More recently T.Downarowicz and the author [10] have related the theory
of symbolic extensions with a Krieger-like generators problem. For a discrete topological system
(X,T ) they introduced uniform generators as Borel partitions P of X whose iterated partitions

P
[−n,n]
T :=

∨n
k=−n T

kP have a diameter going to zero with n, in other terms sup
y∈P [−n,n]

T (x)
d(y, x)

goes to zero uniformly in x when n goes to infinity (with d being the distance on X). By Theorem
1 in [10] a uniform generator is given by a symbolic extension with a Borel embedding and vice
versa. For aperiodic systems the existence of symbolic extensions is equivalent to the existence
of uniform generators whereas the presence of periodic points generates other constraints to build
uniform generators (see Theorem 55 in [10]).

We aim to develop such theories for topological flows. Regarding the discrete systems given
by the time t-maps of a real flow, M.Boyle and T.Downarowicz have proved that for t 6= 0 the
time t-map admits a symbolic extension if and only so does the time 1-map (Theorem 3.4 in [6]).
Nevertheless we consider here the flow in its own, not only through its time-t maps. We call
symbolic extension of a topological flow any topological extension given by the suspension flow
over a subshift with a positive continuous roof function, whereas a uniform generator for the flow
is a symbolic extension of the flow with a Borel embedding.

For Axiom A flows R.Bowen [3] built a finite-to-one symbolic extension. Moreover the roof
function may be chosen to be Hölder continuous and the subshift is of finite type. R.Bowen also
introduced a notion of expansiveness for flows (satisfied in particular by Axiom A flows). The ex-
istence of symbolic extensions preserving entropy for expansive discrete dynamical systems is now
well-known. For expansive flows, R.Bowen and P.Walters [4] built a symbolic extension but they
ask whether this extension preserves the entropy. Their construction involves closed cross-sections
and they wonder if one could choose carefully the closed cross-sections so that the associated sym-
bolic extension has the same topological entropy. We will give a positive answer to this question
for C2 expansive flows.

A first step in the theory of symbolic extensions or uniform generators consists in reducing the
problem to zero-dimensional systems. This is done by considering partitions with small boundary,
i.e. with boundaries having zero measure for any invariant probability measure. The existence
of partitions with small boundary and arbitrarily small diameter, known as the small boundary
property, is related with the deep theory of mean dimension [25]. In the Section 2 we introduce
a small boundary property for flows. This property is always satisfied for C2 smooth flows when
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the set of periodic orbits with period less than T is finite for any T > 0. For flows with the
small flow boundary property we may build, by a similar construction as R.Bowen and P.Walters,
a topological extension preserving entropy given by a suspension flow over a zero-dimensional
discrete system. Then a symbolic extension of the flow may be built from a symbolic extension of
this discrete system. Our main results may be stated as follows:

Theorem 1.1. Let (X,Φ) be a (resp. aperiodic) regular topological flow with the small flow
boundary property. It admits a symbolic extension (resp. a uniform generator) if and only if for
some (any) t 6= 0, the time t-map admits a symbolic extension. Moreover this property is invariant
under orbit equivalence.

For a C∞ smooth aperiodic regular flow on a compact manifold, the time-t maps is also C∞

smooth and thus admits a symbolic extension. Therefore the flow admits a uniform generator.
In fact the symbolic extension (associated to the uniform generator) is in this case an isomorphic
extension (see Section 2.3 for the definitions).

Corollary 1.1. Any C∞ smooth aperiodic flow admits an isomorphic symbolic extension.

For the time t-map φt, t 6= 0, of a topological flow (X,Φ) we define a weak notion of uniform
generators as follows. For α > 0 a partition P is said to be an α-uniform generator of φt when
sup

y∈P [−n,n]
φt

(x)
d
(
y, φ[−α,α](x)

)
with φ[−α,α](x) = {φs(x), |s| ≤ α} goes to zero uniformly in

x ∈ X.

Theorem 1.2. Let (X,Φ) be a regular aperiodic flow admitting a uniform generator. Then for
any t 6= 0 small enough (depending only on the topological entropy of Φ) and for any α > 0 there
is a 3-partition of a Borel global cross-section such that the associated partition of X in towers is
an α-uniform generator of φt.

2. Zero-dimensional suspension flows as models

Following R.Bowen and P.Walters we build from cross-sections an extension given by a suspen-
sion flow over a zero-dimensional system. When the cross-sections have small flow boundaries,
this extension is isomorphic.

2.1. Generalities on topological flows. A pair (X,Φ) is called a topological flow, when (X, d)
is a compact metric space and Φ = X × R → X is a continuous flow on X, i.e. Φ is continuous,
x 7→ Φ(x, 0) is the identity map on X and Φ(Φ(x, t), s) = Φ(x, t + s) for all t, s ∈ R, x ∈ X. For
t ∈ R we let φt be the homeomorphism of X given by x 7→ Φ(x, t) and we will denote the flow by
Φ = (φt)t∈R. The flow is said to be singular when there is (at least) a point x ∈ X fixed by the
flow, i.e. φt(x) = x for all t. Otherwise the flow is said to be regular. In the present paper the
flow is always assumed to be regular.

2.1.1. Cross-sections. Following the pioneering works of Poincaré, we consider the return maps to
cross-sections in order to study the flow.

Definition 2.1. Let (X,Φ) be a topological flow. A cross-section S of time η > 0 is a subset S
of X such that the restriction of Φ : (x, t) 7→ φt(x) to S × [−η, η] is one-to-one.

Any subset of a cross-section is itself a cross-section. The cross-section S is global when there
is ξ > 0 with Φ(S × [−ξ, ξ]) = X. Obviously any cross-section has an empty interior. Moreover
any Borel cross-section has zero measure for any probability Borel measure invariant by the flow.

For an interval I of R and a subset E of X we denote by φI(E) the subset Φ(E×I) = {φt(x), t ∈
I and x ∈ E}. Let S be a cross-section of time η. For 0 < ζ ≤ η the set Sζ := φ[−ζ,ζ](S) is called
the ζ-cylinder associated to S. For a subset E of X we denote the interior of E by Int(E), its
closure by E and its boundary by ∂E. A cross-section S of time η is said weakly extendable when
its closure S is itself a cross-section of time η. To shorten the notations we will write w.e.c. for
weakly extendable cross-section. Again any subset of a w.e.c. is itself a w.e.c. and any closed cross-
section is obviously a w.e.c.. We recall below a notion of interior adapted to w.e.c.’s (introduced
in [4] for closed cross-sections).
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Definition 2.2. Let S be a w.e.c. of time η and let 0 < ζ ≤ η. The flow interior IntΦ(S) of S is
defined as follows

IntΦ(S) := Int(Sζ) ∩ S.
We also define the flow boundary of S as ∂ΦS = S \ IntΦ(S) and the flow boundary of the cylinder
Sζ as ∂ΦSζ := φ[−ζ,ζ](∂

ΦS).

The flow boundary ∂ΦS of a w.e.c. is always closed since it may be written as ∂ΦS = S\Int(Sζ).
The definition of IntΦS does not depend on 0 < ζ ≤ η. Indeed if x ∈ Int(Sη) \ Int(Sζ) for some
0 < ζ < η then there is a sequence (xn)n in the complement of Sζ converging to x. As x belongs
to Int(Sη) so does xn for n large enough, in particular xn = φtn(yn) for some yn ∈ S and tn ∈]ζ, η].

By extracting subsequences there exist y ∈ S and t ∈ [ζ, η] with x = φt(y). Therefore, x does not
lie in S, because the closure S of S is a cross-section of time η.

Consider a flow associated to a smooth nonvanishing vector field X on a compact (d + 1)-
manifold M . Then any embedded d-disc transverse to X defines a closed cross-section. We denote
respectively by Bd and Sd the unit ball and the unit sphere in Rd for the Euclidean norm. If we
let h : Bd →M denote a smooth embedding satisfying h(Bd) = S then ∂ΦS is the set h(Sd).

For a topological flow (X,Φ) any point belongs to the flow interior of a closed cross-section
with arbitrarily small diameter (see [34] p. 270).

2.1.2. Properties of the flow boundary. The interior boundary of a w.e.c. may be characterized as
follows :

Lemma 2.1. Let S be a w.e.c. of time η. The restriction of Φ to IntΦ(S)×] − η, η[ defines a

homeomorphism onto Int(Sη). In particular IntΦ(IntΦ(S)) = IntΦ(S). Moreover the boundary ∂Sζ
of Sζ (in X) is the union of ∂ΦSζ , φ−ζ(S) and φζ(S) for 0 ≤ ζ ≤ η.

Proof. As the restriction of Φ to S × [−η, η] is a homeomorphism onto its image it is enough to

check Φ(IntΦ(S)×]− η, η[) = Int(Sη).
Take x ∈ Int(Sη). Let y ∈ S with φζ(y) = x for some ζ with |ζ| ≤ η. Necessarily |ζ| < η.

If ζ = η we would have φt(y) ∈ φ[−η,0]S ⊂ Sη for t > η close to η. Indeed for such t we have
φt(y) /∈ φ[0,η]S by injectivity of Φ on S × [0, 2η]. Then any limit of φt(y) when t goes to η

should belong to φ[−η,0]S but by continuity of the flow such a limit is necessarily equal to φη(y)

contradicting the injectivity of Φ on S × [−η, η]. We argue similarly for ζ = −η. It is thus

enough to show y ∈ Intφ(S). Without loss of generality we can assume ζ < 0. Then we have
y ∈ S ∩ φ−ζ(Int(Sη)) = S ∩ Int(φ−ζ(Sη)) = S ∩ Int(Sη+ζ) where the last equality follows again
from the injectivity of Φ on S × [0, 2η].

Conversely let y ∈ IntΦ(S) and ζ ∈] − η, η[. We can assume ζ ≥ 0. Take 0 < ξ < η − ζ. By
definition of the flow interior the point y belongs to Int(Sξ) so that x = φζ(y) is in φζ(Int(Sξ)) ⊂
Int(Sη). Thus Φ(IntΦ(S)×]− η, η[) = Int(Sη). In particular Int((IntΦS)η) = Int(Sη), and by taking

the intersection with IntΦ(S) on both sides we get IntΦ(IntΦ(S)) = IntΦ(S).
Finally we have for 0 ≤ ζ ≤ η

∂Sζ = Sζ \ Int(Sζ),

= Φ
((
S × [−ζ, ζ]

)
\
(
IntΦ(S)×]− ζ, ζ[

))
,

= ∂ΦSζ ∪ φ−ζ(S) ∪ φζ(S).

�

We give below some topological properties of the flow boundary and the flow interior of a subset
A of a w.e.c. B with respect to the induced topology on B.

Lemma 2.2. Let B be a w.e.c. of time η and let A ⊂ B.

(1) IntΦ(A) is open in B,
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(2) ∂BA ⊂ ∂ΦA ⊂ ∂BA ∪ ∂ΦB with ∂BA being the frontier of A in B.

Proof. (1) By definition we have IntΦA = A ∩ Int(Aη). As B is a cross-section of time η

containing A, then IntΦ(A) coincides with B ∩ Int(Aη). The set Int(Aη) being open in X,

the set IntΦ(A) is open in B for the induced topology.
(2) The first inclusion follows directly from (1). We show the second one. Let x ∈ ∂ΦA\∂ΦB ⊂

IntΦ(B). If x did not belong ∂BA then there would be an open subset x ∈ O ⊂ IntΦ(B) of B
with either O∩A = ∅ or O ⊂ A. By Lemma 2.1 the set Φ]−η,η[O is an open neighborhood of
x in X. In the first case this open neighborhood lies in the complement of A contradicting
x ∈ A, whereas in the second case it lies in the interior of Aη contradicting x /∈ IntΦ(A).

�

The flow boundary behaves with respect to intersection, union and complement in a similar
way to the usual boundary.

Lemma 2.3. Let A and B be w.e.c.’s of time η.

(1) When A ∪B defines a w.e.c. of time η, we have

∂Φ(A ∪B) ⊂ ∂ΦA ∪ ∂ΦB.

If A and B are disjoint and closed, then the equality holds.
(2)

∂Φ(A ∩B) ⊂ ∂ΦA ∪ ∂ΦB.

(3)

∂Φ(B \A) ⊂ ∂ΦB ∪ ∂ΦA.

Proof. (1) The inclusion IntΦ(A) ∪ IntΦ(B) ⊂ IntΦ(A ∪ B) follows clearly from Int(Aη) ∪
Int(Bη) ⊂ Int((A ∪ B)η). Then ∂Φ(A ∪ B) = A ∪B \ IntΦ(A ∪ B) ⊂

(
A \ IntΦ(A)

)
∪(

B \ IntΦB
)

. When A and B are closed and disjoint, the cylinder (A∪B)η is the disjoint

union of the closed cylinders Aη and Bη. Thus we have Int((A∪B)η) = Int(Aη)∪ Int(Bη)
and this easily implies the required equalities.

(2) Using cylinders as above we get easily IntΦ(A∩B) ⊂ IntΦ(A)∩IntΦ(B) so that ∂Φ(A∩B) =

A ∩B \ IntΦ(A ∩B) ⊂
(
A \ IntΦ(A)

)
∩
(
B \ IntΦ(B)

)
.

(3) Let x ∈ ∂Φ(B\A)\∂ΦB ⊂ IntΦ(B). As IntΦ(A) ⊂ A is open in B then B \A∩IntΦ(A) = ∅
and x /∈ IntΦ(A). If x belongs to A then x ∈ ∂ΦA. If not, x would belong to IntΦ(B) \ A
which is open in IntΦ(B). In particular φ]−η,η[(Int

Φ(B) \ A) is open in X according to
Lemma 2.1. But this last open set contains x and it is a subset of (B \ A)η. Therefore x

should belong to IntΦ(B \A). Contradiction.
�

2.1.3. Closed cross-sections. We focus in this subsection on closed cross-sections and especially on
global closed cross-sections.

Lemma 2.4. Let S be a closed cross-section of time η.
(1) The cylinder Sη is closed, therefore ∂Sη ⊃ ∂ΦSη have an empty interior.

(2) IntΦ(∂ΦS) = ∅. In particular ∂Φ∂Φ∂Φ = ∂Φ∂Φ.

(3) When S is global, then IntΦ(S) is also a global closed cross-section.

Proof. (1) and (2) follow easily from the definitions. Let us check (3). By Lemma 2.1 the restriction

of Φ to IntΦ(S)×]kη, (k+ 1)η[ is an homeomorphism onto Int(φ]kη,(k+1)η[S) for any integer k. But
S being global we have X = Φ(S × [−Kη,Kη]) for some K ∈ N. Thus the open set⋃

k=−K,··· ,K−1

Φ(IntΦ(S)×]kη, (k + 1)η[) =
⋃

k=−K,··· ,K−1

Int(φ]kη,(k+1)η[S)
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is contained in Φ(IntΦ(S)×[−Kη,Kη]) and is dense inX by (1). Therefore Φ
(
IntΦ(S)× [−Kη,Kη]

)
=

Φ(IntΦ(S)× [−Kη,Kη]) = X. �

Now we consider a global closed cross-section S of time η and we let ξ > 0 with Φ(S× [−ξ, ξ]) =
X. The first return time tS in S defines a lower semicontinuous positive function as the cross-
section S is closed. Moreover tS is bounded from above by 2ξ and from below by 2η. Let CS ⊂ S be
the (residual) subset of continuity points of tS . The first return map in S, denoted by TS : S → S,
x 7→ φtS(x)(x), is also continuous at any point of CS . In fact we may describe more precisely the
continuity properties of tS and TS .

Lemma 2.5. The first return time tS in S is a piecewise continuous map, i.e. there is a finite
partition (Ck)k of S into w.e.c.’s such that tS is uniformly continuous on each Ck. Moreover the
boundaries in S of the Ck’s have an empty interior in S.

Proof. The set Y defined by Y := {(x, t) ∈ S ×R+, φt(x) ∈ S} is a closed subset of S ×R+. Let
δ ∈]0, infx∈S tS(x)[. For any positive integer k the closed intersection Y ∩ (S × [kδ, (k + 1)δ]) is
the graph of a continuous nonnegative function defined on a closed subset Bk of S. Let denote
this function by fk : Bk → R+. Then the return time tS coincides with f1 on C1 := B1 (which
may be the empty set) and with fk on Ck := Bk \

(⋃
l<k Bl

)
for every k > 1. Moreover observe

that
⋃

1≤k≤K Ck =
⋃

1≤k≤K Bk = S with K = d 2ξ
δ e. The Bk’s being closed, the boundaries of

the Ck’s in S have an empty interior in S (indeed the class of subsets, whose boundary has an
empty interior, is closed under complement, finite unions and intersections and it contains the
closed subsets). �

The set CS of continuity points is not only residual, it contains the open and dense subset of S
given by the union of the interior sets in S of the w.e.c.’s Ck by Lemma 2.5. We relate below the
set of discontinuity points of tS with the flow boundary of S.

Lemma 2.6. Let x ∈ S \ CS. Then there exists t ∈ [0, 2ξ] with φt(x) ∈ ∂ΦS.

Proof. Assume by contradiction that there is no t ∈ [0, 2ξ] with φt(x) ∈ ∂ΦS. Let us show x
belongs to CS . If not there would be a sequence (xn)n of S converging to x with 2ξ ≥ limn tS(xn) >
tS(x). When n is large enough, φtS(x)(xn) belongs to the complement of Int(Sζ) for some small

ζ > 0 and thus so does φtS(x)(x), in particular φtS(x)(x) ∈ ∂ΦS contradicting our hypothesis. �

2.1.4. Complete family of closed cross-sections. A finite family S of disjoint closed cross-sections
S of time ηS > 0 is said complete when the cylinders SηS/2 are covering X. In particular the set
S =

⋃
S∈S S defines a global closed cross-section and the first return time tS is bounded from

above by ηS . The diameter of such a family S is the maximum of the diameters of S ∈ S. Any
topological regular flow admits a complete family of closed cross-sections with arbitrarily small
diameter (see Lemma 7 in [4]). Let us consider such a complete family S of cross-sections. For
the closed global cross-section S, the conclusion of Lemma 2.5 holds for the partition T−1

S S :

Lemma 2.7. For every S ∈ S the first return time tS is uniformly continuous on the set T−1
S S.

Proof. We argue by contradiction. Let (xn)n and (yn)n be two sequences in T−1
S S with limn d(xn, yn) =

0 and t1 := limn tS(xn) > t2 := limn tS(yn) > 0. By extracting subsequences we may assume
(xn)n (and thus (yn)n) is converging in S, say to x. Then φt1(x) and φt2(x) both belong to S.
But we have also t1 − t2 < supy∈S tS(y) ≤ ηS . This contradicts the fact that S is a cross-section
of time ηS . �

By Lemma 2.3 (1) we have ∂ΦS =
⋃
S∈S ∂

ΦS. The flow boundary of T−1
S S, for S ∈ S, satisfies

the following property :

Lemma 2.8. For every S ∈ S we have

∂Φ(T−1
S S) ⊂ ∂ΦSηS ∪ T−1

S (∂ΦS).
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Proof. It is enough to show IntΦ(T−1
S S) ⊃ T−1

S (IntΦ(S)) ∩ IntΦ(S) ∩ CS. Indeed this implies

∂Φ(T−1
S S) = T−1

S S \ IntΦ(T−1
S S),

⊂
(
T−1
S S \ T−1

S S
)
∪ T−1

S (∂ΦS) ∪ ∂ΦS ∪ (S \ CS) ,

but the set T−1
S S \ T−1

S S is contained in S \ CS, which by Lemma 2.6 is a subset of ∂ΦSηS .

Let x ∈ T−1
S (IntΦ(S))∩IntΦ(S)∩CS. Then TS(x) = φtS(x)(x) lies in Int(Sζ) for any small ζ > 0.

By continuity of the flow we have also φtS(x)(y) ∈ Int(Sζ) for y ∈ S close enough to x. Therefore
such points y return in S in a time close to tS(x). As x belongs to CS this correspond to their

first return time. But x also belongs to IntΦ(S) so that there is an open subset x ∈ O ⊂ IntΦ(S)

of S contained in T−1
S S. Therefore x belongs to IntΦ(T−1

S S) by Lemma 2.1. �

2.1.5. Suspension flows. Let (X,T ) be a topological discrete system. Let r : X → R+ be a positive
continuous function. Consider the quotient space

Xr = {(x, t) : 0 ≤ t ≤ r(x), x ∈ X and (x, r(x)) ∼ (Tx, 0)}.

This quotient space Xr is compact and metrizable (see Section 4 in [4]). The suspension flow over
(X,T ) under the roof function r is the flow Φr on Xr induced by the time translation Tt on X×R
defined by Tt(x, s) = (x, s+ t).

We call Poincaré cross-section of a topological flow (X,Φ) any closed cross-section S such that
the flow map Φ : (x, t) 7→ φt(x) is a surjective local homeomorphism from S × R to X.

Lemma 2.9. A cross-section is a Poincaré cross-section if and only if it is a global closed cross-
section with empty flow boundary.

Proof. Let S be a Poincaré cross-section. By compactness of X = Φ(S×R) =
⋃
ζ>0 Φ(S×]−ζ, ζ[)

there is ξ > 0 with Φ(S × [−ξ, ξ]) = X and S is thus global. The sets φ]−ζ,ζ[(S) for ζ > 0 being

open, we have S = IntΦS and thus ∂ΦS = ∅ as S is closed. Conversely, if S is a closed cross-section
with empty flow boundary, then from Lemma 2.1 the flow map Φ : S × R → X defines a local
homeomorphism onto its image. When the cross-section S is moreover global, this map is then
also surjective. �

As the roof function r of the suspension flow (Xr,Φr) does not vanish, the flow is regular and
the subset X × {0} ⊂ Xr defines a Poincaré cross-section of the suspension flow Xr. In fact any
topological flow admits a Poincaré cross-section if and only if it is topologically conjugate to a
suspension regular flow. When the flow space is one-dimensional, there always exists a Poincaré
cross-section. Indeed any closed cross-section is zero-dimensional, so that any point belongs to
a closed cross-section with empty flow boundary. Bowen-Walters construction then provides a
complete family S of closed cross-sections with empty flow boundary. The union S =

⋃
S∈S S

defines therefore in this case a Poincaré cross-section. Here we consider topological suspension
flows, but we may also define similarly a Borel (resp. ergodic) suspension flow over a discrete
Borel (resp. ergodic) system with a bounded Borel (resp. integrable) roof function.

For the suspension flow (Xr,Φr) the Φr-invariant measures are related with the T -invariant
measures as follows. For a discrete topological system (X,T ) (resp. topological flow (X,Φ)) we
denote by M(X,T ) (resp. M(X,Φ)) the set of T -invariant (resp. Φ-invariant) Borel probability
measures. Let λ denote the Lebesgue measure on R. For any µ ∈ M(X,T ) the product measure
µ × λ induces a finite Φr-invariant measure on Xr. This defines a homeomorphism between
M(Xr,Φr) and M(X,T ). More precisely the map

Θ : M(X,T )→ M(Xr,Φr),

µ 7→ (µ× λ)|Xr∫
r dµ

is a homeomorphism (not affine in general), which preserves ergodicity.
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2.1.6. Φ-invariant and φt-invariant measures. For any t > 0 we let it be the inclusion ofM(X,Φ)
inM(X,φt). In general this inclusion does not preserve ergodicity : for an ergodic µ ∈M(X,Φ),
the measure it(µ) need not be ergodic (however, by the spectral theory, for a fixed measure µ, this
may occur for at most countably many t ∈ R).

For t > 0 the map

θt : M(X,φt)→ M(X,Φ),

µ 7→ 1

t

∫ t

0

φsµds

defines a continuous affine map of M(X,φt) onto M(X,Φ), which is a retraction i.e. θt ◦ it =
IdM(X,Φ). As this last identity is immediate, we only check that θt(µ) belongs toM(X,Φ) for any
µ ∈M(X,φt). Clearly it is enough to show φu (θt(µ)) = θt(µ) for any u ∈]0, t[. This follows from
the following equalities :

φu

(
1

t

∫ t

0

φsµds

)
=

1

t

∫ t

0

φs+uµds,

=
1

t

∫ t+u

u

φsµds,

=
1

t

(∫ t

u

φsµds+

∫ u

0

φs+tµds

)
=

1

t

∫ t

0

φsµds.

2.1.7. Orbit equivalence. Two topological flows (X,Φ) and (Y,Ψ) are orbit equivalent when there
is a homeomorphism Λ from X onto Y mapping Φ-orbits to Ψ-orbits, preserving their orientation.
Any flow obtained by a change of the time scale of a topological flow (X,Φ) is orbit equivalent to
(X,Φ).

In the following we are interested in dynamical properties invariant under orbit equivalence. In
general the topological entropy is not preserved by orbit equivalence. But for regular topological
flows zero and infinite entropy are invariant [29].

2.2. The small boundary property for flows.

2.2.1. Definitions. For a topological discrete system (X,T ) (resp. topological flow (X,Φ)), a sub-
set E has a small boundary when its boundary is a null set, i.e. it has zero measure for any
T -invariant (resp. Φ-invariant) Borel probability measure (similarly a Borel subset is said to be a
full set when its complement is a null set).

We define now an adapted notion of small boundary for w.e.c.’s.

Definition 2.3. Let (X,Φ) be a topological flow. A w.e.c. S of time η has a small flow boundary
when ∂ΦSη is a null set.

For a w.e.c. S, the closure S is also a cross-section and it is thus transverse to the flow, so that
the subset φ−ηS ∪ φηS of ∂Sη has zero measure for any Φ-invariant Borel probability measure.
Therefore in the above definition we may replace the flow boundary ∂ΦSη of Sη by its usual
boundary ∂Sη according to Lemma 2.1. Moreover the small flow boundary property of S does not
depend of the time η.

Lemma 2.10. Let (X,Φ) be a topological flow and let S be a w.e.c. of time η > 0. The following
properties are equivalent :

i) S has a small flow boundary,

ii) limζ→0
µ(∂ΦSζ)

ζ = 0 for any µ ∈M(X,Φ),

iii) 1
T ]{0 < t < T, φt(x) ∈ ∂ΦS} T→+∞−−−−−→ 0 uniformly in x ∈ X.
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Proof. We have trivially i) ⇒ ii). Assume ii) and let us prove i). For a Φ-invariant Borel
probability measure µ, we have for all positive integers n and for all η > 0:

µ(∂ΦSη) = µ
(
φ[−η,η]∂

ΦS
)
,

= µ

(
n−1⋃
k=−n

φ[kη/n,(k+1)η/n](∂
ΦS)

)
,

= 2n× µ(∂ΦSη/2n) = η ×
µ(∂ΦSη/2n)

η/2n

n−→ 0.

Finally we show ii) and iii) are equivalent. We recall that λ denotes the Lebesgue measure on
R. By Birkhof ergodic theorem we have for 0 < ζ < η/2 and for any ergodic Φ-invariant Borel
probability measure µ

∀µ a.e. x, µ(∂ΦSζ) = lim
T→+∞

1

T
λ
(
{0 < t < T, φt(x) ∈ ∂ΦSζ}

)
,

= lim
T→+∞

2ζ

T
]{0 < t < T, φt(x) ∈ ∂ΦS},

thus µ(∂ΦSζ) ≤ lim sup
T→+∞

2ζ

T
sup
x∈X

]{0 < t < T, φt(x) ∈ ∂ΦS}.

By the ergodic decomposition this last inequality holds in fact for any Φ-invariant Borel probability
measure and therefore iii)⇒ ii).

We will use a Krylov-Bogolyubov’s like argument to show ii) ⇒ iii). For any T > 0 take
xT ∈ X maximizing the function x 7→ ]{0 < t < T, φt(x) ∈ ∂ΦS} on X. Let ψT : R → M ,

t 7→ φt(xT) and let µT := ψT(λ[0,T]) with λ[0,T] := λ(·∩[0,T])
T . For any 0 < ζ < η/2 we have

µT(∂ΦSζ) =
λ
(
{0 < t < T, φt(xT) ∈ ∂ΦSζ}

)
T

,

≥ 2ζ

T

(
]{0 < t < T, φt(xT ) ∈ ∂ΦS} − 1

)
,

≥ 2ζ

T

(
sup
x∈X

]{0 < t < T, φt(x) ∈ ∂ΦS} − 1

)
.

As ∂ΦSζ is closed, any weak-∗ limit µ of (µT)T, when T goes to infinity, satisfies

µ(∂ΦSζ) ≥ lim sup
T

µT(∂ΦSζ),

≥ 2ζ × lim sup
T

supx∈X ]{0 < t < T, φt(x) ∈ ∂ΦS}
T

.

Thus if
µ(∂ΦSζ)

ζ

ζ→0−−−→ 0 we get iii). �

A discrete topological system (resp. topological flow) is said to have the small boundary property
when there is a basis of neighborhoods with small boundary. We will consider the following
corresponding notion for the flow boundary.

Definition 2.4. A topological flow (X,Φ) is said to have the small flow boundary property when

for any x ∈ X and for any w.e.c. S′ with x ∈ IntΦ(S′) there exists a subset S of S′ with x ∈ IntΦ(S)
such that the w.e.c. S has a small flow boundary.

In the above definition we may replace w.e.c. by closed cross-sections. For a w.e.c. with small
flow boundary the associated cylinders have a small boundary, so that a topological flow with
the small flow boundary property has in particular the small boundary property. Following the
construction of R.Bowen and P.Walters any topological flow with the small flow boundary property
admits a complete family of closed cross-sections with small flow boundary and with arbitrarily
small diameter. Moreover we can assume that each cross-section in the family is contained in the
flow interior of another closed cross-section (see also Lemma 2.4 in [17] for a similar construction).
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2.2.2. Essential and small boundary partitions. For a discrete topological system (X,T ) (resp.
topological flow (X,Φ)) a partition P of X is said to have a small boundary when any atom in P
has a small boundary. Such a partition of X is also called an essential partition.

Lemma 2.11. For a topological system (X,T ) (resp. topological flow (X,Φ)) a Borel partition P
of X has a small boundary if and only if A \A is a null set for every A ∈ P .

Proof. The necessary condition is clear because the sets A \ A is contained in the boundary of
A ∈ P . To prove the equivalence it is enough to see that A ∩ ∂A ⊂

⋃
B∈P\{A}B \ B. Take

x ∈ A∩∂A, in particular x /∈ Int(A). Therefore there is a sequence (xn)n in the complement set of
A going to x. By extracting a subsequence we may assume all xn are in B for some P 3 B 6= A,
so that x belongs to B \B. �

The partition, generated by a finite cover of sets with small boundary, has itself a small bound-
ary. Consequently a system with the small boundary property admits partitions with small bound-
ary and arbitrarily small diameter. Similar properties also hold true for the small flow boundary
property. A partition P of a w.e.c. S is said to have a small flow boundary when every atom in
P defines a w.e.c. with small flow boundary (in this case S has itself a small flow boundary).

Lemma 2.12. Let (X,Φ) be a topological flow with the small flow boundary property. Let S ⊂ S′
be w.e.c.’s with S ⊂ IntΦ(S′) such that S has a small flow boundary. Then there are partitions of
S into w.e.c.’s with small flow boundary and arbitrarily small diameter.

Proof. For all x ∈ S there is a w.e.c. Sx ⊂ S′ with small flow boundary and arbitrarily small
diameter satisfying x ∈ IntΦ(Sx) ⊂ IntΦ(S′). The sets (S ∩ IntΦSx)x∈S define an open cover of S.

Let E be a finite subset of S such that (S ∩ IntΦ(Sx))x∈E is a finite open subcover. The partition
of S generated by the finite cover (S∩Sx)x∈E of S has a small flow boundary according to Lemma
2.3 (2). �

We define now the corresponding notion for global Borel cross-sections of a topological flow.
Let S be a global Borel cross-section of a topological flow (X,Φ). For A ⊂ S we let TA be the
tower above A defined as

TA := {φt(x), x ∈ A and 0 ≤ t < tS(x)}.

For a Borel partition P of S, the towers TA for A ∈ P define a Borel partition TP of X.

Definition 2.5. With the above notations, a Borel partition P of S is said essential when the
associated partition TP of X in towers is essential.

When Q is a partition of S and P is an essential partition of S finer than Q, then Q is also
essential.

Lemma 2.13. Let S be a complete family of cross-sections with small flow boundary. Then the
partition S of the global closed cross-section S =

⋃
S∈S S is essential.

Proof. It is enough to show the joined partition P = S ∨ T−1
S S of S is essential. For any S ∈ S

the w.e.c. T−1
S (∂ΦS) has a small flow boundary according to Lemma 2.10 :

1

T
]{0 < t < T, φt(x) ∈ T−1

S (∂ΦS)} =
1

T
]{0 < t < T, φt+tS(φt(x))(x) ∈ ∂ΦS},

≤ 1

T
]{0 < t < T + ηS , φt(x) ∈ ∂ΦS} T→+∞−−−−−→ 0 uniformly in x ∈ X.

Each E ∈ P has therefore a small flow boundary by Lemma 2.8 and Lemma 2.3 (2). Moreover
the restriction of tS to E extends on E to a continuous function tES by Lemma 2.7. Therefore

TE \ TE is contained in the union of E, {φtES(x)(x), x ∈ E} and {φt(x), 0 ≤ t ≤ sup tES and x ∈
E \ E}. The first two sets are subsets of the global closed cross-section S so that their measure
is zero for any probability measure invariant by the flow. The last set is contained in ∂ΦEζ with
ζ = sup tS and therefore it is also a null set because E has a small flow boundary. �
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Remark 2.1. • There is no statement similar to Lemma 2.11 for a complete family S of
closed cross-sections with small flow boundary. Indeed, for every S ∈ S the set S \ S is
empty but the cross-section S has not necessarily a small flow boundary.

• For a Borel global cross-section, essential partitions are more general than partitions with
small flow boundary, whose atoms are necessarily w.e.c.’s (the flow boundary makes only
sense for a w.e.c.).

2.2.3. Small boundary for Φ and φt. The small flow boundary property for a closed cross-section
may be related with the small boundary property of the associated cylinders for the discrete time-t
maps as follows.

Lemma 2.14. Let (X,Φ) be a topological flow with a closed cross-section S and let t 6= 0. The
following properties are equivalent.

i) S has a small flow boundary for the flow Φ;
ii) for some η > 0 the flow boundary ∂ΦSη is a null set for the topological discrete system (X,φt).

However there may exist φt-invariant probability measures with t 6= 0 supported on φηS and
thus on ∂Sη.

Proof. As any Φ-invariant measure is φt-invariant we have trivially ii) ⇒ i). Assume i) and
let us prove ii). Let µ be a φt-invariant measure. The Φ-invariant measure θt(µ) satisfies

0 = θt(µ)(∂Sη) = 1
t

∫ t
0
φsµ(∂Sη) ds. Therefore we have φsµ(∂Sη) = µ

(
∂φ[−η−s,η−s]S

)
= 0 for

Lebesgue almost s ∈ [0, t]. This concludes the proof as we have ∂ΦSη−s ⊂ ∂φ[−η−s,η−s]S for
0 ≤ s ≤ η. �

2.2.4. Suspension flows. Let (X,T ) be a topological discrete system. We consider the suspension
flow (Xr,Φr) over the base (X,T ) under a positive continuous roof function r : X → R+.

Lemma 2.15. With the above notations, the flow (Xr,Φr) satisfies the small flow boundary
property if and only if (X,T ) satisfies the small boundary property.

Proof. Assume firstly (Xr,Φr) has the small flow boundary property. Let (x, t) ∈ Xr with 0 ≤ t <
r(x). For any R > 0 the set S′ = {y ∈ X, d(y, x) ≤ R} × {t} is a closed cross-section containing
(x, t) in its flow interior (with d being the distance on X). Therefore there exists another cross-

section S = U × {t} ⊂ S′ with a small flow boundary for the flow Φr and (x, t) ∈ IntΦr (S) =

Int(U) × {t}, i.e. x ∈ Int(U). For small enough ζ > 0 we have Θ(µ)(∂ΦrSζ) = 2ζ×µ(∂U)∫
r dµ

= 0 for

all µ ∈ M(X,T ). Thus U ⊂ X is a neighborhood of x with small boundary for (X,T ) and with
diameter less than R. Therefore (X,T ) has the small boundary property.

Conversely we consider a topological system (X,T ) on the base with the small boundary prop-
erty. Let S′ be a closed cross-section containing (x, t) in its flow interior. Let U be a closed
neighborhood of x with small boundary for (X,T ) and with diameter less than R. We let S be
the intersection of S′ with the ξ-cylinder of the closed cross-section U × {t}. For ξ > 0 fixed and

ζ, R small enough we have ∂ΦrSζ ⊂ ∂U × [−ξ + t, ξ + t]. Therefore (x, t) belongs to IntΦr (S) and

Θ(µ)(∂ΦrSζ) ≤ 2ξ×µ(∂U)∫
r dµ

= 0 for all µ ∈M(X,T ), thus S has a small flow boundary. �

2.2.5. Orbit equivalence.

Lemma 2.16. The small flow boundary property is preserved by orbit equivalence for regular
flows.

Proof. Let (X,Φ) and (Y,Ψ) be two topological orbit equivalent flows, via a homeomorphism Λ
from X onto Y . Clearly it is enough to show that the image by Λ of a closed cross-section with
small flow boundary is a closed cross-section with small flow boundary. By continuity of Λ−1, we
have

∀ε > 0 ∃δ > 0 ∀y ∈ Y, ψ[0,δ](y) ⊂ Λ
(
φ[0,ε]

(
Λ−1y

))
.
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If S is a closed cross-section of (X,Φ) with time ε, then Λ(S) defines a closed cross-section of
(Y,Ψ) with time δ. The homeomorphism Λ−1 maps any Ψ-orbit of length T on a Φ-orbit of length
at most εT

δ so that for any y ∈ Y
1

T
]{0 < t < T, ψt(y) ∈ ∂ΨΛ(S)} ≤ 1

T
]{0 < t < T, ψt(y) ∈ Λ(∂ΦS)},

≤ 1

T
]{0 < t < T, Λ−1(ψt(y)) ∈ ∂ΦS},

≤ 1

T
]{0 < t <

εT

δ
, φt(Λ

−1y) ∈ ∂ΦS}.

It follows then from Lemma 2.10 iii), that if S satisfies the small flow boundary property for (X,Φ)
then so does Λ(S) for (Y,Ψ). �

2.2.6. The case of C2 smooth regular flows. Building on works of E.Lindenstrauss and J.Kulesza we
prove the small flow boundary property for C2 smooth (regular) flows on compact manifolds (in fact
our proof also applies to C1 discrete systems). The closed cross-sections with small flow boundary
obtained in our proof are given by smooth discs (in the previous works of E.Lindenstrauss and
J.Kulesza we do not know if one can choose the neighborhoods with small boundary as topological
balls). However we only deal with C2 smooth flows on a compact manifold as we use differential
transversality tools, whereas E.Lindenstrauss and J.Kulesza proved the small boundary property
for homeomorphisms of a finite dimensional compact set.

A C2 smooth flow is said to have the smooth small flow boundary property when Definition
2.4 holds true with closed cross-sections S and S′ given by C1 smooth discs transverse to the C1

vector field generating the flow.

Proposition 2.1. Let (X,Φ) be a C2 smooth flow on a compact manifold X. We assume that
for any t > 0 the number of periodic orbits with period less than t is finite. Then (X,Φ) has the
smooth small flow boundary property.

Proof. Let d+ 1 be the dimension of X. Fix x ∈ X and let S be a C1 smooth embedded disc with
x ∈ IntΦ(S). One easily builds a finite family of C1 smooth embeddings (hi : Bd → X)i=0,...,N with
h0(0) = x and h0(Bd) ⊂ S, such that the family S = (Si)i and S ′ = (S′i)i with Si = hi(Bd/2) and
S′i = hi(Bd) both define complete families of closed cross-sections with ηS = ηS′ . For 0 ≤ i, j ≤ N
we let ti,j be the first hitting time from Si to Sj :

∀x ∈ Si, ti,j(x) = min{t > 0, φt(x) ∈ Sj}.
We define similarly the first hitting time t′i,j from S′i to S′j . Let Ui,j = {ti,j ≤ ηS} and U ′i,j =
{t′i,j < +∞}. Finally we denote by Ti,j : Ui,j → Sj and T ′i,j : U ′i,j → S′j the first associated hitting
maps (see Figure 1). The following properties hold :

• the compact subset h−1
i (Ui,j) of Bd/2 is contained in Int

(
h−1
i (U ′i,j)

)
,

• h−1
j ◦ T ′i,j ◦ hi is a local C1 diffeomorphism on Int

(
h−1
i (U ′i,j)

)
, because the vector field X

generating Φ is C1 smooth,
• T ′i,j = Ti,j on Ui,j ⊂ U ′i,j .

Let Ci,j be a finite collection of closed balls contained in Int
(
h−1
i (U ′i,j)

)
⊂ Rd, which cov-

ers h−1
i Ui,j , such that any C ∈ Ci,j is contained in an open ball, where h−1

j ◦ T ′i,j ◦ hi is a C1

diffeomorphism onto its image. Then for any C ∈ Ci,j the restriction of h−1
j ◦ T ′i,j ◦ hi to C ex-

tends C1 smoothly to a diffeomorphism TC of Rd. For all (i2, ..., in) ∈ {0, ..., N}n−1 and for all

Cn = (C1, ..., Cn−1) ∈
∏n−1
j=1 Cij ,ij+1

with i1 = 0, we let T kCn := TCk ◦ ... ◦ TC1
for 1 ≤ k ≤ n − 1

(let also T−kCn = (T kCn)−1 for such k and T 0 = IdC1
). We denote by ICn the subset consisting of 0

and the integers k in {1, ..., n − 1} with ik+1 = 0. Finally we let FCn be the closed subset of C1

given by FCn =
⋂n−1
k=0 T

−k
Cn (Ck+1).

We build a closed cross-section S̃ (given by a subdisc of S0) with small flow boundary, arbitrarily

small diameter and x ∈ IntΦ(S̃). We let E := {f ∈ C1(Sd,R+), ‖f‖∞ ≤ 1} endowed with the
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S S'andj j

Ui,j

X

T
i,j(U  )i,j

Figure 1: The set Ui,j ⊂ Si and its image by Ti,j in red.

usual C1 topology (it is a Baire space). The cross-section S̃ will be of the form S̃ = h0(Sf ) with
Sf := {rx, x ∈ Sd, r ≤ f(x)} ⊂ Rd for some positive f ∈ E. Observe that for such an f ,
the boundary ∂Sf is a submanifold of dimension d − 1 of Rd. Moreover any C1 small enough
perturbation of this submanifold, i.e. any submanifold H(∂Sf ) for a C1 diffeomorphism H of Rd
close to the identity, is of the form Sg for g ∈ E close to f .

We will say that a map f ∈ E is n-transverse, when for all Cn as above, the submanifolds(
T−iCn(∂Sf )

)
i∈ICn

are mutually transverse on an open neighborhood of FCn . We recall that two

submanifolds M and N of Rd are mutually transverse when either M ∩N = ∅ or TxM + TxN =
Rd for all x ∈ M ∩ N . In this last case the intersection M ∩ N is itself a submanifold with
codim(M ∩ N) = codimM + codimN ≥ 0. For n > 2 a family (M1, · · · ,Mn) of n submanifolds
of Rd is said mutually transverse when all proper subfamilies are mutually transverse and the
submanifolds Mi and

⋂
j 6=iMj are transverse for any (some1) i ∈ {1, · · · , n}. Then

⋂
1=1,··· ,nMi

is either empty or a submanifold of codimension
∑
j=1,··· ,n codim(Mj). Let M1, · · · ,Mn−1 be

mutually transverse submanifolds and let Mn be an other submanifold. Then M1, · · · ,Mn are
mutually transverse submanifolds if and only if Mn and

⋂
j∈JMj are mutually transverse for any

J ⊂ {1, · · · , n− 1}. The submanifolds (M1, · · · ,Mn) are said mutually transverse on an open set
U when (M1 ∩ U, · · · ,Mn ∩ U) are mutually transverse.

Claim 1. For any n the subset En of E consisting of the n-transverse maps is open and dense.

We postpone the proof of Claim 1. Let f ∈
⋂
nEn. Any orbit of the flow hits at most d − 1

times the set ∂Sf . Indeed for any x ∈ Sf and any positive integer n there is a n-uple Cn such
that (recall TS denotes the return map in the global cross-section S =

⋃
S∈S S) :

• x ∈ FCn ,
• ∀0 ≤ k ≤ n, T kS (h0(x)) = hik+1

◦ T kCn(x).

The manifolds
(
T−iCn(∂Sf )

)
i∈ICn

being mutually transverse submanifolds of dimension d − 1 on

an open neighborhood of FCn , any intersection of d’s of them with FCn is empty. In particular
T kCn(x) ∈ ∂Sf and therefore T kS (h0(x)) ∈ h0(∂Sf ) for at most d integers k with 0 ≤ k ≤ n. As
it holds for any n, there at most d-many positive times t with φt (h0(x)) ∈ ∂Sf . By Lemma 2.10
iii) the closed cross-section h0(Sf ) has a small flow boundary. �

Proof of the Claim 1. By taking a finite intersection it is enough to consider a single n-uple Cn =
(C1, ..., Cn) in the definition of n-transversality. To simplify the notations we then let T k = T kCn
for 0 ≤ k ≤ n − 1, Fn = FCn and In = ICn . The tranversality being a C1-stable property (see
e.g. Proposition A.3.15 in [23]), the set En is an open subset of E. We prove now by induction
on n the density of En in E. Let f ∈ E. By induction hypothesis we may find a positive function
g ∈ En−1 arbitrarily close to f . As the set of periodic orbits of Φ with period less than t is finite

1Indeed this condition does not depend on i because dim(TxMi + Tx(
⋂

j 6=iMj)) = dim(TxMi) + d −∑
j 6=i codim(TxMj) − dim(

⋂
j TxMj) is equal to d if and only if codim(

⋂
j TxMj) =

∑
j codim(TxMj)
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for all t > 0 we may assume that the spheres (T−k∂Sg)k∈In avoids the fixed points of T k, k ∈ In
on Fn. Therefore there exist two finite families (Bi)1≤i≤K and (B′i)1≤i≤K of open balls in Rd such
that

• Bi ⊂ B′i for all i,
• B′i, T 1B′i, ...T

n−1B′i are pairwise disjoint for all i,
•
⋃
iBi ⊃ Fn ∩

(⋃
k∈In T

−k∂Sg
)
.

For h ∈ E close enough to g the property of the last item also holds true for h.
By induction on j = 1, · · · ,K + 1 we produce a map gj arbitrarily close to g in En−1 such

that T−k∂Sgj , k ∈ In, are mutually transverse on an open neighborhood Vj of Fn ∩
(⋃

i<j Bi

)
.

Finally we will get gK+1 ∈ En for gK+1 close enough to g : if O denotes an open neighborhood of
Fn ∩

(
Rd \ (

⋃
iBi)

)
with T−k∂SgK+1 ∩O = ∅ for all k ∈ In, then (T−k∂SgK+1)k∈In are mutually

transverse on the open neighborhood O ∪ VK+1 of Fn.
Take g1 = g and proceed to the inductive step by assuming gj ∈ En−1 already built. In

particular the submanifolds (T−k∂Sgj+1)k∈In\{0} (resp. (T−k∂Sgj+1)k∈In) are mutually transverse

on an open neighborhood of Fn (resp. of Fn ∩
(⋃

i<j Bi

)
) for gj+1 C1-close enough to gj . It is

therefore enough to find gj+1 arbitrarily close to gj such that T−k∂Sgj+1 , k ∈ In, are mutually

transverse on an open neighborhood of Fn ∩ Bj . When one only perturbs ∂Sgj on B′j , it does

not change the submanifolds T−k∂Sgj , for 0 6= k ∈ In, on B′j . By Theorem A.3.19 [23] there

is a C1 small perturbation ∂Sgj+1 of ∂Sgj , supported on U jn ∩ B′j (i.e. ∂Sgj+1 = H(∂Sgj ) for a

diffeomorphism H of Rd C1-close to Id with H = Id apart from U jn ∩ B′j), such that ∂Sgj+1 and⋂
k∈I′n

T−k∂Sgj are mutually transverse for any I ′n ⊂ In \ {0} on a neighborhood of Fn ∩ Bj .
But

⋂
k∈I′n

T−k∂Sgj coincides with
⋂
k∈I′n

T−k∂Sgj+1 on B′j , so that the submanifolds ∂Sgj+1 and⋂
k∈I′n

T−k∂Sgj+1 satisfy the same transversality property. As it holds for any I ′n ⊂ In \ {0}, the

submanifolds T−k∂Sgj+1 , k ∈ In, are mutually transverse on an open neighborhood of Fn∩Bj . �

Remark 2.2. We strongly believe the nonautonomous approach through the return maps developed
above could be used to prove the small flow boundary property for general topological flows on
finite-dimensional compact spaces by adapting the more sophisticated methods of E.Lindenstauss
and J.Kulesza.

Remark 2.3. In [14] Proposition 4.1 it is was proved that a given finite partition of a smooth
compact manifold, whose atoms have piecewise smooth boundaries, has a small boundary with
respect to Cr generic diffeomorphisms (r ≥ 1). Here we use a“dual” approach by fixing the
diffeomorphism (in fact the flow in our statement) and perturbing the boundaries of the partitions.

2.3. Representation by suspension flow. Let (X,Φ = (φt)t) and (Y,Ψ = (ψt)t) be two contin-
uous flows. We say (Y,Ψ) is a topological extension of (X,Φ) when there is a continuous surjective
map π : Y → X with π ◦ ψt = φt ◦ π for all t. The topological extension is said 2:

• principal when it preserves the entropy of invariant measures, i.e. h(µ) = h(πµ) for all
µ ∈M(Y,Ψ),

• isomorphic when the map induced by π on the sets of invariant Borel probability measures
is bijective and π : (Y,Ψ, µ) → (X,Φ, πµ) is a measure theoretical isomorphism for any
µ ∈M(Y,Ψ),

• strongly isomorphic when there is a full set E of X such that the restriction of π to π−1E
is one-to-one.

Any strongly isomorphic extension is isomorphic and any isomorphic extension is principal.

For a discrete topological system (X,T ), to any nonincreasing sequence of partitions (Pk)k∈N

with diam(Pk)
k−→ 0 we may associate a zero dimensional extension (Y, S) given by the closure

Y of {(Pk(Tnx))k,n , x ∈ X} in
∏
k P

Z
k (with the shift acting on each k-coordinate) mapping

2(Principal, isomorphic, strongly isomorphic) extensions are defined similarly for any group actions.
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(Ak,n)k,n ∈ Y to
⋂
k,n T

−nAnk ∈ X. When the partitions Pk have small boundary then the

extension is strongly isomorphic [11].
We build now in a similar way zero-dimensional extensions for a continuous flow (X,Φ). Let

S be a complete family of closed cross-sections. As the first return map TS in S =
⋃
S∈S S is

a priori not continuous on S we can not directly apply the previous construction to the system
(S, TS). We consider the skew product

SZ nS :=
{

((An)n, x) ∈ SZ ×S,∀n TnSx ∈ An
}
.

As a consequence of Lemma 2.7 the map SZ nS 3 ((An)n, x) 7→ tS(x) extends continuously on
the closure of SZ nS in SZ ×S (this extension will be again denoted by tS). Moreover the map

T : SZ n S 	, ((An)n, x) 7→ ((An+1)n, TSx) extends to a homeomorphism of SZ nS. We let

(SZ nS, T ) be the skew product system given by this extension.

Lemma 2.17. The suspension flow over (SZ nS, T ) with roof function given by tS is a topological
extension of (X,Φ). Moreover when every S ∈ S has a small flow boundary, this extension is
strongly isomorphic.

Proof. Let
(
SZ nS

)
tS

be the invariant dense set above SZnS in the suspension flow
(
SZ nS

)
tS

.

The map π :
(
SZ nS

)
tS
→ (X,Φ) with π (((An), x) , t) = φt(x) defines an equivariant surjective

function continuously extendable on
(
SZ nS

)
tS

. Therefore its continuous extension, again de-

noted by π, defines a topological extension of (X,Φ).
The Φ-orbit of a point with multiple π-preimages hits the set CS. Therefore by Lemma 2.6 the

extension π is one-to-one above the (residual) set of points whose Φ-orbits do not visit the flow
boundary of the closed cross-sections in S. When these cross-sections have small flow boundaries
this set has zero measure for any Φ-invariant measure and thus the extension is strongly isomorphic.
Indeed assume by contradiction there is S ∈ S with µ({x,∃t ∈ [0, T ] φt(x) ∈ ∂ΦS}) > 0 for some
µ ∈M(X,Φ) and for some T > 0. By using the ergodic decomposition we may assume µ ergodic.
From the ergodic theorem it follows then that the Φ-orbit of µ-almost every x visits ∂ΦS with a
positive frequency contradicting item iii) of Lemma 2.10. �

In particular the skew product system (SZ nS, T ) is a principal extension of (X,Φ) when the
closed cross-sections in S have a small flow boundary. This answers in this case an open question
of R.Bowen and P.Walters (aforementioned in the introduction).

A suspension flow over a zero-dimensional topological discrete system will be called a zero-
dimensional suspension flow and a topological extension by a zero-dimensional suspension flow is
said to be a zero-dimensional extension.

Proposition 2.2. A topological flow with the small flow boundary property admits a zero-dimensional
strongly isomorphic extension.

Proof. Let S0 be a complete family of closed cross-sections with small flow boundary, such that
each S ∈ S0 is contained in the flow interior of another closed cross-section. By Lemma 2.12 there
is a nonincreasing sequence of partitions with small flow boundary (Sk)k≥1 of S =

⋃
S∈S0

S finer

than S0 satisfying diam(Sk)
k−→ 0. Then we can follow the proof of Lemma 2.17, by replacing

the skew product system (SZ nS, T ) by the closure Y S in
∏
k∈N SZk of

{
(Sk(TnSx))k,n

}
with the

shift acting on each k-coordinate, to get the desired zero-dimensional extension of (X,Φ) (the roof
function is again given by tS0

). The extension is one-to-one above the set of points whose Φ-orbits
do not visit the flow boundary of the closed cross-sections in S0 and the boundary of A in S for
every (A,S) ∈ (

⋃
k≥1 Sk,S0) with A ⊂ S. But this last boundary is a subset of the flow boundary

of A by Lemma 2.2. As the partitions Sk, k ≥ 0, have a small flow boundary, the extension is
strongly isomorphic. �
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For two orbit equivalent flows, the base of the suspension flows of the zero-dimensional exten-
sions built in Proposition 2.2 may be chosen to be topologically conjugate. More precisely consider
(X,Φ) and (X ′,Φ′) two orbit equivalent topological flows via a homeomorphism Λ : X → X ′. Let
S = (Sk)k be a sequence of complete families of closed cross-sections for (X,Φ) as in the proof of
Proposition 2.2 and let Λ(S) = (Λ(Sk))k be the associated sequence for (X ′,Φ′). Then the map

(Sk(TnSx))k,n 7→
(

Λ(Sk)(TnΛ(S)(Λx))
)
k,n

extends to a topological conjugacy of Y S and Y Λ(S) (with the notations of the above proof).

Any topological system (X,T ) has a principal zero-dimensional extension [13]. By Proposition
2.2 any topological flow with the small flow boundary property admits a strongly isomorphic,
therefore principal, zero-dimensional extension.

Question 2.1. Does a topological flow always admits a principal zero-dimensional extension?

3. Symbolic extensions and uniform generators for flows

In this section we develop a theory of symbolic extensions and uniform generators for flows.
From now on we only consider topological flows and discrete systems with finite topological entropy.
We recall that the topological entropy of a flow is given by the topological entropy of its time 1-
map.

3.1. Definitions. For a topological system (X,T ) a symbolic extension is a topological extension
π : (Y, S) → (X,T ) where (Y, S) is a subshift over a finite alphabet. A symbolic extension with
an embedding is a symbolic extension π : (Y, S) → (X,T ) endowed with a Borel embedding
ψ : (X,T )→ (Y, S) satisfying π ◦ψ = IdX . A uniform generator is a Borel partition P of X such
that the diameter of

∨n
k=−n T

−kP goes to zero when n goes to infinity. The following statement
follows from Theorem 1.2 in [10]. The characterization for clopen uniform generators was first
proved in [18].

Proposition 3.1. A topological system (X,T ) admits a uniform generator (resp. essential, resp.
clopen) if and only if it admits a symbolic extension with an embedding (resp. a strongly isomorphic
symbolic extension, resp. is topologically conjugate to a subshift).

For a partition P of X we let ψTP : (X,T ) → (PZ, σ) be the equivariant map which associates
to x its P -name, i.e. ψTP : x 7→ (P (T kx))k∈Z. Given a uniform generator P we may in fact build
explicitly a symbolic extension with an embedding. Indeed in this case the map ψTP is a Borel

embedding and πTP :
(
ψTP (X), σ

)
→ (X,T ), (Ak)k 7→

⋂
n∈N

⋂
|k|≤n T

−kAk is a symbolic extension

satisfying πTP ◦ ψTP = IdX . When moreover the uniform generator P has a small boundary (resp.
is clopen), then the symbolic extension πTP is a strongly isomorphic extension (resp. a topological
conjugacy).

Conversely when π : (Y, S) → (X,T ) is a symbolic extension with an embedding ψ then the
partition ψ−1Q with Q being the zero-coordinate partition of (Y, S) defines a uniform generator.
When this symbolic extension is a strongly isomorphic extension (resp. a topological conjugacy)
then the corresponding uniform generator has a small boundary (resp. is clopen). Let us check
this last point which did not appear in [10].

Lemma 3.1. Let π : (Y, S) → (X,T ) be a strongly isomorphic symbolic extension. Then the
partition ψ−1Q with Q being the zero-coordinate partition of (Y, S) defines an essential uniform
generator.

Proof. Let E be a full set of X such that π is one-to-one on π−1E. Let A ∈ Q. A point x ∈ ∂ψ−1A
is a limit of a sequence (xn)n in ψ−1B for some B 6= A ∈ Q. Let yn = ψ(xn) for all n. As B
is closed one can assume by extracting a subsequence that (yn)n is converging to y ∈ B. Then
π(B) 3 π(y) = limn π(yn) = limn π ◦ψ(xn) = limn xn = x. But we may also write x as the limit of
a sequence in ψ−1A, therefore x ∈ π(A). Thus x has at least two preimages under π. In particular
∂ψ−1A ⊂ X \ E is a null set. �
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We consider now similar notions for a topological regular flow (X,Φ). A symbolic extension
π : (Yr,Φr) → (X,Φ) of (X,Φ) is a topological extension, where (Yr,Φr) is a suspension flow
over a subshift (Y, S) with a positive continuous roof function r. A symbolic extension with
an embedding of (X,Φ) is a symbolic extension π : (Yr,Φr) → (X,Φ) endowed with a Borel
embedding ψ : (X,Φ) → (Yr,Φr) satisfying π ◦ ψ = IdX . A uniform generator of (X,Φ) is a
Borel global cross-section S together a Borel partition P of S such that sup

y∈P [−n,n]
TS

(x)
d(y, x) and

sup
y∈P [−n,n]

TS
(x)
|tS(y)− tS(x)| both go to zero uniformly in x ∈ X when n goes to infinity. We will

say that this uniform generator P :

• is essential, when the partition P is essential,
• is clopen, when any atom in P is closed with empty flow boundary.3

Proposition 3.2. A topological flow (X,Φ) admits a uniform generator (resp. essential, resp.
clopen) if and only if it admits a symbolic extension with an embedding (resp. a strongly isomorphic
symbolic extension, resp. is topologically conjugate to a suspension flow over a subshift).

Proof. Here again we make explicit the symbolic extension with an embedding for a given uniform
generator, thus proving the necessary condition. For a Borel global cross-section S and and a Borel

partition P of S we let ψΦ
P : X → PZ × R be the function which maps x ∈ X to

(
ψTSP (Tx), t(x)

)
with t(x) ∈ R+ and T (x) ∈ S being respectively the last hitting time and the last hitting of x
in S (in particular we have x = φt(x)(Tx)). Assume P defines a uniform generator. For any

(Ak)k = ψTSP (x) with x ∈ S we let r ((Ak)k) = tS(x). As the diameter of tS

(
P

[−n,n]
TS

(x)
)

goes to

zero uniformly in x, the map r extends continuously on ψTSP (X). The closure ψΦ
P (X) is then just

the suspension flow over
(
ψTSP (X), σ

)
with roof function r. The map ψΦ

P is then a Borel embedding

in this flow and πΦ
P : ψΦ

P (X)→ X, ((Ak)k, t) 7→ φt

(⋂
n∈N

⋂
|k|≤n T

−k
S Ak

)
is a symbolic extension

satisfying πΦ
P ◦ ψΦ

P = IdX . When moreover the uniform generator P is clopen then the maps t,
T , tS and TS are continuous and therefore the Borel embedding ψΦ

P is a topological embedding.
Assume now P is essential, i.e. the partition TP of X in towers is essential. The extension πΦ

P is
one-to-one above points, whose orbit by the flow only lies in S ∪

⋃
A∈P Int(TA). The complement

of these points being a null set, the extension is strongly isomorphic.
Conversely, let π : (Yr,Φr) be a symbolic extension of (X,Φ) with an embedding ψ, given by

the suspension flow over the subshift (Y, σ) with a positive continuous roof function r. Let S be
the global Borel cross-section given by S = ψ−1(Y × {0}). We denote by Q the zero-coordinate
partition of Y . We show now that the partition P = ψ−1(Q×{0}) of S defines a uniform generator

of (X,Φ). Firstly we have P
[−n,n]
TS

(x) = ψ−1(Q
[−n,n]
σ (ψ(x))) ⊂ π(Q

[−n,n]
σ (ψ(x))) for all n ∈ N and

x ∈ X, so that diam(P
[−n,n]
TS

)
n−→ 0 by (uniform) continuity of π. Then for x ∈ X we have tΦS (x) =

tΦrY×{0}(ψ(x)) = r(ψ(x)). Therefore sup
y∈P [−n,n]

TS
(x)
|tΦS (y) − tΦS (x)| ≤ sup

z∈Q[−n,n]
σ (ψ(x))

|r(z) −
r(ψ(x))| goes to zero uniformly in x ∈ X when n goes to infinity by (uniform) continuity of r.
When ψ is a topological embedding, the cross-section S is a Poincaré cross-section and (S, TS)
is topologically conjugate to (Y, σ) through ψ. Therefore (X,Φ) is topologically conjugate to a
suspension flow over a subshift in this case. When the symbolic extension π is strongly isomorphic,
by imitating the proof of Lemma 3.1 any point in the boundary of TP lies in π(TA) ∩ π(TB) for
some A 6= B ∈ Q and thus does not belong to the full set E for which π : π−1E → E is one-to-one.
The uniform generator P is thus essential. �

3.2. Entropy structure of topological flows. We investigate now the theory of entropy struc-
tures for (regular) topological flows. To relate the entropy structure of a discrete system with the
entropy structure of an associated suspension flow, we need to work with an a priori non monotone
sequence. In order to deal with this case we generalize below the abstract theory of convergence
developed by T.Downarowicz.

3In this case the cross-section S is a Poincaré cross-section.
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3.2.1. Abstract theory of convergence. Existence of symbolic extensions and uniform generators for
discrete systems are related with some subtle properties of convergence of the entropy of measures
computed at finer and finer scales. In [11] T.Downarowicz introduced an abstract framework to
study the pointwise convergence of a nondecreasing sequence of functions. We recall now this
theory with a slight generalization.

For a compact metric space X we consider the set FX of all bounded sequences of real func-
tions on X, i.e. the set of all sequences H = (hk : X → R)k∈N with −∞ < infk infµ hk(µ) ≤
supk supµ hk(µ) < +∞. Let H = (hk)k∈N and G = (gk)k∈N be two sequences in FX. Following [11]
we say G uniformly dominates H and we write G � H when

lim sup
k

lim sup
l

sup
µ∈X

(hk − gl)(µ) ≤ 0.

Similarly, for Γ = (γk)k and Θ = (θk)k in FX we say Γ uniformly yields Θ and we write Γ ≺ Θ
when

lim sup
k

lim sup
l

sup
µ∈X

(γl − θk)(µ) ≤ 0.

The relation � (idem for ≺) is preserved by translation : when f : X → R is bounded and
(gk)k � (hk)k then (gk +f)k � (hk +f)k. Moreover (gk)k � (hk)k if and only if (−gk)k ≺ (−hk)k,
but in this case (−hk)k � (−gk)k does not hold true in general.

The binary relation � is transitive on FX. In particular when H � G and G � H then H � H.
Thus the transitive relation � induces an equivalence relation ∼� on G�X := {H ∈ FX, H � H}
by letting

[G ∼� H]⇔ [G � H and H � G].

In an obvious way we define similarly G≺X and ∼≺.

Lemma 3.2. • Any nonincreasing (resp. nondecreasing) sequence in FX belongs to G�X
(resp. G≺X);

• Any sequence H in G�X (resp. G≺X) is converging pointwisely to a limit function limH.
• Let H = (hk)k ∈ G�X and G = (gk)k ∈ FX with limk supµ∈X |hk−gk|(µ) = 0 then G belongs

to G�X and H ∼� G.

Proof. The first point follows directly from the definitions. Let us check any sequence (hk)k in
G�X is converging pointwisely. It is enough to check lim supk hk(µ) = lim inf l hl(µ) for all µ ∈ X :

lim sup
k

hk(µ)− lim inf
l

hl(µ) = lim sup
k

lim sup
l

(hk − hl)(µ) ≤ 0.

Finally we consider H = (hk)k ∈ G�X and G = (gk)k ∈ FX with limk supµ∈X |hk−gk|(µ) = 0. Then
we have G � H :

lim sup
k

lim sup
l

sup
µ∈X

(hk − gl)(µ) ≤ lim sup
k

lim sup
l

sup
µ∈X

((hk − hl)(µ) + (hl − gl)(µ)) ,

≤ lim sup
k

lim sup
l

sup
µ∈X

(hk − hl)(µ) + lim sup
l

sup
µ∈X

(hl − gl)(µ),

≤ lim sup
k

lim sup
l

sup
µ∈X

(hk − hl)(µ) ≤ 0,

and one proves similarly H � G.
�

For a real function f : X → R we let f˜ denote the upper semicontinuous envelope, i.e. f˜ =
inf{g, g ≥ f and g is upper semicontinuous} if f is bounded from above and f˜ is the constant
function equal to +∞ if not.

Lemma 3.3. Let Θ = (θk)k ∈ G≺X. Then the following identity holds true :

lim sup
k

sup
µ
θk(µ) = sup

µ
lim sup

k
θ˜k(µ).
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Proof. The inequality lim supk supµ θk(µ) ≥ supµ lim supk θ
˜
k(µ) is trivial. Let M be the supremum

of lim supk θ
˜
k. Argue by contradiction by assuming lim supk supµ θk(µ) > M . Therefore we have

for infinitely many l and for some µl

θl(µl) > M.

Then for any fixed l′ ≤ l we have

θl′(µl) + (θl − θl′)(µl) > M,

θl′(µl) + sup
µ

(θl − θl′)(µ) > M.

We get for some weak-∗ limit µ∞ of (µl)l after taking the limsup in l

θ˜l′(µ∞) + lim sup
l

sup
µ

(θl − θl′)(µ) > M.

We let now l′ go to infinity. By using Θ ∈ G≺X we obtain the following contradiction

lim sup
k

θ˜k(µ∞) > M = sup
µ

lim sup
k

θ˜k(µ).

�

Lemma 3.4. Let H = (hk)k ∈ FX and G = (gl)l ∈ G�X. If lim supl(hk − gl)˜(µ) ≤ 0 for all k ∈ N
and for all µ ∈ X, then G uniformly dominates H.

Proof. For all k the sequence (hk − gl)l belongs to G≺X . By Lemma 3.3 we get for all k

lim sup
l

sup
µ

(hk − gl)(µ) = sup
µ

lim sup
l

(hk − gl)˜(µ),

≤ 0.

By taking the limsup in k we conclude G � H. �

A superenvelope of H = (hk)k ∈ G�X is an upper semicontinuous function E : X→ R+ ∪ {+∞}
satisfying

lim
k

(E − hk)˜ = E − limH.(1)

Theorem 2.3.2 in [11] may be stated in our slightly general context as below. The proof follows
the same lines.

Lemma 3.5. Let H = (hk)k,G = (gk)k ∈ G�X with H ∼� G, then

• limH = limG,
• H is uniformly convergent if and only so is G,
• lim supk(limH− hk)˜ = lim supk(limG − gk)˜,
• H and G have the same superenvelopes.

3.2.2. Entropy structure for flows, definition. For a discrete topological system (X,T ), we let
GT be the subset of G�M(X,T ) consisting of sequences H with limH equal to the metric entropy

function hT = h on M(X,T ). The entropy structure of (X,T ) is the equivalence class for the
equivalence relation ∼� on GT of the sequence HLeb ∈ GT defined below. By abuse of language
any representative of this class is called an entropy structure of (X,T ). The product of (X,T )
with a circle rotation (Rα,S1) by an angle α /∈ Q has the small boundary property (see Theorem
6.2 in [25]). Fix a nonincreasing sequence (Rk)k of partitions with small boundary satisfying

diam(Rk)
k−→ 0. Let λ be the Lebesgue measure on the circle S1. Then we define the sequence

HLeb = (hk)k by hk : µ 7→ hT×Rα(µ× λ,Rk) for all k ∈ N.
For a topological flow (X,Φ) we define the entropy structure similarly. First we recall that the

metric entropy h(µ) of µ ∈M(X,Φ) is the entropy of i1(µ) for the time 1-map φ1 of Φ. We denote
by GΦ the subset of G�M(X,Φ) consisting of sequences H with limH equal to the metric entropy

function h on M(X,Φ). Then we define the entropy structure of (X,Φ) as the equivalence class
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for ∼� (denoted simply by ∼ in the following) on GΦ of the sequence HΦ
BK defined below. For

x ∈ X, ε > 0 and τ > 0 we let BΦ(x, ε, τ) be the Φ-dynamical ball:

BΦ(x, ε, τ) := {y ∈ X, d(φs(x), φs(y)) < ε ∀0 ≤ s ≤ τ}.
For a Φ-invariant measure µ we let for all x ∈M

hΦ(µ, ε, x) := lim sup
τ→+∞

−1

τ
logµ (BΦ(x, ε, τ)) ,

and then

hΦ(µ, ε) :=

∫
hΦ(µ, ε, x) dµ(x).

M.Brin and A.Katok [7] have shown this quantity is converging to h(µ) when ε goes to zero. For
a fixed decreasing sequence (εk)k with limk εk = 0 we let HΦ

BK :=
(
hΦ(·, εk)

)
k
.

3.2.3. Relations with the entropy structure of the time t-maps. For any t > 0 we recall that the

map θt : M(X,φt) → M(X,Φ) defined by µ 7→ 1
t

∫ t
0
φsµds is a (affine) retraction, i.e. we have

θt ◦ it = IdM(X,Φ) with it being the inclusion of M(X,Φ) in M(X,φt).
For a map π : N → M and a sequence H = (hk)k∈N of real functions on M, we let H ◦ π be

the sequence (hk ◦ π)k on N .

Lemma 3.6. i) If Hφt is an entropy structure of (X,φt) with t > 0 then 1
tH

φt ◦ it is an entropy
structure of M(X,Φ),

ii) If HΦ is an entropy structure of (X,Φ) then tHΦ ◦ θt is an entropy structure of M(X,φt) for
t > 0.

Proof. i) For a fixed t > 0 we may define the Brin-Katok entropy of φt by considering the
φt-dynamical ball

Bφt(x, εk, n) := {y ∈ X, d(φlt(x), φlt(y)) < εk ∀0 ≤ l < n}.
More precisely we let for all x ∈ X, for all µ ∈M(X,φt) and for all k ∈ N

hφt(µ, εk, x) := lim sup
n→+∞

− 1

n
logµ (Bφt(x, εk, n)) ,

and then

hφt(µ, εk) :=

∫
hφt(µ, εk, x) dµ(x).

This defines an entropy structure HφtBK =
(
hφt(·, εk)

)
k

of the discrete system (X,φt) (see

Appendix A). For all ε > 0 there exists ε̃ > 0 such that for all τ > 0 we have

∀x ∈ X, Bφt(x, ε̃, [τ/t]) ⊂ BΦ(x, ε, τ) ⊂ Bφt(x, ε, [τ/t]).
Let µ be a Φ-invariant measure and let ε > 0. From the above inclusions we get :

∀x ∈ X, 1

t
hφt(µ, ε, x) ≤ hΦ(µ, ε, x) ≤ 1

t
hφt(µ, ε̃, x),

and then by integrating with respect to µ

1

t
hφt(µ, ε) ≤ hΦ(µ, ε) ≤ 1

t
hφt(µ, ε̃).

In particular 1
tH

φt
BK ◦ it and HΦ

BK are equivalent.

ii) According to the first item we can assume the entropy structure HΦ is 1
tH

φt
BK ◦ it. As the

functions in HφtBK are harmonic4, the sequence tHΦ ◦ θt = HφtBK ◦ θt is just the sequence of

functions µ 7→ 1
t

∫ t
0
hφtBK (φsµ, εk) ds, k ∈ N.

4A real function f defined on the Choquet simplex of probability invariant measures is said harmonic when

for any invariant probability measure µ we have f(µ) =
∫
f(νx)dµ(x) with µ =

∫
νx dµ(x) being the ergodic

decomposition of µ. In particular, harmonic functions are affine.
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For all ε > 0 there exists g(ε) ≤ ε such that d(x, y) < g(ε)⇒ d(φs(x), φs(y)) < ε for any s
with |s| ≤ t. In particular we have for all x ∈ X, n ∈ N and ε > 0 :

φ−sBφt(x, g(ε), n) ⊂ Bφt(φ−s(x), ε, n)

and for all µ ∈M(X,φt),

hφt(φsµ, g(ε), x) = lim sup
n→+∞

− 1

n
logµ (φ−sBφt(x, g(ε), n)) ,

≥ lim sup
n→+∞

− 1

n
logµ (Bφt(φ−sx, ε, n)) ,

≥ hφt(µ, ε, φ−sx).

By integrating this last inequality with respect to φsµ we get for all µ ∈M(X,φt) and for all
|s| ≤ t :

hφtBK (φsµ, g(ε)) ≥ hφtBK (µ, ε) .

Consequently the sequence tHΦ◦θt =
(

1
t

∫ t
0
hφtBK (φs·, εk) ds

)
k

is equivalent to the Brin-Katok

entropy structure HφtBK =
(
hφt(·, εk)

)
k
.

�

For discrete dynamical systems entropy structures are preserved by principal extensions (see
Theorem 5.0.3 (2) in [11]). A principal extension between two topological flows induces a prin-
cipal extension between their time t-maps. Indeed the entropy function being harmonic we have
hΦ(θt(µ)) = hφt(µ) for any µ ∈ M(X,φt) for a topological flow (X,Φ). Then for a principal
extension π : (Y,Ψ)→ (X,Φ) we get for any µ ∈M(Y, ψt) :

hφt(µ) = hΦ(θt(µ)),

= hΨ(πθt(µ)),

= hΨ(θt(πµ)) = hψt(πµ).

As a consequence of Lemma 3.6 we obtain then the result analogous to Theorem 5.0.3 (2) [11] for
topological flows :

Corollary 3.1. Entropy structures of flows are preserved by principal extensions, i.e. if π :
(Y,Ψ) → (X,Φ) is a principal extension then H ◦ π is an entropy structure of (Y,Ψ) if and only
if H is an entropy structure of (X,Φ).

For a discrete topological system the entropy with respect to a nonincreasing sequence of par-
titions with small boundary defines an entropy structure. In our context we have :

Corollary 3.2. Let (X,Φ) be a topological flow. If P = (Pk)k is a sequence of partitions of X with
small boundary such that HP := (h(·, Pk))k belongs to GΦ, then HP defines an entropy structure
of (X,Φ).

Proof. Let (Rk)k be a nonincreasing sequence of partitions of X defining the entropy structure
HLeb for T = φ1 (see Subsection 3.2.2). Then we have for any µ ∈M(X,φ1)

h(µ, Pk)− h(µ× λ,Rl) ≤ h
(
µ× λ, (Pk × S1) ∨Rl|Rl

)
,

h(µ× λ,Rl)− h(µ, Pk) ≤ h
(
µ× λ, (Pk × S1) ∨Rl|Pk × S1)

)
.

For k (resp. l) fixed the first (resp. second) right member defines an upper semicontinuous function
onM(X,Φ) going pointwisely to zero when l (resp. k) goes to infinity. The sequence HP and the
restriction of HLeb to M(X,Φ) being both in GΦ they are equivalent by Lemma 3.4. By Lemma
3.6 this restriction is an entropy structure of the flow. Therefore HP is also an entropy structure
of the flow. �
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3.2.4. Entropy of suspension flows. In this paragraph we consider a suspension flow (Xr,Φr =
(φt)t) over a topological system (X,T ) with a continuous positive roof function r. To simplify
the notations we will denote by νµ the Φr-invariant measure Θ(µ) associated to the T -invariant
measure µ and µν the T -invariant measure Θ−1(ν) associated to the Φr-invariant measure ν, where
Θ is the homeomorphism defined in Subsection 2.1.5. The entropy of µ and νµ are related by the
following formula due to L.M.Abramov [1]:

h(νµ) =
h(µ)∫
r dµ

.

Abramov formula holds for any measurable suspension flow over a measurable system. It follows
from the formula for the entropy of an induced system. We recall below the corresponding formula
for the entropy with respect to a given partition.

Lemma 3.7. Let (Y, f,B, ν) be a measure preserving system and let A ⊂ Y with ν(A) > 0. Then
for any finite Borel partition P of A we have

ν(A)h(νA, fA, P ∨RA) = h(ν, f, P ),

where P is the partition of Y given by P := {Y \A, B : B ∈ P} and RA := {τA = k, k ∈ N\{0}}
is the partition of A with respect to the first return time τA in A.

Proof. As both terms in the above equality is preserved by the ergodic decomposition5, one can
assume without loss of generality the ergodicity of ν. The induced measure νA on A is then also
ergodic. From the Birkhof ergodic theorem, we get

∀ν − a.e. x,
1

n

n−1∑
k=0

τA(fkA(x))
n−→

∫
τA dνA =

1

ν(A)
.(2)

Then by Shanon-McMillan-Breiman formula we have:

∀νA − a.e. x, h(νA, fA, P ∨RA) = lim
n
− 1

n
log νA

(
(P ∨RA)nfA(x)

)
,(3)

∀ν − a.e. x, h(ν, f, P ) = limn′ − 1
n′ log ν

(
P
n′

f (x)
)
,(4)

where (P∨RA)nfA(x) and P
n′

f (x) denote respectively the atom of the iterated partition
∨n−1
k=0 f

−k
A (P∨

RA) and
∨n′−1
k=0 f−kP containing x. But we have (P∨RA)nfA(x) = P

n′x
f (x) with n′x :=

∑n−1
k=0 τA(fkA(x)).

By taking a point x satisfying the three above properties (2), (3), (4), we get :

h(νA, fA, P ∨RA) = lim
n
− 1

n
log νA

(
(P ∨RA)nfA(x)

)
,

= lim
n
−n
′
x

n

1

n′x
log νA

(
P
n′

f (x)
)
,

h(νA, fA, P ∨RA) =
h(ν, f, P )

ν(A)
.

�

We return now to our suspension flow (Xr,Φr). Let r := infx∈X r(x) > 0. We may deduce
from Lemma 3.7 the following inequalities for the entropy of suspension flows.

Lemma 3.8. Let P be a Borel partition of X, then for all δ ∈]0, r[ and for all µ ∈M(X,T )

h(νµ, φδ, Pδ)

δ
≥ h(µ, T, P )∫

r dµ
,(5)

5If the ergodic decomposition of ν is given by ν =
∫
Y νx dν(x), then νA =

∫
A ν

x(A)νxA dνA(x) is the ergodic

decomposition of νA.
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where Pδ is the partition of Xr given by Pδ := {Xr \ (X × [0, δ[), B × [0, δ[ : B ∈ P}. When we
moreover assume |r(x)− r(y)| < δ for all x, y in the same atom of P , then

h(νµ, φδ, Pδ)

δ
≤ h(µ, T, P ) + log 3∫

r dµ
,

Proof. Let 0 < δ < r. Let Aδ be the subset of Xr given by Aδ = X × [0, δ[. For the partition P of
X we first denote by Pδ = {B× [0, δ[, B ∈ P} the partition induced on Aδ. We also let Rδ = RAδ
be the partition with respect to the first return time in Aδ. By applying Lemma 3.7 to νµ, φδ, Xr

and Pδ we get

h ((νµ)Aδ , (φδ)Aδ , Pδ ∨Rδ) =
h
(
νµ, φδ, Pδ

)
νµ(Aδ)

,

=

∫
r dµ

δ
h
(
νµ, φδ, Pδ

)
.(6)

But the partition
∨n−1
k=0(φδ)

−k
Aδ
Pδ of Aδ is just the partition

∨n−1
k=0 T

−kP × [0, δ[ and therefore we

get, with Hµ(Q) =
∑
C∈Q−µ(C) logµ(C) :

h ((νµ)Aδ , (φδ)Aδ , Pδ) = lim
n

1

n
H(νµ)Aδ

(
n−1∨
k=0

T−kP × [0, δ[

)
,

= lim
n

1

n

∑
C∈
∨n−1
k=0 T

−kP×[0,δ[

−(νµ)Aδ(C) log(νµ)Aδ(C).

For any B ∈
∨n−1
k=0 T

−kP and C = B × [0, δ[ we have (νµ)Aδ(C) =
νµ(C)
νµ(Aδ)

= µ(B). Therefore we

obtain finally :

h ((νµ)Aδ , (φδ)Aδ , Pδ) = h(µ, T, P ),

which implies the first inequality.
Then by using again Equality (6) we get∣∣∣∣1δ h (νµ, φδ, Pδ)− h(µ, T, P )∫

rdµ

∣∣∣∣ =
1∫
rdµ
|h ((νµ)Aδ , (φδ)Aδ , Pδ ∨Rδ)− h ((νµ)Aδ , (φδ)Aδ , Pδ)| ,

=
1∫
rdµ

h ((νµ)Aδ , (φδ)Aδ , Pδ ∨Rδ|Pδ) .

Under the additional assumption of small oscillation of r, any element of Pδ has a non empty inter-
section with at most 3 elements of Rδ so that the conditional entropy h ((νµ)Aδ , (φδ)Aδ , Pδ ∨Rδ|Pδ)
is bounded from above by log 3. �

3.2.5. Relations with the entropy structure of the base dynamics for a suspension flow. Let (Xr,Φr)
be a suspension flow over a zero-dimensional discrete system (X,T ). We relate the entropy struc-
ture of the flow (Xr,Φr) with the entropy structure of (X,T ). To any sequence H = (hk)k ∈ GT

we associate the sequence Hr ∈ GΦ defined by Hr =
(
ν 7→ hk(µν)∫

r dµν

)
k
.

Lemma 3.9. The map H 7→ Hr is well-defined and compatible with the equivalence relation ∼,
i.e. [H ∼ G]⇔ [Hr ∼ Gr].

The proof follows from the continuity of the map given by M(X,T ) 3 µ 7→ 1∫
r dµ

and the

continuity of Θ and Θ−1. The details are left to the reader.

Lemma 3.10. Assume (X,T ) is an aperiodic zero-dimensional system. There exist a nonin-

creasing sequence (Qk)k of clopen partitions of X with diam(Qk)
k→+∞−−−−−→ 0 and and a sequence of

partitions (Pk)k of Xr with small boundary (for the flow Φr) such that

sup
µ∈M(X,T )

∣∣∣∣h(νµ, Pk)− h(µ,Qk)∫
r dµ

∣∣∣∣ k→+∞−−−−−→ 0.
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Proof. We consider a sequence (Uk)k∈N of nested topological Rohlin towers (see Lemma 8.5.4 [12]):

• Uk is a clopen set for every k,
• Uk+1 ⊂ Uk for every k,
• X =

⋃
n∈N T

nUk,

• τUk := minx∈Uk τUk(x)
k→+∞−−−−−→ +∞.

Let k ∈ N. By Kac’s formula we have µ(Uk) ≤ 1
τUk

. The flow (Xr, φr) may be represented as a

suspension flow over Uk with roof function rk :=
∑

0≤l<τUk
r ◦T l. Note that

∫
rk dµUk =

∫
r dµ

µ(Uk) . A

clopen partition Rk of Uk finer than RUk := {{τUk = l} | l ∈ N \ {0}} induces a clopen partition
Qk of X by letting Qk = {Tm ({τUk = l} ∩A) | A ∈ Rk, l ∈ N \ {0}, 0 ≤ m < l}. Observe that
h(µ, T,Rk) = h(µ, T,Qk) where Rk denotes the partition of X given by Rk := {X\Uk, B | B ∈ Rk}
(indeed for any positive integer n the partition Qn+M

k is finer than Rk
n+M

, which is itself finer
than Qnk , with M being a fixed integer larger than maxx∈Uk τUk(x)).

We may choose such a sequence (Rk)k that the induced partitions (Qk)k satisfy diam(Qk) < 1/k
and Qk+1 finer than Qk for all k. Moreover we may assume the diameter of Rk so small that
|rk(x)− rk(y)| < δ for any points x and y in the same atom of Rk. Since the partition Rk is finer
than RUk we get according to Lemma 3.7 :

µ(Uk)h(µUk , TUk , Rk) = h(µ, T,Rk) = h(µ, T,Qk).

Fix p ∈ N∗ with δ := 1/p < r. By applying Lemma 3.8 for δ to the suspension flow over Uk we
get :

h(µUk , TUk , Rk)∫
rk dµUk

≤ 1
δh(νµUk , φδ, (Rk)δ) ≤ h(µUk , TUk , Rk) + log 3∫

rk dµUk
,

h(µ, T,Qk)∫
r dµ

≤ 1
δh(νµ, φδ,

˜
(Rk)δ) ≤ h(µ, T,Qk) + µ(Uk) log 3∫

r dµ
,

where
˜

(Rk)δ is the partition of Xr obtained from the partition (Rk)δ of Xrk through the natural
topological conjugacy between the two suspension flows. We let Pk be the partition given by

Pk :=
∨p−1
l=0 φ

−1
l/p

(
˜

(Rk)δ

)
so that we have (recall δ = 1/p) :

h(µ, T,Qk)∫
r dµ

≤ h(νµ, φ1, Pk) ≤ h(µ, T,Qk) + µ(Uk) log 3∫
r dµ

.

The partitition Rk of Uk being clopen, the sets B × [0, δ[ for B ∈ Rk have a small boundary for

Φr. Consequently (Rk)δ, and then Pk, is a partition of (Xr,Φr) with small boundary.
�

The sequence (Pk)k built in the above lemma is a priori not nonincreasing. That is why we
have generalized the theory of entropy structures in Subsection .

Corollary 3.3. With the above notations the following assertions are equivalent:

(1) H is an entropy structure of (X,T ),
(2) Hr is an entropy structure of (Xr,Φr).

Proof. We first prove (1)⇒ (2) for an aperiodic zero-dimensional system (X,T ). Let P := (Pk)k
and Q = (Qk)k be as in Lemma 3.10. The sequence HQ is an entropy structure of (X,T ) (see
[12]). Then if H is an entropy structure of (X,T ), we have HQ ∼ H and therefore (HQ)r ∼ Hr by
Lemma 3.9. By the last item of Lemma 3.2, the sequence HP belongs to GΦr and (HQ)r ∼ HP .
But the sequence HP defines also an entropy structure of (X,Φ) according to Corollary 3.2. Thus
Hr is an entropy structure of (X,Φ).

We deal now with the general case. Consider an aperiodic principal zero-dimensional extension
π : (Y, S) → (X,T ). Let H = (hk)k be an entropy structure of (X,T ). As entropy structures
are preserved by principal extensions, the sequence H ◦ π is an entropy structure of (Y, S). Let
(Yr′ ,Φr′) be the suspension flow of (Y, S) under the roof function r′ = r ◦ π. The map π′ :
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(Yr′ ,Φr′) → (Xr,Φr), (y, t) 7→ (π(y), t), defines a principal extension. From the aperiodic case
the sequence (H ◦ π)r′ = Hr ◦ π′ defines an entropy structure of (Yr′ ,Φr′). But if F = (fk)k is
an entropy structure of (Xr,Φr) then F ◦π′ is also an entropy structure of (Yr′ ,Φr′) by Corollary
3.1. Thus F ◦ π′ is equivalent to Hr ◦ π′. Therefore Hr ∼ F is an entropy structure of (Xr,Φr).

The other implication (2) ⇒ (1) follows easily from (1) ⇒ (2). Indeed let G be an entropy
structure of (X,T ). Then Gr is an entropy structure of (Xr,Φr). Let H be a sequence in GT such
that Hr is an entropy structure of (Xr,Φr). We have Hr ∼ Gr, therefore H ∼ G and H is also an
entropy structure of (X,T ). �

3.2.6. Superenvelope of flows. For a discrete dynamical system (or a topological flow), a superen-
velope of the entropy structure (or simply a superenvelope) is a superenvelope of a given entropy
structure (seen as a representative sequence in the equivalence class). This definition does not
depend on the choice of the representative sequence by Lemma 3.5.

The statement below follows easily from Corollary 3.1 and the definition of superenvelopes (see
Lemma 8.4.8 in [12] for the analogous result for discrete systems) :

Lemma 3.11. Superenvelopes of flows are preserved by principal extensions, i.e. if π : (Y,Ψ)→
(X,Φ) is a principal extension then E ◦ π :M(Y,Ψ) → R+ ∪ {+∞} is a superenvelope of (Y,Ψ)
if and only if E :M(X,Φ)→ R+ ∪ {+∞} is a superenvelope of (X,Φ).

We now relate the superenvelopes of the flow with those of its time-t map for t > 0.

Lemma 3.12. For any t > 0 the map E 7→ tE ◦θt defines an injective map from the set of (affine)
superenvelopes for the flow to the corresponding set for the time t-map φt.

Proof. The injectivity follows from the retraction property of θt (the map E 7→ 1
tE ◦ it defines a

right inverse). It remains to check the image of a superenvelope is a superenvelope. LetHΦ = (hΦ
k )k

be an entropy structure of the flow. By Lemma 3.6 the sequence tHΦ ◦ θt is an entropy structure
of φt. Then t

(
E ◦ θt − hΦ

k ◦ θt
)

= t
(
E − hΦ

k

)
◦ θt and by continuity of θt we get

lim
k

(
t
(
E − hΦ

k

)
◦ θt
)̃

= lim
k
t
(
E − hΦ

k

)̃
◦ θt = t

(
E − hΦ

)
◦ θt.

�

We consider now superenvelopes of suspension flows.

Lemma 3.13. Let (Xr,Φr) be a zero-dimensional flow given by a suspension flow over a zero-
dimensional system (X,T ) with a positive continuous roof function r : X → R+. The map

Γ : E 7→ Er :=
E(µν)∫
r dµν

is a bijection between the (affine) superenvelopes of (X,T ) and the (affine) superenvelopes of
(Xr,Φ).

Proof. Let H = (hk)k be an entropy structure of (X,T ) and let Hr = (gk)k. By continuity of
M(X,Φ) 3 ν 7→ 1∫

r dµν
we have for all ν ∈M(X,Φ):

(Er − gk)˜(ν) =
(E − hk)˜(µν)∫

r dµν
,

lim
k

(Er − gk)˜(ν) =
limk(E − hk)˜(µν)∫

r dµν
.

Thus E is a superenvelope of (X,T ) if and only if Er is a superenvelope of (Xr,Φr). Note finally
that the map Γ is invertible with Γ−1(Er) : µ 7→

∫
r dµ × Er(νµ) for any superenvelope Er of

(Xr,Φr).
Assume now E is affine. Let us denote by E its affine extension on the setN (X,T ) of T -invariant

positive finite measures (not necessarily probability ones). Similarly we denote by N (Xr,Φr) the
set of Φr-invariant positive finite measures. The map ν 7→ µν∫

r dµν
being an affine bijection from

N (Xr,Φr) into N (X,T ) (the inverse is given by µ 7→ µ×λ), the map Er defines an affine function
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on N (Xr,Φr) and thus on the simplexM(Xr,Φr) by restriction. Similarly E is affine when Er is
affine.

�

3.3. Periodic structure. For a topological flow (X,Φ) we let Per(Φ) be the set of Φ-periodic
orbits. We denote by t(γ) the minimal period of γ ∈ Per(Φ). We define the global periodic growth
p(Φ) of (X,Φ) as follows :

p(Φ) = sup
t>0

1

t
log ]{γ ∈ Per(Φ), t(γ) ≤ t}.

To estimate the local exponential growth of periodic orbits, we introduce the periodic structure
as the equivalence class for ∼≺ on M(X,Φ) of the following nonincreasing sequence P = (pk)k
of nonnegative functions on M(X,Φ) (again we call periodic structure any representative in this
class). Recall we have fixed a nonincreasing sequence (εk)k with limk εk = 0. We let D = DX

be a convex distance on the set M(X) of Borel probability measures on X inducing the weak-∗
topology, e.g. with a dense countable family (fn)n of real continuous nonzero functions on X

∀µ, ν ∈M(X,Φ), D(µ, ν) =
∑
n

∣∣∫ fn dµ− ∫ fn dν∣∣
2n supx |fn(x)|

.

We let νγ be the periodic measure associated to γ ∈ Per(Φ). Then we let for all k

pΦ
k (νγ) =

1

t(γ)
log ]{γ′ ∈ Per(Φ), D(νγ , ν

′
γ) < εk and t(γ′) ≤ t(γ)}.

The functions pΦ
k are then extended harmonically on the simplexM(X,Φ) by letting pΦ

k (ν) = 0 for
any aperiodic measure ν. We get in this way a nonincreasing sequence P = (pΦ

k )k of nonnegative
functions on M(X,Φ). The tail periodic function uΦ

1 is then defined as

uΦ
1 = lim

k
p̃Φ
k .

When the global periodic growth p(Φ) is finite, the sequence (pΦ
k )k is converging pointwisely to

zero and

uΦ
1 ≤ p(Φ) < +∞.

The equivalence class of P (and thus uΦ
1 by Lemma 3.5) depend neither on the choice of the

sequence (εk)k nor on the distance D.

Similarly we define uT1 for a discrete system (X,T ) as uT1 = limk p̃Tk with pTk harmonic, vanishing
on aperiodic measures and pTk (µx) = 1

n log ] {µx′ , D(µ′x, µx) < εk and Tnx′ = x′} for any periodic
point x ∈ X with minimal period n (where µx denotes here the periodic measure associated to x).

A similar quantity uT1 was first defined in [10] by letting uT1 = limk p̃Tk with pTk harmonic satisfying

pTk (µx) = 1
n log ]

{
x′, x′ ∈ B(x, εk, n) and Tnx′ = x′, T kx′ 6= x′ for k < n

}
for any periodic point

x ∈ X with minimal period n. Obviously we have uT1 ≤ uT1 . For a subshift (X,T ) we clearly have
uT1 = 0. In this case uT1 = 0 also holds true (see Lemma B.1 in Appendix C). For a topological
discrete system (X,T ) we also let p(T ) be the global periodic growth p(T ) = supn>0

1
n log ]{x ∈

X, Tnx = x}.

Lemma 3.14. Let π : (Y,Ψ)→ (X,Φ) be an isomorphic extension then

uΦ
1 ◦ π = uΨ

1 .

Proof. The proof follows directly from the fact, that the induced map π :M(Y,Ψ)→M(X,Φ) is
a homeomorphism preserving the periodic measures and their periods. �

For a topological flow (X,Φ) one checks easily that the time t-map, t 6= 0, satisfies uφt1 (µ) = 0

for µ /∈ M(X,Φ) and
u
φt
1

t (µ) ≤ uΦ
1 (µ) for µ ∈ M(X,Φ). However this last inequality may be

strict. We investigate now the behaviour of u1 under suspensions.
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Lemma 3.15. Let (Xr,Φr) be a zero-dimensional flow given by a suspension flow over a zero-
dimensional system (X,T ) with a positive continuous roof function r. Then we have for all ν ∈
M(Xr,Φr):

uΦr
1 (ν) =

uT1 (µν)∫
r dµν

.

In particular uΦr
1 = 0 when (X,T ) is a subshift.

Proof. Let us show uΦr
1 (νµ) ≤ uT1 (µ)∫

r dµ
, the other inequality being proved similarly by reversing the

roles of T and Φr. For all µ ∈ M(X,T ) we let pTk (µ) = (1 + εk) sup{pTk (µ′), D(µ, µ′) ≤ εk}.
From Lemma 5.4 in [10] it follows that uT1 = limk pTk . As the functions µ 7→ pTk (µ) are upper
semicontinuous it is enough to show that for any fixed l there is k with

∀ν ∈M(Xr,Φr), pΦr
k (ν)

∫
r dµν ≤ pTl (µν).(7)

The distance DX being convex and the function pTl being affine, the function pTk is concave and

therefore superharmonic (as a concave upper semicontinuous function). We may extend pΦr
k on

N (Xr,Φr) so that µ 7→ pΦr
k (νµ)

∫
r dµ = pΦr

k (µ×λ) is harmonic. Therefore to prove the inequality
(7) we can assume µν (therefore ν) to be periodic without loss of generality. Let γ be the associated
periodic orbit of the flow. We let k be so large that for any µ, µ′ ∈M(X,T ) with DXr (νµ, νµ′) < εk

we have DX(µ, µ′) < εl/2 and
∫
r dµ∫
r dµ′

< 1 + εl.

To simplify the notations we let µγ be the T -periodic measure µνγ for a Φr-periodic orbit γ.

We pick up a periodic orbit γ′ in the set of periodic orbits γ′ with t(γ′) ≤ t(γ) and DXr (νγ′ , νγ) <
εk such that the period nµ

γ′
of µγ′ maximizes the period of the µγ′ ’s. The homeomorphism

Θ : M(X,T ) → M(Xr,Φr) maps the T -periodic measures µx of period n to the Φr-periodic
measures µγ of period n

∫
r dµx. Therefore we get

pΦ
k (νγ)t(γ) ≤ pTl (µγ′)nγ′ ,

≤ pTl (µγ′)
t(γ′)∫
r dµγ′

,

≤ pTl (µγ′)
t(γ)∫
r dµγ′

,

and thus pΦ
k (νγ)

∫
r dµγ ≤ (1 + εl)p

T
l (µγ′) ≤ pTl (µγ).

�

Remark 3.1. One can show p(Φ) ≤ htop(Φ) + supµ u
Φ
1 (µ). We did not provide a proof as this

inequality will not be used in the following. We refer to Section 6 in [10] for the analogous inequality
in the discrete case.

3.4. Expansiveness and asymptotical expansiveness. Following R.Bowen and P.Walters a
topological flow (X,Φ) is said expansive when ∀ε > 0 ∃δ > 0 such that if d(φt(x), φs(t)(y)) < δ for
all t ∈ R and for a continuous map s : R→ R with s(0) = 0, then y = φt(x) with |t| < ε. Recall that
a discrete dynamical system is expansive whenever there is ε > 0 with

⋂
n∈Z T

−kB(T kx, ε) = {x}
for all x ∈ X. The expansiveness property is invariant under topological conjugacy. The global
periodic growth and the topological entropy of an expansive discrete system (resp. expansive flow)
is finite (see Theorem 5 in [4]).

R.Mañé has proved that expansive dynamical systems only act on finite dimensional metric
spaces [27]. This result was extended to flows by H.R.Keynes and M.Sears [17]. By Proposition
2.1 any C2 smooth expansive flow satisfies the smooth small flow boundary property. In this
case Lemma 2.17 gives a positive answer to the aforementioned open question of R.Bowen and
P.Walters.

Furthermore expansiveness is preserved by suspension :
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Theorem 3.1. (Theorem 6 in [4]) Let (Xr,Φr) be a zero-dimensional flow given by a suspension
flow over a zero-dimensional system (X,T ) with a positive continuous roof function r. The flow
(Xr,Φr) is expansive if and only if (X,T ) is expansive.

M.Misiurewicz introduced in [28] the asymptotic h-expansiveness property for topological sys-
tems. A topological system (X,T ) is asymptotically h-expansive when

lim
ε→0

sup
x∈X

htop (BT (x, ε,∞)) = 0.

Asymptotical h-expansiveness is invariant under topological conjugacy [28], even under principal
extensions [24]. The metric entropy of an asymptotical h-expansive system is upper semicontin-
uous. In particular such a system always admits a measure of maximal entropy. T.Downarowicz
characterizes asymptotical h-expansiveness in terms of entropy structure as follows :

Theorem 3.2. (Theorem 9.0.2 in [11]) A topological system is asymptotical h-expansiveness if
and only if any (some) entropy structure of (X,T ) is converging uniformly to the entropy function
h.

For a topological flow (X,Φ) it is easily seen that (X,φ1) is asymptotically h-expansive if and
only if so does (X,φt) for any t 6= 0. In this case the flow will be said asymptotically h-expansive.6

A topological system (X,T ) (resp. flow (X,Φ)) is said to be asymptotically expansive when it
is asymptotically h-expansive and uT1 = 0 (resp. uΦ

1 = 0). From the definitions one easily checked
that uT1 = 0 (resp. uΦ

1 = 0) if and only if the periodic structure P = (pk)k of (X,T ) (resp. (X,Φ))
is converging uniformly to zero. As for discrete systems, asymptotical h-expansiveness may be
also characterized by the uniform convergence of entropy for flows with the small flow boundary
property.

Lemma 3.16. Let (X,Φ) be a topological flow with the small flow boundary property. The fol-
lowing properties are equivalent:

i) (X,Φ) is asymptotically h-expansive (resp. asymptotically expansive),
ii) any (some) entropy structure H = (hk)k is converging uniformly to h (resp. and any (some)

periodic structure is converging uniformly to zero).

Proof. It is enough to deal with the asymptotical h-expansiveness because we already observed
that uΦ

1 is equal to zero if and only if any (some) periodic structure is converging uniformly to
zero. The proof then follows from the following equivalences :

(X,Φ) is asymptotically h-expansive,
⇐⇒,

(X,φ1) is asymptotically h-expansive,
⇐⇒

the entropy structure of (X,φ1) is converging uniformly to h,
Lemma 3.6⇐⇒

the entropy structure of (X,Φ) is converging uniformly to h.

�

We show now that asymptotical expansiveness is also preserved by suspension.

Lemma 3.17. Let (Xr,Φr) be a suspension flow over a topological system (X,T ) under a positive
continuous roof function r. Then the following properties are equivalent :

i) (Xr,Φr) is asymptotically h-expansive (resp. asymptotically expansive),
ii) (X,T ) is asymptotically h-expansive (resp. asymptotically expansive).

Proof. The proof follows from the equivalences :

6For topological flows, R.F.Thomas has defined and studied another notion of h-expansiveness in [31].
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(X,T ) is asymptotically h-expansive (resp. asymptotically expansive),
Theorem 3.2⇐⇒

any (some) entropy structure (resp. and any (some) periodic structure) of (X,T ) is converging
uniformly,

Corollary 3.3 (resp. and Lemma 3.15)⇐⇒
any (some) entropy structure (resp. and any (some) periodic structure) of (Xr,Φr) is converging

uniformly,
Lemma 3.16⇐⇒

(Xr,Φr) is asymptotically h-expansive (resp. asymptotically expansive).

�

3.5. Relating symbolic extensions and uniform generators with expansiveness prop-
erties.

3.5.1. The case of expansive systems. Krieger’s embedding theorem characterizes systems with a
clopen uniform generator, or equivalently by Proposition 3.1 systems topologically conjugate to a
subshift :

Theorem 3.3. (Krieger’s topological embedding theorem [20]) A discrete topological system (X,T )
is topologically conjugate to a subshift if and only if the following properties hold:

• X is zero-dimensional,
• (X,T ) is expansive.

We recall that the expansiveness property implies the finiteness of the topological entropy and
of the global periodic growth, which are both invariant under topological conjugacy. We state and
show now the analogous result for topological flows.

Theorem 3.4. A topological flow (X,Φ) is topologically conjugate to a suspension flow over a
subshift if and only if the following properties hold:

• X is one-dimensional,
• (X,Φ) is expansive.

Proof. The necessary conditions are clear. Conversely we assume that X is one-dimensional and
(X,Φ) is expansive. As already mentioned such a flow is conjugate to a suspension flow (Zr,Φr)
over a zero-dimensional system (Z,R) under a positive continuous roof function r. By Theorem
3.1 this zero-dimensional discrete system is expansive. The system (Z,R) is therefore topologically
conjugate to a subshift according to Theorem 3.3. �

3.5.2. Symbolic extensions of a suspension flow. We are in position to express the existence of
symbolic extensions and uniform generators for a topological flow in terms of superenvelopes.

For a topological extension π : (Y,Ψ)→ (X,Φ) and a function g :M(Y,Ψ)→ R we let

gπ :M(X,Φ) → R+,

µ 7→ sup
ν, πν=µ

g(ν).

This notation was introduced earlier for a topological extension between discrete topological sys-
tems (see e.g. [5]).

Lemma 3.18. Let (Xr,Φr) be a zero-dimensional flow given by a suspension flow over a zero-
dimensional system (X,T ) with a positive continuous roof function r.

For any symbolic extension (resp. with an embedding) π : (Y, S) → (X,T ) of (X,T ) the
suspension flow (Yr′ ,Φr′) over (Y, S) under r′ := r ◦ π defines a symbolic extension π′ (resp. with
an embedding) of (Xr,Φr) with π′(y, t) = (π(x), t) for all (y, t) ∈ Yr′ satisfying

∀ν ∈M(Xr,Φr), h
π′(ν) =

hπ(µν)∫
r dµν

.
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Moreover for any symbolic extension τ : (Z,Ψ) → (Xr,Φr) (resp. with an embedding) there
is a symbolic extension (Y, S) of (X,T ) (resp. with an embedding) such that the suspension flow
(Yr′ ,Φr′), as defined above, is topologically conjugate to (Z,Ψ).

Proof. As the first part of the statement is easily checked, we focus on the last part. Let τ :
(Z,Ψ) → (X,Φ) be a topological extension between two flows. If S is a Poincaré cross-section
of (X,Φ) then S′ = τ−1S is also a Poincaré cross-section of (Z,Ψ = (ψt)t) by Lemma 2.9.
Indeed S′ is firstly a closed global cross-section (with a continuous return time tS′ = tS ◦ τ).
Then, for ζ > 0, the set φ]−ζ,ζ[S is open because S has an empty flow boundary. Therefore

ψ]−ζ,ζ[(S
′) = τ−1(φ]−ζ,ζ[S) is open by continuity of τ and the cross-section S′ has an empty flow

boundary. Consequently (Z,Ψ) is topologically conjugate to the suspension flow over (S′, TS′)
under the continuous positive roof function tS′ .

In our context when τ : (Z,Ψ) → (Xr,Φr) is a symbolic extension (resp. with an embedding
ψ) we let S = X × {0}. According to Theorem 3.1 the system (S′, TS′) is expansive (with S′ =
τ−1S). Then by Theorem 3.3 this system is (topologically conjugate to) a subshift, which defines
a topological extension of (X,T ) (resp. with an embedding) via the projection map π′ = π|S′
(resp. and the embedding ψ|S). �

3.5.3. Characterization of Symbolic Extensions. The main result in the entropy theory of symbolic
extensions, known as the Symbolic Extension Entropy Theorem, may be stated as follows :

Theorem 3.5. (Theorem 5.5 in [5]) Let (X,T ) be a topological system. The systems admits
a symbolic extension (resp. principal) if and only if there exists a finite superenvelope E (resp.
(X,T ) is asymptotically h-expansive).

More precisely a function E on M(X,T ) equals hπ for some symbolic extension π if and only
if E is an affine superenvelope of the entropy structure of (X,T ).

We show now the corresponding statement for topological flows :

Theorem 3.6. Let (X,Φ) be a topological flow with the small flow boundary property. The flow
admits a symbolic extension (resp. principal) if and only if there exists a finite superenvelope E
(resp. (X,Φ) is asymptotically h-expansive).

More precisely a function E on M(X,Φ) equals hπ for some symbolic extension π if and only
if E is an affine superenvelope of the entropy structure of (X,Φ).

Proof. We first consider the case of a suspension flow (Xr,Φr) over a zero-dimensional system
(X,T ) under a positive continuous roof function r. By Lemma 3.13 and Lemma 3.18 the map

f 7→
[
ν 7→ f(µν)∫

r dµν

]
defines a bijection between affine superenvelopes on one hand and the entropy functions in symbolic
extensions hπ on the other hand, for (X,T ) and (Xr,Φr). But according to Theorem 3.5 the affine
superenvelopes are exactly the functions hπ for the discrete system (X,T ). Therefore the same
holds for the suspension flow (Xr,Φr).

We deal now with the general case. By Proposition 2.2 any topological flow (X,Φ) with the
small flow boundary property admits a principal extension π by a flow (Xr,Φr) of the previous
form. Then if E is an affine superenvelope of (X,Φ), it follows from Lemma 3.11 that E ◦ π is
also a superenvelope of (Xr,Φr). According to the previous case there exists a symbolic extension

π′ : (Y,Ψ) → (Xr,Φr) with hπ
′

= E ◦ π. Then π′ ◦ π is a symbolic extension of (X,Φ) with

hπ
′◦π = E. Conversely, from Theorem 7.5 in [5] (which applies to topological flows with the same

proof), for any symbolic extension π′ of (X,Φ) there exists a symbolic extension π′′ of (Xr,Φr)

with the same entropy function, i.e. hπ
′′

= hπ
′ ◦π. Since hπ

′′
is an affine superenvelope of (Xr,Φr),

the entropy function hπ
′

is an affine superenvelope of (X,Φ). �

Together with Lemma 3.12 we get :

Lemma 3.19. Let (X,Φ) be a topological flow with the small flow boundary property. The flow
admits a symbolic extension (resp. principal) if and only if so does its times t-map for some (any)
t 6= 0.
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The fact, that φt admits a symbolic extensions does not depend on t 6= 0, was first proved by
T.Downarowicz and M.Boyle in Theorem 3.4 of [6]. For rational t is was done by just considering
a standard power rule for the entropy whereas for an irrational t they build explicitly a symbolic
extension of φt from a symbolic extension of φ1 by using the coding of irrational rotations via
Sturmian sequences.

3.5.4. Characterization of Uniform generators. In [10] T.Downarowicz and the author also char-
acterize the entropy function in a symbolic extension with an embedding. The case of strongly
isomorphic symbolic extension follows from [9] as detailed in the Appendix C, whereas the char-
acterization of systems topologically conjugate to a subshift first appeared in [20].

Theorem 3.7. (Theorem 55 in [10], Main Theorem in [9], Krieger’s topological embedding Theo-
rem [20]) Let (X,T ) be a topological system with the small boundary property. The system admits
a uniform generator (resp. essential, resp. clopen) if and only if there exists a finite superenvelope
E and p(T ) < +∞ (resp. (X,T ) is asymptotically expansive, resp. T is expansive and X is
zero-dimensional).

More precisely a function E on M(X,T ) equals hπ for some symbolic extension π with an
embedding if and only if E is an affine superenvelope of the entropy structure of (X,T ) with
E ≥ hπ + uT1 .

By following the proof of Theorem 3.6 with making use of Lemma 3.15 we get :

Theorem 3.8. Let (X,Φ) be a topological flow with the small flow boundary property. The flow
admits a uniform generator (resp. essential) if and only if there exists a finite superenvelope E
and p(Φ) < +∞ (resp. the flow is asymptotically expansive).

More precisely a function E on M(X,Φ) equals hπ for some symbolic extension π with an
embedding if and only if E is a superenvelope of the entropy structure of (X,Φ) and E ≥ h+ uΦ

1 .

We are now in position to prove Theorem 1.1 stated in the Introduction.

Proof of Theorem 1.1. Fix t > 0. By Lemma 3.12 the system (X,Φt) admits a (finite affine)
superenvelope (resp. the entropy function h is a super envelope) if and only if so does the flow
(X,Φ). Then, by Theorem 3.5 and Theorem 3.6, the time t-map admits a symbolic extension if
and only if so does the flow. The corresponding statement for uniform generators follows from
Theorem 3.7 and Theorem C.1. The invariance of these properties under orbit equivalence is
proved below in Theorem 3.9.

�

In general there is no relation between uniform generators for the flow and uniform generators
for the time t-maps. Indeed consider the standard suspension (i.e. with roof function r = 1)
of the identity of a compact metrizable space X. Then the flow Φ = (φt)t admits a uniform
generator if and only if the base X of the suspension is a finite set, whereas φt admits a uniform
generator if and only if t is irrational. Indeed when X is infinite the flow Φ (resp. the times
t-map φt with t = p

q ∈ Q) has infinitely many periodic orbits with period 1 (resp. q) and thus

can not be embedded in a symbolic flow (resp. subshift). When t is irrational, then φt has the
small boundary property by the aforementioned result of E.Lindenstrauss (Theorem 6.2 in [25]).
Also φt is clearly aperiodic and asymtotically h-expansive. By Theorem 31 in [10] it admits an
(strongly isomorphic) uniform generator.

3.6. Invariance by orbit equivalence. R.Bowen and P.Walters have proved that expansiveness
is invariant under orbit equivalence for topological flows. Here we show :

Theorem 3.9. The asymptotic (h-)expansiveness, the existence of symbolic extensions and the
existence of uniforms generators are also dynamical properties invariant by orbit equivalence for
topological flows with the small flow boundary property.

Proof. Let us consider two orbit equivalent topological flows via a homeomorphism Λ. As already
mentioned the orbit equivalence induces a topological conjugacy of the base systems Y S and
Y Λ(S) of the zero-dimensional strongly isomorphic extensions built in Proposition 2.2 (but the
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roof functions may differ). For discrete systems, the existence of (principal) symbolic extensions
(with an embedding), is invariant under topological conjugacy. Therefore, both zero-dimensional
flows admit such symbolic extensions or not by Lemma 3.17. �

Remark 3.2. As the topological entropy, the infimum of the entropy of symbolic extensions and
the minimal cardinality of uniform generators may be modified by a change of the time scale. In
particular these quantities are not invariant under orbit equivalence.

4. Representation of symbolic flows

After Ambrose’s representation theorem, D.Rudolph showed that a suspension flow over an
ergodic transformation is always isomorphic to another one where the new roof function takes
only two values (in general one can not hope the roof to be constant as such suspension flows are
not mixing).

In the same spirit we wonder what is the “simplest model” for the roof function of a symbolic
flow, i.e. a suspension flow (Yr,Φr) over a subshift (Y, σ) with a positive continuous roof function
r. In this section we will only consider aperiodic flows. In this case there is a very nice topological
version of Rokhlin towers for the subshift (Y, S) :

Lemma 4.1. (Lemma 7.5.4 in [12]) Let (X,T ) be an aperiodic zero-dimensional system. For any
integer n > 0 there exists a clopen set Un such that :

•
⋃n+1
k=0 T

kUn = X,
• Un, TUn, ..., Tn−1Un are pairwise disjoint.

Such a clopen set Un will be called a n-marker of (X,T ). We first show the roof function may
be chosen almost constant.

Lemma 4.2. Any aperiodic symbolic flow (Yr,Φr) is topologically conjugate to a symbolic flow

over a subshift of {0, 1}Z under a roof function arbitrarily close to log 2
htop(Φr) .

Equivalently (Yr,Φr) admits a Poincaré cross-section S with return time tS arbitrarily close to
log 2

htop(Φr) and with htop(TS) ≤ log 2.

Proof. Fix 1/2 > ε > 0. Let a = log 2
htop(Φr) + ε and let N be an integer larger then 3/ε. We take

N ′ > N so large that any integer larger than N ′ belongs to [Na]N + ([Na] + 1)N. Let Un be a
n-marker of (Y, S) with Nnr > N ′. The set Vn := Un × {0} ⊂ Yr defines a Poincaré cross-section
with return time tVn larger than nr. In particular for any u ∈ Vn there are positive integers k, l such
that |NtVn(u)−k[Na]− l([Na]+1)| < 1/2 and therefore |tVn(u)−k[Na]/N− l([Na]+1)/N | < ε/6.
There is a partition P of Un in clopen sets such that for any two points x and y in the same atom of
the induced partition of Vn we have |tVn(x)−tVn(y)| < ε/6. In particular we may choose the above
integers k and l independently of u ∈ A for A ∈ P , i.e. there are nonnegative integers kA and lA
such that |tVn(u)−kA[Na]/N−lA([Na]+1)/N | < ε/3 for any u ∈ A. Finally we let S be the union
of φtA over A ∈ P and t ∈ {k′[Na]/N, 0 ≤ k′ < kA}∪{kA[Na]/N + l′([Na] + 1)/N, 0 ≤ l′ < lA}.
The set S is a Poincaré cross-section with return time |tS − a| < 1/N + ε/3 < 2ε/3 and therefore

log 2
htop(Φr) + ε/3 < tS <

log 2
htop(Φr) + 2ε. By Abramov entropy formula the topological entropy of the

first return map TS in S is less than log 2. As it is an (aperiodic) subshift it may be topologically
embedded in the full shift with two symbols by Krieger’s topological embedding theorem [20]. �

For a discrete topological system (X,T ) the orbit capacity ocap(E) of a subset E of X is defined
as follows:

ocapT (E) = lim
n→+∞

1

n
sup
x∈X

]{0 ≤ k ≤ n, T kx ∈ E}.

Similarly for a topological flow (X,Φ) we let

ocapΦ(E) = lim
τ→+∞

1

τ
sup
x∈X

λ ({t ∈ [0, τ ], φt(x) ∈ E}) .



SYMBOLIC EXTENSIONS AND UNIFORM GENERATORS FOR TOPOLOGICAL REGULAR FLOWS. 33

Note that the limits are well defined by Fekete and Hille subadditive Lemma. When E is a closed
subset of X we have ocap(E) = supµ µ(E) where the supremum holds over all invariant probability
measures µ. By Lemma 2.10 a closed cross-section S of time η has a small flow boundary if and
only if ocapΦ(∂ΦSη) = 0.

We may refine Lemma 4.2 under the following form (similar to the representation in Rudolph’s
theorem). For a subshift Y over a finite alphabet A and for a−k, · · · , a0 ∈ A, we let [a−k · · · a0]
be the cylinder set

[a−k · · · a0] := {(yn)n ∈ Y, y−l = a−l for l = 0, · · · , k}.
Moreover for a ∈ A and l ∈ N \ {0}, we let al be the subword given by al := a · · · a︸ ︷︷ ︸

l times

.

Lemma 4.3. Let (Yr,Φr) be an aperiodic symbolic flow over a subshift (Y, σ). Then for any

rationally independent positive real numbers p and q with htop(Φr) <
2 log 2
p+q , for any ε > 0 and for

any δ ∈]0,min(p, q)[ the flow is topologically conjugate to a symbolic flow over a subshift (Z, T ) 7

of {0, 1, 2}Z over a roof function r′ satisfying for z = (zn)n:

• {r′ = p} = [0] and ocapT ([0]) ≤ 1
2 ,

• {r′ = p} = [1] and ocapT ([1]) ≤ 1
2 + ε,

• {0 < r′ < δ} = [2] and ocapT ([2]) < ε.

Equivalently (Yr,Φr) admits a Poincaré cross-section S together a clopen uniform generator
{P,Q,R} of (S, TS) with tS = p on P, tS = q on Q and tS < δ on R and with ocapTS (P) ≤ 1

2 ,

ocapTS (Q) ≤ 1
2 + ε and ocapTS (R) < ε. The condition on the orbit capacity implies in particular

that 1
2 − 2ε ≤ µ([i]) ≤ 1

2 + ε for any µ ∈M(Z, T ) and for i = 0, 1.

Proof. Fix δ > 0, ε > 0 and rationally independent positive real numbers p and q with htop(Φr) <
2 log 2
p+q . By Lemma 4.2 we may assume htop(σ) < log 2 and r ' log 2

htop(Φr) .

For any x ∈ R we let D(x) = min{x− (kp+ lq) ≥ 0 : k, l ∈ N with 1
1+ε ≤ k/l ≤ 1}. As p and q

are rationally independent we have limx→+∞D(x) = 0. Fix ε ∈]0,
log 2−htop(σ)

2 ] small and take N
with D(x) < δ/2 for x > N . We argue then as in the proof of Lemma 4.2. Let Un be a n- marker
of (Y, σ) with n > max(N/r, 1/ε). The set Vn = Un × {0} ⊂ Yr defines a Poincaré cross-section
with return time tVn larger than nr. In particular for any u ∈ Vn there are positive integers k, l
such that |tVn(u)−kp− lq| < δ/2. There is a partition P of Un in clopen sets such that for any two
points x and y in the same atom of the induced partition of Vn we have |tVn(x) − tVn(y)| < δ/2.
In particular we may choose the above integers k and l independently of u ∈ A for A ∈ P , i.e.
there are nonnegative integers kA and lA such that 0 < tVn(u) − kAp − lAq < δ for any u ∈ A.
We may assume P is finer than Qn with Q being the zero coordinate of Y . Moreover we choose
ε > 0 small and n large enough so that the cardinality of the set of n-words in Y is less than

en(htop(σ)+ε) ≤
(
kA
2kA

)
for any A ∈ P . Indeed

(
m
2m

)
∼ 22m
√
πm

and we have for small ε > 0

kA(p+ q) ' kAp+ lAq,

' nr,

' n log 2

htop(Φr)
,

> n(p+ q)/2.

Following D.Rudolph we may now encode the system (Y, σ) by ordering the subdivision of
[0, kAp + lAq] into kA intervals of length p and lA intervals of length q. For any kA we fix a
bijection between the set of n-words of Y and the 2kA-uple of 0 and 1 with exactly kA terms equal
to 0 and 1. To any A ∈ P we let wA = (wAk′′)k′′ be the 2kA-uple associated to the element of
Qn containing A. For any k′ ≤ 2kA we let8 tk′(A) =

∑
k′′≤k′

(
pδ1(wAk′′) + qδ0(wAk′′)

)
and for any

7the shift map on Z is denoted here by T to avoid any confusion with (Y, σ).
8For i = 0, 1 we let δi(x) = 1 if x = i and 0 if not.
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2kA < k′ ≤ kA + lA we let tk′(A) = t2k(A) + (k′ − 2kA)q. Finally we let S be the union of φtA
over A ∈ P and t ∈ {tk′(A), k′ ≤ kA + lA}. The set S is a Poincaré cross-section with return time
tS ∈ {p, q}∪]0, δ[. By construction the associated clopen partition of S consisting of P = {tS = p},
Q = {tS = q} and R = {tS ∈]0, δ[} is generating. Moreover ocap(TS ∈ R) ≤ minA

1
2kA

< 1
n < ε.

As 1
1+ε ≤ kA/lA ≤ 1 we also have ocap(TS ∈ P) ≤ 1/2 and ocap(TS ∈ Q) ≤ 1

2 + ε. �

Remark 4.1. We would like to remove the remaining set R by using a multiscale approach
for a sequence of nested n-markers as D.Rudolph did for the ergodic case. One can follow this
procedure. In this way one gets a Borel section S with return time tS in {p, q}, such that the
partition {tS = p}, {tS = q} of S is a generator for the induced Borel system on S. Unfortunately
the obtained generator is not uniform. Indeed to approach the base of the kth tower with an error
term of size εk one needs to reencode a piece of orbit of length lk with lk → +∞ when εk → 0, so
that the limit map does not admit a priori a continuous inverse.

Question 4.1. Does an aperiodic symbolic flow admit a symbolic extension with an embedding
given by a suspension flow over a subshift of {0, 1}Z with a roof function constant on the two atoms
of the zero-coordinate partition? Note that if (X,Φ) has periodic orbits one can not always ensure
the roof function is two-valued. Indeed any period should then belong to Np + Nq where p and q
are the values of the roof function.

Lemma 4.4. Let (Yr,Φr) be an aperiodic symbolic flow over a subshift (Y, σ). Then for any

rationally independent positive real numbers p < q with htop(Φr) <
2 log 2
p+q , for any integer M ≥ 2

and for any δ > 0 the flow is topologically conjugate to a symbolic flow over a subshift (Z, T ) of
{0, 1}Z over a roof function r′ satisfying for some positive integer K :

• {r′ = p} = [1],
• {r′ ∈ [q, q + δ]} = [0],
• {r′ > q} = T ([0M+K10K1]),

Moreover we have

Z =
⋃

0≤k<+∞

T k{r′ > q}.

Proof. We only have to slightly modify the construction in Lemma 4.3 as follows (we keep the
notations of that proof). When encoding the 2kA-uple wA associated to A ∈ P we may always
start and finish with the letter 1, avoid a sequence of K consecutive 0’s for a large enough integer K
and take only kA−1 (not kA) terms equal to 1. Moreover, we can also assume lA ≥ kA+M+K+2.
All these requirements may be established by taking n large enough. Then we extend wA to a
(kA + lA − 1)-uple vA = (vAk′′)k′′ by adding to wA a suffix of the form 0L10K with L ≥M +K.

Then we consider the Poincaré cross-section S defined by the union φtA over A ∈ P and
t ∈ {tk′(A), k′ < kA + lA} with tk′(A) =

∑
k′′≤k′

(
pδ1(vAk′′) + qδ0(vAk′′)

)
. The return time in S is

now either equal to p or in [q, q + δ]. Moreover it is larger than q if and only if the first return in
S lies in Un × {0}. Finally the partition {tS = p}, {tS ≥ q} of S defines again a clopen generator
of (S, TS). �

For the time t-map of a topological flow we define the following weaker notion of uniform
generators.

Definition 4.1. Let (X,Φ = (φt)t) be a topological flow. For α > 0 and t 6= 0 a partition P is said
to be an α-uniform generator of φt when sup

y∈P [−n,n]
φt

(x)
d
(
y, φ[−α,α](x)

)
goes to zero uniformly in

x ∈ X.

The above definition does not depend on the choice of the metric, but only on the topology of
X (the same holds for uniform generators). In particular α-uniform generators are preserved by
topological conjugacy. Clearly any uniform generator of φt is an α-uniform generator of φt for all
α.
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Lemma 4.5. Let (Yr,Φr) be an aperiodic symbolic flow over a subshift (Y, σ). Then for any

t ∈]0, log 2
htop(Φr) [ and for any α > 0, the time t-map φt admits an α-uniform generator given by the

towers associated to a clopen 3-partition of a Poincaré cross-section.

Proof. We let p = t ∈]0, log 2
htop(Φr) [ and we take q rationally independent from p with α = q−p ∈]0, p[

so small that we have htop(Φr) <
2 log 2
p+q . Without loss of generality we may assume (Yr,Φr) is the

model (Zr′ ,Φr′) given by Lemma 4.4 with respect to p, q, ε and δ = α = q − p. Let M ≥ 2 be
so large that for all s ∈ [0, q[ there exists 0 ≤ u < M and 0 ≤ v ≤ u + 1 with s + up = vq + β
for 0 ≤ β < α. We let T be the 2-partition {P,Q} of the Poincaré cross-section Z × {0} given
by P = [0] × {0} and Q = [1] × {0}. We let r = supy∈Y r(y). We consider the compact space

Ỹ = Y × [0, r] endowed with the metric dỸ given by dỸ ((x, t), (y, s)) = dY (x, y) + |t − s|. We

also let πr : Ỹ → Yr be the (uniformly) continuous map which associates to any (y, t) ∈ Ỹ the
point φrt (y, 0) in Yr (with (y, 0) ∈ Yr and Φr = (φrt )t). Fix some metric dYr on Yr, for example the
Bowen-Walters metric (see [4]). Finally we let w : R+ → R+ with limε→0 w(ε) = 0 be a modulus
of uniform equicontinuity of (φβ)|β|≤α and πr, i.e.

∀β ∈ [−α, α] ∀Z,Z ′ ∈ Yr, dYr (φβ(Z), φβ(Z ′)) < w(dYr (Z,Z ′))

and

∀ũ, ṽ ∈ Ỹ , dYr (πr(ũ), πr(ṽ)) < w(dỸ (ũ, ṽ) .

The 3-partition TR in towers of Yr associated to the partitionR := {P,Q, φαQ} of the Poincaré
cross-section S′ = S ∪ φαQ with S = Y × {0} is an α-uniform generator of φt (recall α = q − p).
Indeed we claim that, for any positive integer n, for any X = (x, s) ∈ Yr with 0 ≤ s < r(x) and for

any Y ∈ T
[−2n,2n]
R (X ), there exists β with |β| ≤ α such that φβ(Y) = πr(y, s) with y ∈ Q[−n,n](x),

where Q denotes the zero-coordinate partition of Y . Then we have

dYr (Y, φ[−α,α]X ) ≤ w(dYr (φβ(Y),X ),

≤ w ◦ w (dỸ ((y, s), (x, s))) ,

≤ w ◦ w
(
diam

(
Q[−n,n](x)

))
n→+∞−−−−−→ 0 uniformly in x ∈ Y , thus in X ∈ Yr.

We show now the above claim. Let N φt be the TR-name of X with respect to φt, i.e. N φt =
(TR(φktX ))k∈[−2n,2n]. Any letter TQ is followed by TφαQ in N φt but both correspond to the same

return in S. Then a subword of N φt of the form TPT1...TK′′TP, with Ti = TQ or Ti = TφαQ for
i = 1, · · · ,K ′′, and ]{i, Ti = TφαQ} ∈ {K,K + 1} indicates the return times in {r′ > q}. These
subwords are called the marking subwords. Then any subword TLP of N φt between two such
consecutive marking subwords correspond to exactly L consecutive returns of TS in P because the
associated return times in S′ are equal to t = p. This is also the case of the subwords TLφαQ of

N φt , whose last letter is not the penultimate letter of a marking subword. In this sole case, the
return time in S′ from φαQ may differ from p, but we know the subword in Y associated to a
marking subword is given by 10K1. Combining these facts, the Q-name of x is obtained from N φt

by first replacing the marking subwords by 10K1, then by deleting the letters TQ and finally by
replacing the remaining letters TP and TφαQ respectively by 0 and 1. For example, if N φt is the
following sequence (where we write the marking subwords in blue, the zero-coordinate in green
and the large block of 0’s before the marking subword in orange)

· · ·TφαQ · · ·TφαQ TPTQTφαQ · · ·TφαQTP TφαQTPTQTφαQ · · ·TP TφαQ · · ·TφαQ TPTφαQTφαQ · · ·TφαQTP · · ·

we obtain the subword of Y given by · · · 0L 10K1 010 · · · 1 0L
′

10K1 · · · for some L,L′ ≥ K+M ≥
K + 2. As we delete at most one letter in two, it contains Q

[−n,n]
T (x) as a subword. Thus for any

Y ∈ T
[−2n,2n]
R (X ) there is (y, u) ∈ Ỹ with 0 ≤ u < r(y) and y ∈ Q[−n,n]

T (x). Let N be a positive
integer with Y =

⋃
0≤k<N σ

k{r > q}. To conclude the proof of the claim we show that there

exists β with |β| ≤ α and s = u + β, whenever n is larger than N . It is enough to see that any
orbit of φt visits at least one time the tower TQ = φ[0,α[Q of height α between two return times
of the flow in {r > q}. But this follows easily from the choice of M and the presence of more than
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M consecutive 0’s before any return in {r > q} (which corresponds to the blocks in orange in the
above example). �

We are now in position to prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Let (X,Φ = (φt)t) be an aperiodic flow with a uniform generator given by
a symbolic extension π : (Yr,Φr = (φrt )t)→ (X,Φ) with an embedding ψ. We recall that it means
ψ : (X,Φ) → (Yr,Φr) is a Borel equivariant injective map with π ◦ ψ = IdX . Note that the flow
(Yr,Φr) is necessarily also aperiodic. Fix α > 0. By Lemma 4.5 for t small enough the time t-map
φrt of this symbolic flow admits an α-uniform generator TR given by the towers above the atoms
of a clopen 3-partition R of a Poincaré cross-section S′. Then ψ−1TR is an α-uniform generator
of φt given by the towers of the partition ψ−1R of the global Borel section ψ−1S′. Indeed we have
with d = dX :

sup
y∈(ψ−1TR)

[−n,n]
φt

(x)

d
(
y, φ[−α,α](x)

)
= sup
y∈ψ−1

(
(TR)

[−n,n]

φrt
(ψ(x))

) d (y, φ[−α,α](x)
)
,

≤ sup
z∈(TR)

[−n,n]

φrt
(ψ(x))

d
(
π(z), π

(
φr[−α,α](ψ(x)

))
.

and this last right member goes to zero uniformly in x with n as π is uniformly continuous and
TR is an α-uniform generator of φrt . �

Appendix A. Modified Brin-Katok entropy Structure

Let (X,T ) be a topological system and let µ ∈ M(X,T ). In [11] T.Downarowicz defines
hBK(µ, ε) for an ergodic measure µ as done in Subsection 3.2.2, but then he extends the func-
tion harmonically on the whole space M(X,T ). Let P be a finite measurable partition of
X. By Shanon-MacMillan-Breiman theorem the sequence − 1

n logµ(Pn(x)) is converging for µ-
almost every x. Moreover the limit h(µ, P, x) satisfies h(µ, P, x) = h(µ, P, Tx) almost everywhere
and

∫
h(µ, P, x) dµ(x) = h(µ, P ).

Theorem A.1. The Brin-Katok entropy structure for a topological system (X,T ) as defined in
the proof of Lemma 3.6 is an entropy structure.

For any finite Borel partition P of X we have h(µ, P ) ≥ h(µ, diam(P )) for all µ ∈ M(X,T ).
When P is a clopen partition we let Leb(P ) be the Lebesgue constant of the open cover P . Then
we have also h(µ, P ) ≤ h(µ,Leb(P )). Consequently if (X,T ) is a zero-dimensional system then

the entropy structure (h(·, Pk))k for a sequence (Pk)k of clopen partitions with diam(Pk)
k−→ 0 is

uniformly equivalent to the Brin-Katok entropy structure.
We deal now independently with a general topological system (X,T ). Let (Y, S) be the product

of (X,T ) with an irrational circle rotation (S1,R). As already mentioned the system (Y, S) has
the small boundary property. Let (Pk)k be a nonincreasing sequence of partitions of Y with

small boundary and diam(Pk)
k−→ 0. Let λ be the Lebesgue measure on the circle. The sequence

(h(· × λ, Pk))k defines an entropy structure of (X,T ) (by definition). By taking the distance dY
on Y defined for all y = (x, t), y′ = (x′, t′) ∈ Y = X × S1 by dY (y, y′) = max (dX(x, x′), dS1(t, t′))
we have for all n ∈ N, for all ε > 0 and for all y = (x, t) ∈ Y

BS(y, n, ε) = BT (x, n, ε)×B(t, ε).

In particular we get hS(µ× λ, ε, y) = hT (µ, ε, x) and then by integrating with respect to µ× λ

hS(µ× λ, ε) = hT (µ, ε).

To conclude the proof of the theorem it is enough to show the sequences (h(· × λ, Pk))k and
(h(· × λ, εk))k are equivalent for some (any) sequence (εk)k of positive numbers with limk εk = 0.
As mentioned above we always have h(ν, P ) ≥ h(ν, diam(P )) for any finite Borel partition P of Y
and for any ν ∈M(Y, S). The theorem follows therefore from the following proposition:
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Proposition A.1. Let (Y, S) be a topological system and let P be a partition of Y with small
boundary. Then for all γ > 0 there is δ > 0 such that

∀ν ∈M(Y, S), h(ν, P ) ≤ h(ν, δ) + 3γ.

Proof. We will show that for all γ > 0 there is δ > 0 such that for any ν ∈ M(Y, S) and for
ν-almost every x :

h(ν, P, x) ≤ h(ν, δ, x) + 3γ.(8)

Let γ > 0. In [7, 26] the authors only consider a single measure ν with a partition satisfying
ν(∂P ) = 0. This last condition together the ergodic theorem allows to control the number of
atoms of Pn intersecting a ν-typical dynamical ball of length n. To get uniform estimates in ν for
an essential partition P , we use the combinatorial lemma of [8]. We may then apply verbatim the
proof of Mañé [26] to get the desired inequality (8). As a sake of completeness we give now the
details.

Fix γ′ ∈]0, γ/2[ so small that lim supn
1
n log

(
dnγ′/ log ]P e

n

)
< γ/2. By Lemma 6 in [8] there

exists δ > 0 such that

lim sup
n

sup
x∈X

1

n
log ]{An ∈ Pn, B(x, n, δ) ∩An 6= ∅} < γ′.(9)

In fact it follows from the proof in [8] that

lim sup
n

sup
x∈X

sup
An

1

n
]
{
k ∈ [0, n− 1], Ak 6= P (Skx)

}
<

γ′

log ]P
,(10)

where the supremum holds over An =
⋂n−1
k=0 S

−kAk ∈ Pn with B(x, n, δ) ∩An 6= ∅.
For n, k ∈ N we let

Enk := {x ∈ X, ν(Pn(x)) ≤ e−nkγ} and

Fnk := {x ∈ Enk , ∃An ∈ Pn with ν(An) ≥ e−n(k−2)γ and B(x, n, δ) ∩An 6= ∅}.

Then, for n large enough and for any fixed An ∈ Pn, there are at most

(
dnγ′/ log ]P e

n

)
eγ
′n atoms

Pn(x) with B(x, n, δ) ∩An 6= ∅ by (10). Therefore we have for n large enough :

ν(F kn ) ≤
∑

An∈Pn,
ν(An)≥e−n(k−2)γ

∑
x∈En

k
B(x,n,δ)∩An 6=∅

ν(Pn(x)),

≤ en(k−2)γ ×
(
dnγ′/ log ]P e

n

)
enγ

′
× e−nkγ ≤ e−γn.

Therefore by Borel-Cantelli Lemma, every x in a subset E of full ν-measure belongs to finitely
many Ekn, n, k ∈ N. We may also assume that − 1

n log ν(Pn(x)) is converging (to h(ν, P, x))
for x ∈ E. Let x ∈ E and k ∈ N with kγ < h(ν, P, x) ≤ (k + 1)γ. For n large enough, x
belongs to Enk \ Fnk . Thus the dynamical ball B(x, n, δ) only intersects atoms An ∈ Pn with

ν(An) ≤ e−n(k−2)γ , therefore ν(B(x, n, δ)) ≤ e−n(k−3)γ by (9). We get finally

h(ν, δ, x) ≥ (k − 3)γ,

≥ h(ν, P, x)− 3γ.

�

Appendix B. Proof of the inequality hπ ≥ h+ uT1

From Theorem 55 in [10] we have hπ ≥ h+ uT1 for a symbolic extension π with an embedding
of (X,T ), but in [10] the proof involves a delicate intermediate construction, the enhanced system.
Here we give a direct proof of hπ ≥ h+ uT1 ≥ h+ uT1 .
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Lemma B.1. Assume (X,T ) is a zero-dimensional system admitting a symbolic extension π :
(Y, S)→ (X,T ) with an embedding ψ : (X,T )→ (Y, S), then we have

hπ ≥ h+ uT1 .

In particular uT1 = 0 when (X,T ) is a subshift.

Proof. We let Q = (Qk)k be a nonincreasing sequence of clopen partitions with diam(Qk)
k−→ 0.

The sequence of affine upper semicontinuous functions hk = h(·, Qk), k ∈ N then defines an
entropy structure of (X,T ). Recall D denotes a convex distance onM(X,T ) inducing the weak-∗
topology. We let Pern(X,T ) := {x ∈ X, Tnx = x} and Per(X,T ) =

⋃
n>0 Pern(X,T ). By

a standard combinatorial argument there is for any k a positive number εk ∈]0, 1/k[ so small
that for any x ∈ Pern(X,T ) the number of A ∈ Qnk , such that there exists y ∈ Pern(X,T ) ∩ A
with D(µy, µx) < εk, is less than en/k. For a periodic point x with minimal period n we recall
pk(µx) = 1

n log ]{µy, D(µy, µx) < εk and y ∈ Pern(X,T )}. The sequence (pk)k is converging
pointwisely to zero because there are only finitely many periodic points in (X,T ) with a given
period as in the subshift (Y, S). Therefore there exists a nondecreasing sequence of positive integers
(nk)k going to infinity such that for all k we have pk(µx) = 0 for all periodic points x with minimal
period less than nk. For µ ∈M(X,T ) we let pk(µ) =

∫
pk(µx) dµ(x), k ∈ N. By definition we have

u1 = uT1 = limk p̃k. By Lemma 54 in [10] for all µ ∈M(X,T ) there exists a sequence of T -invariant

probability measures (µk)k converging to µ with pk(µk)
k−→ u1(µ). For any periodic point x with

minimal period equal to n we let γxk be the probability measure associated to
∑
y δψ(y), where the

sum holds over y ∈ Pern(X,T ) with D(µy, µx) < εk. Finally we let νk =
∫
γxk dµk(x) ∈ M(Y, S).

Observe that πγxk
k−→ µx and therefore πνk

k−→ µ by convexity of D. Let P be the zero-coordinate
partition of Y . By superharmonicity of ν 7→ Hν(R|R′) for any given clopen partitions R, R′ of Y
we have

1

nk
Hνk(Pnk |π−1Qnkk ) ≥ 1

nk

∫
Per(X,T )\Pernk−1(X,T )

Hγxk
(Pnk |π−1Qnkk )dµk(x).

Then for any periodic point x with minimal period nx ≥ nk we have :

1

nk
Hγxk

(Pnk |π−1Qnkk ) ≥ 1

nx
Hγxk

(Pnx |π−1Qnxk ), because

(
1

n
Hξ(P

n|π−1Qk)

)
n

↘ by Fact 2.2.5 in [12],

≥ 1

nx

(
Hγxk

(Pnx)−Hγxk
(π−1Qnxk )

)
,

≥ 1

nx
log ]{y ∈ Pernx(X,T ) with D(µy, µx) < εk}

− 1

nx
log ]{A ∈ Qnxk , ∃y ∈ Pernx(X,T ) ∩A with D(µy, µx) < εk},

≥ pk(µx)− 1/k.

Therefore we get

pk(µk) =

∫
pk(µx)dµk(x) ≤ 1

nk
Hνk(Pnk |π−1Qnkk ) + 1/k.

The left member goes to u1(µ) when k goes to infinity. Let us now show the limsup in k of the
right member is not larger than hπ(µ)− h(µ). We have for all k′′ ≤ k′ ≤ k

1

nk
Hνk(Pnk |π−1Qnkk ) ≤ 1

nk
Hνk(Pnk |π−1Qnkk′′), since Qk is finer than Qk′′ ,

≤ 1

nk′
Hνk(Pnk′ |π−1Q

nk′
k′′ ) because

(
1

n
Hξ(P

n|π−1Qnk )

)
n

↘ as recalled above.

The involved partitions being clopen, we have for any weak limit ν of (νk)k, by letting k go to
infinity :

lim sup
k

1

nk
Hνk(Pnk |π−1Qnkk ) ≤ 1

nk′
Hν(Pnk′ |π−1Q

nk′
k′′ ).
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As it holds for all k′ and πν = µ we get with hk′′ := h(·, Qk′′) :

lim sup
k

1

nk
Hνk(Pnk |π−1Qnkk ) ≤ h(ν)− hk′′(πν) ≤ (hπ − hk′′)(µ).

We conclude the proof by letting k′′ → +∞. �

Appendix C. Uniform generators with small boundary for asymptotically
expansive systems

Proposition C.1. Any asymptotically expansive topological system with the small boundary prop-
erty admits an essential uniform generator.

Proof. Replacing the system by a zero-dimension strongly isomorphic extension, we can assume by
Proposition 3.1 the initial system to be zero-dimensional. Let (X,T ) be such a zero-dimensional
asymptotically expansive system. By the Main Theorem in [9] there exists, for a finite alphabet
A, a sequence of continuous equivariant maps ψk : (X,T )→ (AZ , σ) converging pointwisely to an
embedding ψ, such that the induced maps on M(X,T ) are converging uniformly. Moreover it is

shown that ψ−1 extends continuously to a symbolic extension π : (ψ(X), σ)→ (X,T ). The maps

ψk encode the orbit of x at some scales εk with εk
k−→ 0. Except for the so-called free positions

corresponding to some letter ∗ in A, which represents the coordinates we can freely use to encode
the smaller scales, the other letters are fixed once for all :

∀a ∈ A \ {∗}, ψ−1([a]) =
⋃
k

ψ−1
k ([a]).

Moreover the upper asymptotic density of ∗ in any ψk(x) goes to zero uniformly in x ∈ X when
k goes to infinity. Consequently we have ψµ([∗]) = 0 for any µ ∈M(X,T ).

The partition P = {ψ−1(a), a ∈ A} defines a uniform generator (see Proposition 3.1). Let us
now show P is an essential partition. The maps ψk being continuous we have for any µ ∈M(X,T )∑

a∈A
µ
(
Int(ψ−1[a])

)
≥

∑
a∈A\{∗}

µ
(
Int(ψ−1[a])

)
,

≥ lim
k

∑
a∈A\{∗}

µ
(
Int(ψ−1

k [a])
)
,

≥
∑

a∈A\{∗}

lim
k
µ
(
ψ−1
k [a]

)
,

≥
∑

a∈A\{∗}

lim
k
ψkµ([a]),

≥
∑

a∈A\{∗}

ψµ([a]) = 1.

Therefore P has a small boundary.
�
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