
HAL Id: hal-02173688
https://hal.sorbonne-universite.fr/hal-02173688v2

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Algorithmic aspects of elliptic bases in finite field
discrete logarithm algorithms

Antoine Joux, Cécile Pierrot

To cite this version:
Antoine Joux, Cécile Pierrot. Algorithmic aspects of elliptic bases in finite field discrete logarithm
algorithms. Advances in Mathematics of Communications, In press, �10.3934/amc.2022085�. �hal-
02173688v2�

https://hal.sorbonne-universite.fr/hal-02173688v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

ALGORITHMIC ASPECTS OF ELLIPTIC BASES IN FINITE
FIELD DISCRETE LOGARITHM ALGORITHMS

ANTOINE JOUX AND CÉCILE PIERROT

Antoine Joux∗

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
and

Sorbonne Université, Institut de Mathématiques de Jussieu–Paris Rive Gauche
CNRS, INRIA, Univ Paris Diderot.

Campus Pierre et Marie Curie, F-75005, Paris, France

Cécile Pierrot
Université de Lorraine
CNRS, Inria, LORIA
F-54000 Nancy, France

(Communicated by the associate editor name)

Abstract. Elliptic bases, introduced by Couveignes and Lercier in 2009, give
an elegant way of representing finite field extensions. A natural question which
seems to have been considered independently by several groups is to use this
representation as a starting point for discrete logarithm algorithms in small
characteristic finite fields.

This idea has been recently proposed by two groups working on it, in or-
der to achieve provable quasi-polynomial time for discrete logarithms in small
characteristic finite fields.

In this paper, we do not try to achieve a provable algorithm but, instead,
investigate the practicality of heuristic algorithms based on elliptic bases. Our
key idea is to use a different model of the elliptic curve used for the elliptic
basis that allows for a relatively simple adaptation of the techniques used with
former Frobenius representation algorithms.

We have not performed any record computation with this new method but
our experiments with the field F31345 indicate that switching to elliptic repre-
sentations might be possible with performances comparable to the current best
practical methods.

1. Introduction. The discrete logarithm problem (DLP) is a fundamental prob-
lem underlying the security of many cryptographic systems. Given G a finite cyclic
group denoted multiplicatively and g a generator of the group, solving the discrete
logarithm problem in G means being able, for any arbitrary element h ∈ G, to find
an integer x such that:

gx = h.

2010 Mathematics Subject Classification. 11Y16, 12Y05, 11G20.
Key words and phrases. Discrete logarithms, Finite fields, Elliptic bases.
This work has been supported in part by the European Union as H2020 Programme under

grant agreement number ERC-669891.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx

2 ANTOINE JOUX AND CÉCILE PIERROT

The integer x is defined modulo |G| and is called the discrete logarithm of h.
Among the groups considered for cryptographic use, we find the multiplicative

group of finite fields. There is a long history of algorithms to address this problem
that we do not recall here. In the case of “small” characteristic fields, tremendous
progress was made in 2013 and the years after. They are surveyed in [10]. This led to
extreme computational improvements and two flavors of heuristic quasi-polynomial
time algorithms. One of the fundamental tools used to achieved this result is a
special representation of a finite field extension above Fq, called the Frobenius rep-
resentation. It requires an element θ satisfying a relation of the form:

θq =
h0(θ)

h1(θ)
,

where h0 and h1 are co-prime polynomials with very low degree.
A widely believed heuristic assumption is that any finite field extension can be

represented that way, unless one of the known obstructions applies. These known
obstructions are that h0 and h1 can both have degree ≤ 1. Furthermore, it is clearly
not possible to represent an extension of degree higher than q+deg(h1). In practice,
finding such a representation via an exhaustive search among suitable polynomials
is a trivial matter. However, proving this assumption seems to be a difficult task.
Micheli [17] gave a partial answer to explain why any finite field extension could be
represented that way, but we are not aware of any complete proof of this fact.

Consequently, it is natural to turn to different field representations which can
provably be constructed and try to adapt the discrete logarithm algorithms to work
with them. Elliptic bases, also called elliptic periods [5], form a natural candidate
for this purpose. Several groups independently considered their use for discrete
logarithms. We are aware of two attempts which have been made public. In 2016,
in his master’s thesis [14], Lido proposed a discrete logarithm based on elliptic rep-
resentations using a descent method made of two halves. His presentation states a
theorem concerning one-half of the descent and a conjecture for the other half. On
June 26th, 2019, Kleinjung and Wesolowski released a preprint [12] on the eprint
archive announcing a fully provable quasi-polynomial time algorithm based on ellip-
tic representation. The next day, Schoof gave a talk at the conference NutMiC 2019
conference presenting the work of Lido. He also sent us a not publicly available
document [15] that extends [14] and contains a theorem announcing an algorithm
to compute logarithms in a finite field F in provable time (log |F|)O(log log |F|)). Lido
made public his work with a complete proof of its correctness in a preprint in
2022 [16].

Whereas Lido’s approach mostly relies on some Galois theory over function fields,
the result announced in [12], and published in 2021 in [13] has a different form. To
prove the irreductibility of certains curves, Kleinjung and Wesolowski’s approach
is to describe it as components of some fibered products. They show that discrete
logarithms in Fpn can be computed in provable time (pn)2 log2 n+O(1). Both forms
affect a very large range of characteristic. Indeed, until now, the best provable
discrete logarithm algorithms for finite fields had complexity L(1/2). They are thus
outperformed as soon as p < Lpn(1/2− ε), for an arbitrary small ε > 0.

In this paper, we present the work we independently performed on a similar
idea and that was first made public at the beginning of July 2019. However, we
do not consider the provable aspects. Instead, we focus more on the algorithmic
aspects of heuristic variants of elliptic representation discrete logarithm methods.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 3

Our formulation differs in many details. As such, it might shed a different light
on the topic and help the reader to study the theoretical breakthrough on provable
algorithms. As of now, our proposal remains slightly inferior to the method in [9],
the fastest currently known (heuristic) method to compute discrete logarithms in
small characteristic. However, it gets very close, while leaving room for improvement
in the analysis.

1.0.1. A tool from Pomerance. To turn an algorithm in the Frobenius representation
family into a provable algorithm, it is not only necessary to prove that the finite field
representation can be constructed, but it is also required to change the following
steps: relation generation and linear algebra. Let h be a random element and
g the generator. Essentially, one follows the approach of [20], which consists in
decomposing plenty of elements of the form gahb over the factor base, which is a
small set of small elements. Linear algebra can then be used to combine plenty of
equations which leads to a random identity of the form gAhB = 1. We can then
deduce the discrete logarithm of h in base g.

Assuming that the field representation exists, this makes the computation of
discrete logarithms provable. For Frobenius representation algorithms, assuming
that the field representation is given and deducing a provable algorithm has been
studied in [8, 11, 6].

Unfortunately, the full computation has to be restarted from scratch for every
discrete logarithm computation in the same field. The aim of this work is to propose
a practical algorithm with a representation that can be proven. This algorithm
includes an "individual logarithm step" at the end, allowing, for instance, to reuse
part of the work done for another discrete logarithm that was previously computed.

1.0.2. Discrete logarithm algorithm with an elliptic representation. Let Fpk be the
target finite field in which we want to compute discrete logarithms. To simplify
exposition, we assume p ≥ 5, since the equation of the curves needs to be chosen
differently in characteristic 2 or 3. We summarize our construction as follows:

1. Representation. Create an elliptic curve E over Fq (q being a power of p)
such that:

#(E /Fq) = µk,

with µ a natural integer. If k is square, there necessarily exists a k-torsion
point P1 ∈ E . Otherwise, for every prime ` dividing k, let `e` be the largest
power of ` dividing k. For each ` with e` > 1, it might be necessary to change
E to an isogeneous curve by applying a sequence of `-isogenies in order to
guarantee that a point of order `e` exists. These changes to E suffice to
guarantee the existence of P1.

Finally, find a point F ∈ E such that:

π(F) = F + P1,

where π is the Frobenius action in the field Fq. In particular, if we note
F = (θ, τ) then we can write Fqk as Fq[θ, τ].

This almost gives the desired representation of the target field. Indeed,
Fq[θ] is either Fqk or Fqk/2 . In the sequel, we assume that Fq[θ] = Fqk ,
multiplying k by 2 if necessary.

Then, since Fpk is a subfield of both Fqk or Fq2k , we see that computing
discrete logarithms in Fq[θ] is sufficient to achieve the desired goal.

4 ANTOINE JOUX AND CÉCILE PIERROT

2. Commutative Diagram. We now define the full representation we want to
use from a curve C in 3 dimensions obtained as the image of the following
rational map:

Φ : E 7→ F3

q

Q 7→ (xQ−P1
, xQ, xQ+P1

)

At first, this might seem to be a strange model of an elliptic curve, with
respect to Weierstrass equations, for instance. However, the intuition is that,
with this model coming from Semaev polynomials, the image of F is a point
with an advantageous property: taking the Frobenius of one of its coordinates
leads to the following one. In other words, if Φ(F) is seen as a point of C
in the affine space Fq[U, V,W] then it lies on the intersection of the surfaces
defined by the two equations Uq = V and V q = W . This property is at the
core of our method for creating relations, since it allows us to re-use the core
standard technique from the Frobenius representation approach to discrete
logarithms. Starting from A and B two polynomials in Fq[U, V], we construct
two big polynomials:

AqB −ABq =
∏

α∈P1(Fq)

(A− αB)

in one hand, and:

A(V,W)B(U, V)−A(U, V)B(V,W)

in the other hand. Each polynomial can be considered as an element of the
function field Fq(C). Writing the divisor associated to each side, we can write
down an equality between the image of each divisor in Fqk . For polynomial
themselves, the image is simply obtained by evaluation at Φ(F). The equality
of the two sides comes from the Frobenius relations between the coordinates
of Φ(F).

3. Relation collection. We sieve on pairs of polynomials (A,B) such that A =
g1 +αg3 and B = g1 +βg2 +γg3 where α, β, γ ∈ Fq and g1, g2 and g3 are given
polynomials constructed by linear combination of the monomials U, V, UV and
1. Set the factor base F as all the divisors of E with height at most 3. On
one side

∏
α∈P1(Fq)(A−αB) will always lead to divisors that can be written as

sum of divisors of F , and on the other side A(V,W)B(U, V)−A(U, V)B(V,W)
have a low enough height so that the probability that the related divisor D
splits in factor base elements is high enough to get as many relations we want.

Since we only need three degrees of freedom from the four monomials
U, V, UV and 1, we choose g1, g2 and g3 all going through a common point.
This nicely reduces the degree of the divisors appearing in the decomposition
of the terms A − αB. This is essential in making the probability of success
during the relation collection phase good enough.

4. Linear algebra and individual logarithm. Thanks to the action of
Frobenius, we can reduce the size of the factor base by a factor k. In other
words, this reduces the effective size of the factor base F to O(q3/k). As
a consequence, the cost of the sparse linear algebra, with O(q) entries per
equation, is of O(q7/k2) arithmetic operations. Note that when k is chosen
close to q, this matches the O(q5) asymptotic complexity obtained for this
step in [9].

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 5

5. Descent Phase. Finally, we need a descent phase to conclude. We give the
necessary tools to adapt existing methods in this context.

1.0.3. Outline. Section 2 gives algebraic preliminaries for this work. In this sequel,
we focus on the algorithmic aspects and describe our practical elliptic Frobenius
algorithm. Being aimed at practicality, this algorithm is heuristic. From a per-
formance analysis point of view, our heuristic approach almost achieves the same
efficiency as the best pre-existing practical algorithm for DLP in small characteristic
finite fields. Almost, because there is a glitch in the analysis of the fast computation
of the extended factor base. However, despite this glitch, we were able to implement
and use the elliptic representation approach to compute logarithms of an extended
factor base for the finite field F31345 . We highlight the heuristics we use as far as we
can, in order to clarify the difference with the provable algorithm of [13] or [16].

In Section 3 we give our variation on the representation of the target finite field
while Section 4 details how to get relations. Section 5 deals with factor base exten-
sion and with the individual logarithms phase. Finally Section 6 presents (part of)
a practical discrete logarithm computation over F31345 .

2. A Refresher on the Function Field Sieve Machinery.

Notations. Let K = Fq denote a finite field. Let C be a non-singular curve in the
n-dimensional projective space Pn(Fq) defined over K and π denote the Frobenius
map on Pn(Fq). The set of places of K(C) is denoted by ΣK(C). The group of degree-
0 divisors of C is written Div0(C) and the Picard group (or divisor class group)
of C is Pic0(C). Everything that is needed in this article about classical objects
such as algebraic function fields, divisors, the Picard group is given in Appendix A.

A tool from FFS. Many concepts used here originate from the Function Field
Sieve (FFS) algorithm [1]. The aim of this first section is not to describe FFS itself,
but to describes these concepts in a slightly more general form than the original
description of Adleman and Huang article. The main tool we need from FFS consists
in sending a degree-0 divisor into a finite field.

Let L = Fqk be a finite extension of K. Let F be a point of C /L such that the
coordinates of F generate L over K. Given an arbitrary element f ∈ K(C)∗ which
does not have F as a pole, we can evaluate f at F and obtain a value in L. As
explained in [1], this process can be generalized from functions to a large subset of
divisors of C . Clearly, since α f and f have the same divisor for any α ∈ K, we
need to proceed with care.

First, we define a map Ψ from Princ(C) to L/K∗ defined as follows:

Ψ : Princ(C) 7→ L/K∗
D 7→ Ψ(D) = f(F),

where f is an arbitrary function such that div(f) = D. Since the result is only
considered up to multiplication by an arbitrary constant in K∗, it is independent of
the particular choice of f .

To generalize to more divisors, we now consider a degree-0 divisor D together
with an integer h ∈ N∗ such that hD is principal and h is coprime to the order of
L∗/K∗ = (qk − 1)/(q − 1). For such a divisor, we extend the definition by letting:

Ψ(D) = Ψ(hD)1/h.

6 ANTOINE JOUX AND CÉCILE PIERROT

In the terminology of [1], we evaluate at F the “surrogate” function that we have
associated to D thanks to the multiplication by h. Note that replacing h by any
other h′ satisfying the conditions does not change the value of Ψ(D). Furthermore,
remark that if Ψ is defined onD andD′, it is also defined onD+D′ and Ψ(D+D′) =
Ψ(D) ·Ψ(D′). Similarly, if Ψ(D) is defined and non-zero, then Ψ(−D) = 1/Ψ(D).

From a computational point of view, if D has a small support, then Ψ(D) can
be efficiently computed by using Miller’s algorithm to compute the evaluation at F
of the function corresponding to hD. See Section 3.3 for more details.

In the Function Field Sieve, this tool is used as part of the commutative dia-
gram that underlies the construction of multiplicative relations. However, it is not
used directly in the algorithm, only in its correctness proof. Similar, in our elliptic
representation algorithm, the map Ψ is not really necessary to perform computa-
tions. However, having it at our disposal gives a very useful tool for checking the
correctness of relations, thus helping to remove undesirable implementation bugs.

3. Representation of the Target Finite Field. Let q and k respectively be a
prime power and the extension degree of the field. Our aim is to compute discrete
logarithms in it. Let’s write p its characteristic. Since we want to define the
extension as Fq[xP], with xP the abcissa of some point on an elliptic curve, while
the construction naturally writes it as Fq[xP , yP], there is a small risk of producing
a subextension (missing a last quadratic extension) when k is even. If this happens,
it suffices to replace k by 2k during the initial choice of the elliptic basis. As a
consequence, we can safely ignore this point in the sequel.

3.1. Choosing the elliptic basis. The representation step of our algorithm starts
by forming an elliptic curve over a small extension of Fq with cardinality a multiple
of k. The following result explicits bounds with respect to q and k for both the
extension degree and the multiplying factor.

Theorem 1. If q and k be a prime power and a positive integer, then there exist
µ and ν two integers and an elliptic curve over Fqµ with cardinality νk such that
µ ≤ dlog(k2/4)/ log qe+ 1.

Proof. Let p denote the characteristic of Fq. We can perform following case by case
analysis:

1. First, let us assume that k < 2
√
q. Thus there exist at least two multiples νk

and (ν + 1)k of k in the Hasse interval
]
q + 1− 2

√
q, q + 1 + 2

√
q
[
. Further-

more, we may assume that νk < q + 1.
If p divides k then p cannot divide the trace t = q + 1 − νk. Let us recall

now the following result:

Corollary 1 (of Waterhouse’s theorem [24]). For each value of the character-
istic p, for any extension degree n and for every integer t in]−2

√
pn, 2
√
pn[

such that t 6≡ 0 mod p, there exists an elliptic curve over Fpn whose number
of rational point is exactly pn + 1− t.

The reader can for example find a proof in [22]. Note that we can run into
some cases where the characteristic does divide the trace and yet such that
there exists such a curve. Theorem 4 in [22] gives the exhaustive list of these
special cases. Back to our discussion of the case where p divides k, we see
that, Waterhouse’s theorem yields the existence of an elliptic curve over Fq
with cardinality νk.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 7

If p does not divide k then two sub-cases occur. Either q + 1 − νk is not
a multiple of p, and Waterhouse’s theorem permits to conclude again that
there exists an elliptic curve over Fq with cardinality νk, or it is. In the
second case, p divides q + 1 − νk and doesn’t divide k, so p doesn’t divide
t = q + 1 − νk − k. From Waterhouse’s theorem we obtain a curve over Fq
with cardinality (ν + 1)k.

Either way, when k < 2
√
q we always find a curve over the base field Fq.

2. If k ≥ 2
√
q then there is no guarantee of the existence of two multiples of k

in the Hasse interval. Thus, unless we are lucky, we need to increase the size
of the finite field to get a larger interval. Let µ be the smaller integer such
that k < 2

√
qµ. Applying the previous case on this extended field, we see that

there always exists an elliptic curve over Fqµ with cardinality νk such that
νk < qµ + 1 + 2

√
qµ. To conclude, notice that the additional extension degree

µ that we need is (at most) equal to the ceiling of log(k2/4)/ log q.

Once we have found E , it allows us to define the finite field Fqµk , where µ is the
extra extension degree needed to find E . To lighten notations, we assume without
loss of generality that µ = 1. Indeed, it suffices to redefine a new value for q equal
to the previous value qµ. Thanks to the upper bound on the extension degree, we
see that it does not affect the quasi-polynomial time complexity of the algorithm.

We further assume that E contains a point P1 in Fq of order k. If necessary,
apply low-degree isogenies to the initial curve E until a suitable one is obtained.
Then construct a point F whose coordinates in the algebraic closure satisfy:

π(F) = F + P1,

where π is the q-th power Frobenius action. Write the coordinates of F as (θ, τ).
From [5], we know that Fqk = Fq[θ, τ]. Furthermore, from our assumption on k, we
have Fqk = Fq[θ].

Note that, when focusing on the practical variation of the algorithm, it is impor-
tant to have k as large as possible compared to q. The above proof only guarantees
that q = O(k2), however, in the best cases we can have q = O(k).

3.2. Representing the curve with a different model. We introduce here a
model that represents elliptic curves in the three-dimensional affine space Fq[U, V,W].
To construct this new model, we start from a curve E together with a k-torsion
point P1 of E /Fq. Let (x1, y1) ∈ (Fq)2 denote the coordinates of P1 and (x`, y`) the
coordinates of P` = ` P1 for ` ∈ [2, · · · , k − 1].

3.2.1. Adding some structure. The idea is to create a new model of E in which we
artificially inject extra desirable properties. Namely, for any point Q ∈ E /F̄q, we
represent it by the triple of abcissae of the points Q−P1, Q and Q+P1 , on the one
hand and −Q,P1, Q−P1 on the other hand. In this model, there is an easy way to
add the π(F) = F +P1 constraint of the Couveignes and Lercier [5] construction of
elliptic bases. The Frobenius action on a special point called F to be defined later
is shown on Figure 1.

Indeed, for point F we see that the triple of coordinates is (xπ−1(F), xF , xπ(F)).
Furthermore, for π(F) the triple is (xF , xπ(F), xπ2(F)). As a consequence, the first
two coordinates can be obtained by a simple shift. Furthermore, it is possible
to recover the missing coordinate of π(F) from the first two, in a way similar to
Montgomery’s ladder technique.

8 ANTOINE JOUX AND CÉCILE PIERROT

3.2.2. Formal definition and equations of C . Now that we have captured our intu-
ition, we give a formal definition of this new curve. We assume for simplicity that
E is given by a reduced Weirstrass equation:

E : Y 2 = X3 + aX + b,

but this can be generalized to include characteristic 2 and 3. With this notation,
the third summation polynomial is given by:

S3(X1, X2, X3) = 4σ1(σ3 + b)− (σ2 − a)2,

where the σi are the symmetric polynomials σ1 = X1 + X2 + X3, σ2 = X1X2 +
X1X3 +X2X3 and σ3 = X1X2X3. By definition of the third Semaev polynomial,
for any triple of points Q1 = (xQ1

, yQ1
), Q2 = (xQ2

, yQ2
), Q3 = (xQ3

, yQ3
) ∈

E (F̄q) \ {O}, we have:

S3(xQ1
, xQ2

, xQ3
) = 0⇔ ∃(e1, e2, e3) ∈ {−1, 1}3, e1Q1 + e2Q2 + e3Q3 = O.

We use this polynomial to describe the image C of the rational map:

Φ : E 7→ F3

q

Q 7→ (xQ−P1 , xQ, xQ+P1)

For every point Q ∈ E /F̄q, we use S3 to rewrite the three simple identities (Q−
P1)−Q+P1 = O, Q−(Q+P1)+P1 = O and (Q−P1)−(Q+P1)+P2 = O. This shows
that the point (xQ−P1

, xQ, xQ+P1
) is a common root of the polynomials S3(U, V, x1),

S3(V,W, x1), and S3(U,W, x2). Let us first consider the variety given by these three
equations. To determine its components, let us consider its intersection with the
hyperplane U = W . This intersection is described by S3(U, V, x1) = 0, U = W and
S3(U,U, x2) = 0. From Equation S3(U,W, x2) that is a degree-4 polynomial in U ,
we know that U has finitely many values. Thus we want to remove the extraneous
points lying in this hyperplane.

We look so at the components in the complement of this hyperplane and assume
that U 6= W . In this case, since S3(U, V, x1) − S3(V,W, x1) is divisible by U −W
we obtain a lower degree polynomial, namely:

Sδ =
S3(U, V, x1)− S3(V,W, x1)

U −W
.

The variety defined thanks to the three equations S3(U, V, x1) = 0, Sδ = 0 and
S3(U,W, x2) = 0 is now irreducible. We call it C and prove that it is a genus 1
curve isomorphic to E . To see that, let us give rational maps between E and C .

3.2.3. E and C are isomorphic. Let us consider the rational map:

Φ : E → C
Q 7→ (xQ−P1 , xQ, xQ+P1)

Every point P in E is such that Φ(P) ∈ C . Besides, the images of the three points
O, P1 and −P1 are at infinity on C and that, by homogenization, we may check
that there are exactly three points at infinity on C .

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 9

As usual, Φ induces a map Φ∗ from the function field Fq(C) to Fq(E) (expressed
with the two variables X and Y) using the following replacement:

Φ∗ : Fq(C) 7→ Fq(E)

U 7→
(
Y+y1
X−x1

)2

−X − x1,

V 7→ X,

W 7→
(
Y−y1
X−x1

)2

−X − x1.

where y1 is the ordinate of the point P1 in E . Developing and using the curve
equation, the images of U and W can be respectively simplified to:

U 7→ x1X
2 + (a+ x1

2)X + a x1 + 2 b+ 2 y1 Y

(X − x1)2
,

W 7→ x1X
2 + (a+ x1

2)X + a x1 + 2 b− 2 y1 Y

(X − x1)2
.

In this form, it is clear that the map can be easily inverted when X 6= x1. Moreover,
given a pair (U, V) values we can compute the value ofW and similarly, from (V,W)
we can compute U .

When X = x1, we have two possibilities Φ(P1) = (∞, xP1
, xP2

) and Φ(−P1) =
(xP2

, xP1
,∞). These are distinct (unless P1 has order 2), which means that Φ is a

bijection and thus an isomorphism.

E

P1

F

F − P1

F + P1

π

π

θ

τ

Figure 1. Frobenius action on the point F ∈ E /Fqk .

3.2.4. Point in E with coordinates in the target finite field. Let F ∈ E be such that:

π(F) = F + P1. (1)

10 ANTOINE JOUX AND CÉCILE PIERROT

Lemma 1. If F ∈ E /F̄q is such that π(F) = F+P1 then F ∈ E /Fqk . Furthermore,
letting (θ, τ) denote the coordinates of F , we have Fq[θ, τ] = Fqk . In particular, there
exist at least k rational points verifying the same property.

Proof. Let us compute πk(F) = πk−1(F + P1) = πk−1(F) + P1 = · · · = F + kP1.
We know that P1 has precisely order k hence πk(F) = F . Besides, we note that
any point πi(F) for i = 1, · · · , k − 1 satisfies Equation (1) too.

As already mentioned, having possibly doubled the value of k in construction,
we may assume that Fq[θ] = Fqk . In our model of curve, the point F is determined
by the fact that S3(θ, θq, x1) = 0. The abscissa θ of F can thus be determined as a
root of this polynomial. Note that the choice of the ordinate τ gives an orientation
on the direction of the Frobenius action. We choose the letter F to name this point
as a mnemonic to remind that it represents our target Finite Field and that it has
a special relationship with the Frobenius map.

Fq [U, V]× Fq [U, V]
(A,B)

Fq [U, V,W]
Aq B −ABq =

∏
α∈P1(Fq)

(A− αB)

Fq [U, V,W]
A(V,W)B(U, V)−A(U, V)B(V,W)

Fq [U, V,W] /I = Fq[C] Fq[C] = Fq [U, V,W] /I

Fq(E)

Princ(E) ⊂ Div0(E)

Fq(E)

Princ(E) ⊂ Div0(E)

Fqk/F∗q

ι ι

Φ∗ Φ∗

div div

Ψ

Ψ

Factor base elements
are there.

Figure 2. Commutative diagram of our algorithm.

3.3. Commutative diagram. From the above considerations, we derive the com-
mutative diagram of Figure 2, which serves as the basis for our elliptic Frobenius
representation algorithm. Note that the commutative diagram is above Fqk/F∗q . As
a consequence, our algorithm doesn’t compute the part of the discrete logarithm
corresponding to F∗q . However, this field is so small that this missing part can be
easily obtained.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 11

Remark 1. The diagram of Figure 2 could be simplified by removing references
to the function field Fq(E) and computing divisors on C directly. However, when
using standard computer algebra tools, it is much simpler to work on divisors with
the Weirstrass equation of E .

3.3.1. Explicit maps to Fqk based on Miller algorithm. The first two maps of the
diagram are explicit and the two following ones are canonical injections. Φ∗ is given
in Appendix and div is as defined in Section 2. As the composition if frequent
we note Ξ = div ◦ Φ∗ to lighten the ratings. In addition, we let Ψ denote a
multiplicative group morphism that sends elements of Princ(E) to Fqk . Yet, only
defining Ψ for principal divisors is not sufficient, since in the relation collection
phase we need first to factor divisors in Princ(E) into elementary divisors before
descending them into the finite field. Keep in mind that elementary divisors have
no reason to be principal.

For any divisor in Princ(E) the first thing to do is to decompose it into elementary
divisors in Div0. Then, we note that since we wish to construct a group morphism
that sends elements of Div0 to Fqk/F∗q , it suffices to describe this morphism for any
of these elementary divisors. Let us consider:

De =

d∑
i=1

πi(Q)− d(O),

where Q ∈ E /Fqd is one of the conjugate points in the degree-d place. Fix a
maximum degree D for the places we consider and let ND be the least common
multiple of the cardinalities of E over each finite field Fqd with 1 ≤ d ≤ D.

From this, we see that NDDe is a principal divisor, thus there exists a function
fDe in the variables X and Y unique up to multiplication by a constant in Fq such
that div(fDe) = NDDe. We want to use the point F with coordinates in the target
finite field to define it. Since θ and τ are respectively the abscissa and the ordinate
of this point, it seems natural to send X to θ and Y to τ , or, in other words, to
evaluate the function on the point F . However, since fDe is only defined modulo a
constant in Fq, the result in the finite field would change depending on the choice
of the function. To annihilate this constant, we have to divide the evaluation on F
by the evaluation on O. Hence to have a well-defined application Ψ we set

Ψ(De) = (fDe (F −O))
1/ND .

However, evaluation at O isn’t really necessary, since we are only interested in
values in Fqk/F∗q . As done for bilinear pairings, this can be efficiently computed
using Miller’s algorithm [18].

3.3.2. Analysis of the invertibility of ND. In order to raise to the power 1/ND and
get a uniquely defined value, we need to check that ND is invertible modulo the
order of F∗qk/F

∗
q . This condition needs to be tested for all the orders of the curve E

in the extension fields Fq,Fq2 , · · · , FqD . We provide a replacement for Ψ in the case
where ND cannot be inverted.

This analysis requires us to follow standard practice and first decompose our
target group F∗qk , in order to apply Pohlig-Hellman algorithm [19]. Thanks to [19]
it suffices to compute discrete logarithms in all prime order subgroups of F∗qk . An
important technicality is that we would need to first factor qk − 1. Unfortunately,
this would dominate the cost of computation. However, to study the invertibility
of ND, we do not need to factor qk − 1, the existence of the factorization suffices.

12 ANTOINE JOUX AND CÉCILE PIERROT

Let γ be a prime factor dividing qk − 1, it suffices to check that ND 6= 0 mod γ,
for Ψ to be well-defined in subgroups of order a power of γ in F∗qk . Since ND is
defined as the least common multiple of the cardinalities of E over each of the finite
fields Fqd with 1 ≤ d ≤ D, where D ≤ k is the maximum degree of the places we
want to consider, this gives us an extra condition on E . Namely, it should satisfy
the following property:
• For any i = 1, · · · , D, |E /Fqi | 6= 0 mod γ.
Let us study this condition. We denote by t the trace of E over Fq and factor

the characteristic polynomial of the Frobenius of E :

X2 − tX + q = (X − r)(X − s) mod γ

with r and s in Fγ2 . We know that the number of points of E /Fqi is equal to
(1 − ri)(1 − si) mod γ. Thus, to ensure that the cardinalities of E over the field
extensions Fqi , with ι in [1, D], all differ from 0 modulo γ we just need to verify
that both ri 6= 1 mod γ and si 6= 1 mod γ. In order to do that, let us first study
the order of the product rs = q mod γ.

By definition of γ, we have qk = 1 mod γ. Furthermore, the order of q is
strictly smaller than k modulo γ if and only if γ already divides the order of the
multiplicative group of a subfield of Fqk . In that case, we compute this part of the
logarithm by applying our method to the smallest such subfield.

We now assume that the order of q is precisely k mod γ. Thus, for any ι not
a multiple of k, at most one of ri or si can be equal to 1 mod γ. Exchanging r
and s if necessary, we now study the case ri = 1 mod γ. In that case, we have
si = qi 6= 1 mod γ. This implies that E (Fqi) contains a γ-torsion point Qγ but not
the full γ-torsion E [γ]. Thus, the Tate pairing provides a non-degenerate bilinear
map to the γ roots of unity:

ei :< Qγ > × E (Fqi)/γE (Fqi) 7→ F∗q/
(
F∗q
)(qk−1)/γ

.

Fixing an arbitrary non-zero element from E (Fqi)/γE (Fqi), we obtain a linear
map Ψ̃i from the subgroup generated by Qγ to the γ-th roots of unity.

Possibly after renormalization, Ψ̃i gives a compatible replacement for Ψ that
can be applied to the γ-torsion point. The renormalization consists in replacing
Ψ̃i by Ψ̃i

βi , where βi is the renormalization constant. As a consequence, it is
mathematically possible to extend Ψ to all divisors. One computational caveat is
that determining the value of βi can be expressed as a discrete logarihm problem
in the group of order γ. It does not affect the efficiency of the overall algorithm
but prevents independent check on relations containing divisors of degree ι not
compatible with the definition of Ψ during the precomputation phase.

To see how βi can be determined, let us take a place pi of degree ι and compute
Ψ̃i(pi). As usual this it the product of the value for all the conjugate points in pi.
Then apply one step of the descent algorithm to relate pi to places of degrees 6= i
which are all compatible with the computation of Ψ. Multiplying these contributions
gives the renormalized value Ψ̃i(pi)

βi . Thus, if we wish to do so, we can compute
βi from the individual logarithms of these two values.

3.3.3. Intuition about Ψ and commutativity of the diagram. This definition matches
with the following intuitive one. To unsure the commutativity of the diagram we
need to verify that Ψ(Ξ(ι(AqB − ABq))) is equal in the finite field to the element

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 13

Ψ(Ξ(ι(A(V,W)B −AB(V,W)))). Our intuition is that requiring in some sense:

Uq = V and V q = W

would suffice to prove the commutativity. We point out that one point of the elliptic
curve C , namely Φ(F), precisely follows this restriction. Indeed, Φ(F) has abscissa
xF−P1

= xπ(k−1)(π(F−P1)) = xπ(k−1)(F) = π(k−1)(θ), ordinate xF = θ and applicate
xF+P1 = xπ(F) = π(θ). In a nutshell:

Φ(F) = [θq
k−1

, θ, θq]

Thus, in the function field Fq(C), evaluation the functions at Φ(F) gives the ex-
pected relationship to the Frobenius map. As a consequence, evaluation at F after
transporting back to the function field of E using Φ∗ also gives the desired behavior.

To conclude about the commutativity of the diagram it suffices to note that we
have the equalities in F∗q :

Ψ ◦ div ◦ Φ∗(Uq) = (θq
k−1

)q = θ = Ψ ◦ div ◦ Φ∗(V)

and Ψ ◦ div ◦ Φ∗(V q) = θq = Ψ ◦ div ◦ Φ∗(W).

Hopefully, since Ψ◦div ◦Φ∗ ◦ ι is a morphism the equality in the finite field between
images of AqB −ABq and A(V,W)B −AB(V,W) holds too.

3.3.4. Extension of the diagram to bigger fields. As with classical Frobenius repre-
sentation algorithm, the commutative diagram can also be used when the coefficients
of A and B are taken in another extension Fqd . In that case, the commutative dia-
gram ends in the compositum of Fqd and Fqk . The only difference is that the identity
in the finite field is between the images of AqB−ABq and Aπ(V,W)B−ABπ(V,W),
i.e. the coefficients of A and B need to be acted on by Frobenius.

4. Harvesting Relations. This section details the necessary tools to collect rela-
tions in our setting which is a mixture of the classical Function Field Sieve and of
the Frobenius representation algorithms. As in the classical Function Field Sieve,
our algorithm uses function fields instead of polynomials when writing down multi-
plicative relations. From Frobenius representation algorithms it inherits the use of
a systematic form of relations.

4.1. The usual systematic product. We recall the systematic relation that we
inherit from Frobenius representation algorithms:

Aq B −ABq =
∏

α∈P1(Fq)

(A− αB), (2)

where as in [9], when α is the point at infinity of P1(Fq), the term A− αB is used
as a shorthand for B. For simplicity, we also use a bracket notation and define:

[A,B] = A(V,W)B(U, V)−A(U, V)B(V,W).

We underline that our bracket is Fq-bilinear and antisymmetric, as in [9]. Yet, we
warn the reader of the difference between the definition of our bracket and previous
ones. Our bracket is equal to the entire fraction whereas the authors of [9] only
consider the numerator of this rational fraction.

14 ANTOINE JOUX AND CÉCILE PIERROT

4.2. Choice of A and B. In the commutative diagram of Figure 2 and in the
above discussion, we indicate that relations are obtained from a choice of two bi-
variate polynomials A and B in U and V . However, we need to specify how these
polynomials are chosen and which monomials they should contain.

As a preliminary, let us notice that (A,B) and (αA,B) for α ∈ Fq lead to the
same relation. Indeed, (αA)q B − (αA)Bq = α(Aq B − ABq) so the two divisors
associated to the two corresponding functions are equals. Thus A and B are chosen
as some kind of monic polynomials: the coefficient of the higher monomial (in the
lexicographic order for instance) must be equal to 1. Then we note that monomi-
als divisible by (UV)2 are not useful in A and B. Indeed, when going to Fq[C],
reduction modulo S3(U, V, x1) transforms these monomials into smaller monomi-
als U2V,UV 2, U2, UV, V 2, U, V and 1. Moreover, it is natural to consider sets of
monomials globally symmetric in U and V .

As a consequence for all those items, given a parameter t ≥ 1 we construct A
and B as linear combinations of monomials from:

Mt =
{
U i, V i, U i V,U V i|i ∈ [0 · · · t]

}
.

EachMt contains 4t distinct monomials1.

4.3. Defining a naive factor base. Let D =
∑
Qi∈V eiQi be a divisor of Div(V).

The degree of the zero of D (or height of D) is h(D) =
∑
ei>0 ei. Note that, for any

prime or elementary divisor, the height is equal to the degree of the corresponding
place. This notion of size is needed to define the factor base, which is as a subset
of Div0(E), as it is shown in Figure 2. We now explain how this subset is chosen.

4.3.1. Left side. Following the ideas of all Frobenius representation algorithms, we
define the factor base such that the images of A− αB in this set are small. Doing
this improve the relation collection phase compared to a classical sieving. Indeed, all
elements in the left part of the diagram will belong to the factor base. The relation
collection phase produces divisors of the form Ξ(i(

∏
(A− αB))), so, thanks to the

fact that we consider morphisms, it yields a sum of divisors
∑

(Ξ(i(A− αB))). As
explained, we require all the divisors noted by:

Ξ(i(A− αB))

to be in the factor base.
Let us find the maximal height they can reach. To do so we set A and B

two linear combinations of monomials inMt and t an integer parameter to define
later. All polynomials A − αB are so linear combinations of monomials in Mt

too. In other words, we are considering divisors of functions of Fq(E) of the form
Φ∗(
∑
m∈Mt

amm) =
∑
m∈Mt

amΦ∗(m) where am are constants in the base field.
We know that the height of the divisors we obtain in the left part of the diagram
are dominated by the largest height achieve for any Ξ(m), with m ∈Mt.

Considering h(Ξ(U tV t
′
)) ≤ t h(Ξ(U)) + t′ h(Ξ(V)), we see that it suffices to

determine both the height of the divisors associated to the images of U and V in
the function field of E . The most significant monomials will be U tV and UV t.

1Not 4(t+ 1) since each of 1, U , V and UV are included twice.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 15

Functions of C Height of the associated divisors in E
1 0
U, V, W 2
UV, V W, UW 4
U + V, V +W, U +W 4
U tV, UV t 2t+ 2
U tV + UV t at most 2t+ 2
U tV t+1W, UV t+1W t, U tV 2W t, UV 2tW 4t+ 4

Table 1. Some functions of Fq[C] and their height in E .

On the one hand we have Ξ(V) = div(X) = ([0,
√
b, 1]) + ([0,−

√
b, 1]) − 2(O)

where
√
b is an element2 in F̄q such that its square is equal to b. Hence:

h(Ξ(V)) = 2. (3)

On the other hand, Ξ(U) = div((Y + y1)2 − (X − x1)3)− div((X − x1)2). From
div((Y +y1)2−(X−x1)3) = 2(−P1)+(Q1)+(Q2)−4(O), where Q1 and Q2 are two
conjugated points of a degree-2 place, and div((X−x1)2) = 2(P1)+2(−P1)−4(O),
it comes Ξ(U) = (Q1) + (Q2)− 2(P1). We obtain:

h(Ξ(U)) = 2. (4)

Putting Equations (3) and (4) together with the upper bound, we conclude that
the most significant monomials U tV and UV t have both height 2t+2. Yet Φ∗(U tV)
and Φ∗(UV t) do not share the same denominator so to count their respective contri-
bution in the height of divisors

∑
m∈Mt

amΦ∗(m) we need to add the contribution
of the residual denominator. Namely, since Φ∗(U t) brings the largest denominator,
the height of the divisor of Φ∗(U tV) does not change, but for the one of Φ∗(UV t)
we need to add the number of zeros corresponding to the denominator of Φ∗(U t/U).
We note that there is 2(t− 1) such points. To put it in a nutshell, the most signif-
icant monomial is UV t and all divisors on the left are sum of divisors with
a height upper-bounded by 4t = (2t+ 2) + 2(t− 1).

To conclude, starting the relation collection phase with t = 1 it is natural to set
the initial factor base as included in the set of divisors of Div0 with height equal or
lower than 4. We emphasize that in this case, all the divisors appearing in the left
part belong to the factor base.

4.3.2. Right side. On the right part of the diagram, divisors are given through the
extra variable W . We can compute the corresponding height exactly as for U .
Again it gives:

h(Ξ(W)) = 2.

Let us consider the polynomials of Fq[U, V,W] given on this side and write this
time MVW

t =
{
V i,W i, V iW,V W i|i ∈ [0 · · · t]

}
. Sorting the monomials in the

lexicographic order, we recall that the leading coefficient for both A and B can be
chosen equal to 1. Thus, keeping the leading monomial U tV apart and calling am

2Be careful, here we assume that the characteristic differs from 2. If not, we just consider the
corresponding degree-2 place.

16 ANTOINE JOUX AND CÉCILE PIERROT

Functions of C Height of the associated divisors in E
A(U, V)− αB(U, V) where α ∈ Fq at most 4t
A(V,W)B(U, V)−A(U, V)B(V,W) at most 8t

Table 2. Functions appearing on both side of the diagram, and
their corresponding heights in E . A and B are linear combinations
of monomials fromMt.

(resp. bm) the coefficients in Fq of A (resp. B) we obtain on the right side the
polynomial:

[A,B] = A(V,W)B(U, V)−A(U, V)B(V,W)

=

V tW +
∑

m∈MVW
t \{V tW}

amm

U tV +
∑

m∈Mt\{UtV }

bmm

−

U tV +
∑

m∈Mt\{UtV }

amm

V tW +
∑

m∈MVW
t \{V tW}

bmm

Since the monomial U tV t+1W vanishes it yields a linear combination of monomials
where the three that dominate the height of the associated divisor are UV t+1W t,
U tV 2W t and UV 2tW . Indeed, each variables U , V andW contributes the same way,
thus, the most important monomials are those with the highest additive degree. We
note then that we have h(Ξ(UV t+1W t)) = h(Ξ(U tV 2W t)) = h(Ξ(UV 2tW)) = 4t+
4. Yet, again, we need to carefully add the zeros raised by the residual denominator.
The contribution of Φ∗(U tV 2W t) is left unchanged but we must add the number of
poles of Φ∗(W t/W) to the height of the divisor associated to Φ∗(UV t+1W t) and the
one corresponding to the denominator of Φ∗((UW)t(UW)−1) to the height of the
divisor associated to Φ∗(UV 2tW). Since there are respectively 2(t− 1) and 4(t− 1)
such points, we conclude that all the divisors appearing on the right side are
twice as large as factor base elements since they have height equal or
lower than 8t = 4t+ 4 + 4(t− 1). In particular, when t = 1, this gives divisors of
height 8 at most.

4.3.3. Complexity of the linear algebra with a naive factor base. A first and naive
choice of factor base is made of all divisors of height ≤ 4.

However, this factor base is too large to be competitive when compared to the
best Frobenius representation algorithms. To show this, let us briefly analyze the
number of operations needed to perform linear algebra with this factor base. The
number of divisors in this naive factor base is dominated by the number of degree 4
places on the curve E , corresponding to polynomials of degree 4 with coefficients
in Fq. So the order of the factor base’s size is dominated by q4. Considering the
Frobenius action of Section 4.4 that permits to divide the size of the factor base by
k ≈ q, we obtain a factor base of size O(q3). Since there are q terms in each linear
equations, performing a sparse linear algebra step can be done in O((q3)2q) = O(q7)
operations.

As a comparison, we see that the first phase of the algorithm in [9] only has a
O(q6) complexity. Thus, we need to improve our initial factor base.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 17

4.4. Action of Frobenius and translation by P1. Let d be the largest possible
height of an elementary divisor of the factor base. We would like to explicit how
the action of Frobenius on elements of the finite field Fqk is related to addition of
−P1 on the elliptic curve E . Considering the divisors:

DQ =

d−1∑
i=0

(πi(Q))− d(O)

related to the place given by any point Q ∈ E and:

DQ−P1
=

d−1∑
i=0

(πi(Q− P1))− d(O)

related to the translation of Q by −P1. We show that the two discrete logarithms
satisfy a simple relation. More precisely, we have the following result:

Lemma 2. Let Q ∈ E be a point with coordinates in Fqd . We consider the divisors

DQ =

d−1∑
i=0

(πi(Q))− d(O) and DQ−P1
=

d−1∑
i=0

(πi(Q− P1))− d(O)

respectively related to the place given by the point Q in E and the one given by the
translation of Q by −P1. Then:

Ψ(DQ−P1
) = π(Ψ(DQ)) ·Ψ((−P1)− (O))dNd .

where Nd is divisible by all the cardinalities of E over each finite field Fqi ⊂ Fqd .

Proof. Let us start from DQ the degree-d divisor. We recall that to have a principal
divisor we need to consider NdDQ. Thanks to Miller algorithm we are able to
recover a function fQ with coefficients in the base field Fq such that NdDQ is the
divisor of this function. By definition we obtain: Ψ(DQ) = fQ(F − O)1/Nd . To
simplify the notation let us write α = fQ(O)1/Nd that is an element in Fq. Hence
on the one hand we have:

π(Ψ(DQ)) = π(fQ(F)1/Nd)/π(α)
= fQ(π(F))1/Nd · α−1 since α ∈ Fq.

(5)

To link this expression to the divisor of π(Q), i.e. to the evaluation of fQ in
the point π(F) = F + P1 we define the function gQ such that, for all S in E ,
gQ(S) = fQ(S + P1). Let us write the divisor of this new function. Since a zero S
(resp. a pole) of gQ is such that S + P1 is a zero of fQ (resp. a pole), we obtain:

div(gQ) = Nd(
∑d−1
i=0 (πi(Q)− P1)− d(−P1))

= Nd(
∑d−1
i=0 (πi(Q− P1))− d(−P1)) since P1 is in E /Fq

= div(fQ−P1
) +Nd(d(O)− d(−P1))

= div(fQ−P1
)− dNd((−P1)− (O))

18 ANTOINE JOUX AND CÉCILE PIERROT

Hence on the other hand we have:
Ψ(DQ−P1

) = Ψ(div(fQ−P1
))

= Ψ(div(gQ) + dNd((−P1)− (O)))
= Ψ(div(gQ)) ·Ψ((−P1)− (O))dNd

= gQ(F)1/Ndα−1 · (α/gQ(O)1/Nd) ·Ψ((−P1)− (O))dNd

=
mod Fq

gQ(F)1/Ndα−1 ·Ψ((−P1)− (O))dNd

=
mod Fq

fQ(F + P1)1/Ndα−1 ·Ψ((−P1)− (O))dNd

=
mod Fq

π(Ψ(DQ)) ·Ψ((−P1)− (O))dNd from Equations (1) and (5).

We emphasize that the green term is a constant term. Thanks to this action,
we are able to reduce the size of the factor base by a factor k throughout the
computations. Indeed, if we know the discrete logarithm of Ψ(DQ) then we learn
for free the discrete logarithms of Ψ(DQ−P1

),Ψ(DQ−P2
), · · · ,Ψ(DQ−Pk−1

).

4.5. Getting a smaller factor base. To be able to reduce the size of the initial
factor base, and thus to decrease the complexity of the linear algebra phase, we
adapt the idea of systematic factors that was presented in [9] to the elliptic case.
The idea was twofold: first extracting some systematic factors that appear in every
equation, second, restrict the search to a sieving space that induce extra common
factors. In this article, we choose to call these extra factors compelled factors to
underline the difference with previous ones.

Left part of the diagram: making P3 a compelled point. In our case, our aim is
to consider a subgroup of the sieving space where A and B are polynomials such
that the associated divisors always present a common (compelled) point. Here,
choose to use the special point P3 = 3P1. As in [9] we select three generators g1,
g2, g3 in Fq[U, V] leading to divisors going through P3. We propose to sieve on
pairs of polynomials (A,B) such that A = g1 + αg3 and B = g1 + βg2 + γg3 where
α, β, γ ∈ Fq. Indeed, if A (resp. B) is a linear combination of those three generators
and if P3 is a zero of Φ∗(i(gj)) for j = 1, 2 and 3 then it is also a zero of the image
of A (resp. B) in E . As a consequence and for the same reason, P3 is a zero of the
image of A− αB too, where α belongs to the base field.

Lemma 3. Let j be an integer in [0, k − 1] and assume that P0 is a shorthand
for O. Then:

Ξ(U − xj) = (Pj+1) + (−Pj−1)− 2(P1),
Ξ(V − xj) = (Pj) + (−Pj)− 2(O),

and Ξ(W − xj) = (Pj−1) + (−Pj+1)− 2(−P1).

Proof. Let j be an integer between 0 and k − 1. We recall that xj denotes the
abscissa of Pj ∈ E and x0 = 0. Then by definition:

Φ(Pj) = [xj−1, xj , xj+1]

for all possible values of j. It means that, over the curve C , Φ(Pj) is a zero of
U −xj−1, V −xj and W −xj+1. Going back to the curve E it yields that the point
Pj is a zero of Φ∗(U − xj−1), Φ∗(V − xj) and Φ∗(W − xj+1). Similarly, from:

Φ(−Pj) = [xj+1, xj , xj−1]

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 19

we get that −Pj is a zero of Φ∗(U −xj+1), Φ∗(V −xj) and Φ∗(W −xj−1). Besides,
writing Φ∗(U−xj) as ((Y + y1)/(X − x1))

2−X−x1−xj we see that P1 is a pole of
Φ∗(U−xj) with multiplicity 2. Similarly −P1 is a pole ofW−xj with multiplicity 2.
From Φ∗(V − xj) = X − xj we conclude that O is twice a pole too.

Hence as generators we select:
g1 = U − x2,
g2 = V − x3,

and g3 = (U − x2)(V − x3).
(6)

From Lemma 3 we have Ξ(g1)) = (P3)+(−P1)−2(P1) and Ξ(g2)) = (P3)+(−P3)−
2(O). Thus Ξ(g3)) = 2(P3) + (−P1) + (−P3)− 2(O)− 2(P1). Clearly the point P3

is a positive point of each divisor.
Thus, if we start to sieve with a parameter t equal to 1, we obtain divisors on

the left part of the diagram that have a height lower or equal to 4. Since P3 is
a positive point for all these divisors, we are left with divisors that have a height
lower or equal to 3. We conclude with the definition of the reduced factor base:

F = {d ∈ Div(E) | d is elementary and h(d) ≤ 3} .

Remark 2. The factor base is the same on both sides of the diagram.

As previously, we can upper bound the cardinality of the factor base by the
number of divisors with height lower than 3, so the number of monic degree-3
polynomials in Fq, which is q3. Thanks to the Frobenius action, the base is reduces
by a factor of k, and the reduced factor base has size O(q3/k). At the end, assuming
that we get enough equations (we discuss this issue in Section 4.6), linear algebra
recovers the discrete logarithms of the initial factor base elements in O((q3/k)2q) =
O(q7/k2) operations. When k is close to q, this matches the result of [9].

Remark 3. Note that by contrast with polynomials, ideals of degree 4t are deter-
mined from 4t monomials, instead of 4t+1. This is unfortunate because it forces us
to increase the degrees to get enough degrees of freedom when generating relations.
However, this drawback is counter-balanced by the reduction of the factor base size
obtained by using the action of Frobenius.

4.6. How to get enough relations with the reduced factor base. Thank to
P3 which is a compelled point we know that, on the left part of the diagram, we
directly have divisors that split into factor base elements only. Now the questions
are whereas we manage to easily obtain small height divisors on the right part or
not, and how many relation we expect to write. We recall that, to be able to perform
linear algebra, we need as many relations as unknowns.

We have around q3/3 unknowns and we sieve on q3 pairs of polynomials (A,B)
consisting in linear combinations of g1, g2 and g3 as given in (6). It means that
we need a probability higher than 1/3 to get a relation. Since a degree-d divisor is
clearly linked with an irreducible polynomial of the same degree as seen in Section 2,
this probability is assumed to be the same that a random polynomial of degree d
to factor into terms of degree at most 3.

For degree d = 8, the probability is easy to compute. A polynomial fail to factor
into terms of degree at most 3 when one factor as degree 4 or more. Since there can
only be a single factor when the degree is 5, 6, 7 or 8 and at most two of degree 4.
Thus, for large fields, the probability of success approaches 1− (1/8 + 1/7 + 1/6 +
1/5 + 3/16 + 1/32) ≈ 0.147. Unfortunately, this is much smaller than 1/3.

20 ANTOINE JOUX AND CÉCILE PIERROT

Right part of the diagram: the two compelled points P2 and P3. Thus we need to
look at the right part of the diagram more carefully. Going back to the analysis
made in Section 4.3, Right part we see that choosing A and B as monic (in some
sense) does not reduce the height of the associated divisor. Hence, for (A,B) a pair
of linear combinations of g1, g2 and g3 as in (6), the divisor:

Ξ([A,B])

has still a height of 8. Because P3 is a zero of Φ∗(A(U, V)) and Φ∗(B(U, V)), we
note that P3 is a zero of Φ∗([A,B]) too. Yet it is not enough and we need to extract
another compelled positive point of the associated divisor to the image of A(V,W)
(resp. B(V,W)) over E . We start by underlining that g1, g2 and g3 respectively
becomes V − x2,W − x3 and (V − x2)(W − x3), when sending V to W and U to
V . Thus according to Lemma 3, the point P2 = 2P2 is a zero of all the generators,
and so a zero of [A,B] as P3. We conclude that we are left with a divisor of height
at most 6. The probability that it splits into a sum a divisors with height at most 3
is so roughly equals to:

1− (1/6 + 1/5 + 1/4) ≈ 0.383 > 1/3,

as q grows. As a consequence, we heuristically expect to get a linear system with
enough equations to get the discrete logarithms of all elements of F in O(q5) oper-
ations.

Heuristic. The heuristic in this linear algebra step and in all the following ones
comes from the fact that we have no argument to prove we really get enough equa-
tions. We can count them and expect that when their number slightly exceeds the
number of unknows, we are able to find a solution. Yet, nothing provably indicates
whether the kernel of our matrix of relations has dimension 1 or not.

5. Extended Factor Base and Individual Discrete Logarithm. We only
sketch here the last two main steps of our practical algorithm, the computation
of an Extended Factor Base and the Individual Discrete Logarithm step. Indeed,
they are an adaptation of the techniques that already exist for Frobenius represen-
tation algorithms to our setting.

5.1. From divisors of height 3 to divisors of height 4. As done in Frobenius
representation algorithms, we extend the initial factor base and now include all
elementary divisors up to height 4. Thanks to the Frobenius action, there are
approximately q4/4k ≈ q3/4 unknowns. The naive approach we showed earlier
gives the desired logarithms at a cost of O(q7) arithmetic operations (or O(q9/k2)
when k is away from q).

Practical speed up with regrouping. To speed up the computation of height 4 divi-
sors, it is possible to decompose the height 4 factor base into small groups, in a
way similar to [9], in order to perform several linear algebra steps on these small
groups, instead of a single big linear algebra step. In Appendix B, we give details on
how to produce relation in these groups. One technicality is the interaction of the
groupings with the reduction of the factor base size given the action of Frobenius.

Once the height 4 divisors are obtained, it is a simple matter to continue extend-
ing the factor base to height 5 divisors. For that final step, no additional linear
algebra is needed. It suffices to keep relations where a single height 5 divisors
appears, the rest being of lower degree. See Appendix B for a detailed explanation.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 21

However, for the height 4 extension, the expected number of produced relations
seems to be slightly too low asymptotically to guarantee its success. Nevertheless,
we tested the method on a practical example to check its viability. Namely, for
the target finite field F31345 , we were able to compute logarithms for an extended
factor base comprising divisors of height up to 5. This was done by choosing a curve
of (prime) cardinality 269 over F243. Studying the exact behavior of the height 4
extension to understand this gap is thus a matter of further research.

5.2. Computing Individual Discrete Logarithms. To solve the discrete loga-
rithm problem in our target finite field, we need not only to know the logarithms
of extended factor base elements but to be able to compute the discrete logarithm
of any arbitrary element. This is the aim of this section. Various descent phases
were previously proposed by various authors, the idea is to show how to adapt to
our context. In practice, one can use the bilinear descent, the classical descent and
the zig-zag descent or a mix of them. Indeed the quasi-polynomial descent of [3] is
unlikely to be practical for currently accessible computations.

For the classical descent which simply consist in writing the target finite field
element whose discrete logarithm is wanted as a product or quotient of relatively
low-degree polynomials in θ, no adaptation is needed. We only need to check that
any polynomial in f(θ) can be injected in the commutative diagram. This is simply
done by written the divisor of f(V) since Ψ(V) = θ. When f is irreducible, the
corresponding divisor is either the sum of two elementary divisors of height deg(f)
or a single elementary divisor of height 2 deg(f).

We illustrate the adaptation with the bilinear and zigzag descents:

5.2.1. Bilinear descent for our setting. The bilinear descent step is easy to adapt
from [9]. Remark that we usually need to unbalance the degrees of freedom in A and
B, thus choosing different sets of generating polynomials. Instead of constructing
the polynomials just from 1, U , V and UV we built them from higher degree
polynomials in Mta and Mtb respectively. We assume that ta ≥ tb. Let us first
analyze the case where we use all these monomials, remembering that there are 4ta
and 4tb of them. As usual, we force A and B to be monic and remove the head
monomial of B from A. All of the other coefficients are replaced by a corresponding
formal unknown. Thus, the polynomial A contains 4ta − 2 unknowns. If ta 6= tb,
B contains 4tb − 1 monomials. If ta = tb, we can remove an extra unknown from
B. Furthermore, we know that the height of factors of the form A − αB is upper
bounded by 4ta. We also know from Table 4.3.3 that the height of the bracket is at
most 8ta.

If we want to adjust the values modulo 4 of the number of degrees of freedom, it
is necessary to use compelled points. More precisely, we can force A and B to go
through one, two or three compelled points. This reduces the degrees of freedom
by the same amount on both sides. It also reduces height on the left by the same
value and heights on the right by its double.

As in Frobenius representation algorithms, the coefficients of each monomials in
[A,B] are bilinear (or linear or constant) in the A and B unknowns. To force an
elementary divisor of degree d to appear in [A,B], it suffices to require that the
bracket vanishes when evaluated at each of the d conjugate points corresponding
to the associated prime divisor. This yields a bilinear system of d equations in the
A and B unknowns. This equation can be solved using Grobner basis techniques
exactly as in the case of Frobenius representation.

22 ANTOINE JOUX AND CÉCILE PIERROT

The only extra (and minor) restriction here is the relation between the number
of A variables and B variables modulo 4.

5.3. Zig-zag descent. The zig-zag descent seems to be the best option to achieve
provable quasi-polynomial complexity. In particular, it is used both in [12] and [15].
As a consequence, we also show how to adapt it to our setting. As it is more lenghty
to describe than the bilinear descent, we assign a separate section to it.

Fq2t [X]∏
zi, where zi are degree-2 polynomials

Fq2t−1 [X]∏
zi, where zi are degree-4 polynomials

...

Fq4 [X]∏
zi, where zi are degree-2t−1 polynomials

Fq2 [X]
z̃ · z̃∗, where z̃ and z̃∗ are degree-2t polynomials

Fq [X]
z a degree-2t+1 polynomial

Figure 3. Tower of extensions over the base field Fq in the clas-
sical zig-zag descent.

Short recap on the zig-zag descent. First the main idea is to adapt the zig-zag
descent presented in [7] to our setting. Let us give an insight of this descent in
the classical settings. We call z our target, which is an irreducible polynomial
in Fq[X] of degree 3 2d = 2t+1. One crucial point of this method is that for any
relation in Fq2 [X] implying degree-d polynomials, one can find a relation in the
subfield Fq[X] at the price of having polynomials of degree twice as large. Thus, in
order to make z appear in a polynomial relation of Fq[X], we write it as a product
of two degree-d conjugated polynomials z̃ and z̃∗ over the extended field Fq2 [X]
and we try to get one relation (in the extended field) involving one of this degree-
d polynomials. Multiplying by the same conjugated relation we would obtain a
relation (in the subfield) where z appears.

3Indeed, one can use Wan’s theorem [23, Theo 5.1] to ensure that any field element is equivalent
to an irreducible polynomial of degree a power of 2 only slightly larger than the extension degree k.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 23

Recursively manipulating this trick on a tower of extensions as presented in
Figure 3, we write in fact z as a product of conjugated degree-2 polynomials
over Fq2t [X]. Indeed, this descent method rests upon the existence of an extended
field in which any degree-2 polynomials evaluated in θ can be written as prod-
uct of linear evaluations in θ. Thus at the end, we get a relation of the form
z(θ) =

∏
i Li(θ) where Li are linear polynomials.

Elliptic zig-zag descent. To adapt the previous descent to our settings, a idealized
method would be to exhibit a sufficiently large extension of the curve C in which
any height-2 divisor can be written not as a degree-2 place but as a sum of points on
this exact extension (and not the larger following one). This precisely would have
translated the requirement that all degree-2 polynomials split in linear polynomials
when the extension degree of the field is sufficiently large. Unfortunately, to the
best of our knowledge, this ideal adaptation isn’t possible.

On the technical side, we see that the method is much easier to describe when
computing logarithm in Fqk for an odd extension degree k. Indeed, in that case, the
compositum of Fqk and any extension Fq2i is simply Fqk2i . Making this assumption
is very convenient to describe the adaptation to the elliptic representation. We deal
now with to the elliptic representation setting, with the additional restriction that
the extension degree k is odd. Figure 4 illustrates our general technique.

5.3.1. Points and divisors over extensions. As mentioned in Section 3, the commu-
tative diagram in Figure 2 can be used not only over Fq but also over extensions.
We now give more details for Fqd , assuming that d and k are coprime.

This we now use polynomials A and B with coefficients in the larger field Fqd .
Everything remains almost identical, except the definition and properties of the
bracket. With a larger field, we use:

[A,B]∗ = Aπ(V,W)B(U, V)−A(U, V)Bπ(V,W),

where Aπ denotes the polynomial derived from A by raising each coefficient of A
to the power q (while keeping the same monomials). This new bracket [·, ·]∗ is
Fq-bilinear (but not Fqd -bilinear).

5.3.2. Bootstrapping the descent. Let z ∈ Fqk be our target arbitrary element for
which we want to find a discrete logarithm. Thanks to the diagram of Figure 2, we
know that there exists a polynomial Pol in Fq[U, V] such that:

z = Ψ(Ξ(Pol(U, V))).

In fact, there are many such polynomials. We choose ` such that 2` > k and search
a representation by a polynomial Pol in Fq[U, V] such that:

1. z = Ψ(Ξ(Pol(U, V))).
2. h(Ξ(Pol(U, V))) = 2`.
3. Ξ(Pol(U, V)) exactly corresponds to a place of degree 2`.

Let us call pz such a place in ΣFq(C). We could lift it to ΣF
q2
` (C) so that it cor-

responds to 2` points. However, for the rest of the method, it suffices to decompose
it into degree-8 places. Theses places appear in ΣF

q2
`−3 (C).

24 ANTOINE JOUX AND CÉCILE PIERROT

C /Fq2t−3∑
(p8)i, where p8

are degree-8 places

C /Fq2t−4∑
(p16)i, where p16

are degree-16 places

...

C /Fq2
p2t−1 + ˜p2t−1 , where p2t−1 and ˜p2t−1

are conjugated degree-2t−1 places

C /Fq
pz a degree-2t place

pz

deg 8deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 6deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 6deg ≤ 5

Figure 4. Tower of elliptic curves extensions in the elliptic zig-
zag descent. The path in green represents how we decompose pz in
smaller degree places over higher extensions during the algorithm.

5.3.3. Descending degree-8 places. Using a series of relations based on the bracket
[A,B]∗, there is a way to express the logarithm of the divisor corresponding to a
degree-8 place as a sum of logarithms of divisors of degree at most 4. Once this is
done, we can pair conjugates divisors and go one step down in the tower of quadratic
extension. This at most doubles the height of divisors. Iterating the process, we
now encounter places of degree 6 and 8 whose divisors need to be expressed as
combination of divisors of degree at most 4. Finally, at the bottom of the tower,
everything can be expressed using divisors of height at most 4, this in turn permit
to compute the logarithm of z.

Keeping this strategy in mind we now describe the transformation of logarithm
of divisors into sums of divisors of lower height. More precisely, we first transform
degree 8 places as sums using divisors of height at most 6. Places of degree 6 can be

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 25

expressed using divisors of height up to 5. Finally place of degree 5 are transformed
using divisors of height up to 4.

The exact degrees appearing in the descent strategy depend on the relative po-
sition in the tower of extension. Except at the lower levels, it is possible to descent
directly from degree 8 to degree 5 and from degree 6 to degree 4. Except at the
lower levels, it even possible to descend from degree 4 to degree 3.

Thus, from a practical point of view,there are two essentially equivalent options
for the descent. Either one starts from a degree-8 place and encounters descent
steps from 8 to 5 then 4 and descent steps from 6 to 4, except in the lower levels
where longer chains from 8 to 6 then 5 and finally 4 appear. Or one starts from a
degree 4 place and encounters descent steps from 6 to 4 then 3 and steps from 4 to
3. At the lower levels, this approach gets stuck.

In our presentation, we choose the approach that starts from a degree-8 place.
Note than in the context of provable algorithms, using degree 8 possibly leads to a
more difficult proof.

5.3.4. Degree-5 places. We start with degree 5 places since it is slightly simpler and
illustrates the general idea. We let d be the power of 2 corresponding to our current
position in the tower of extensions.

Again, we create somehow relations from:∏
α∈P1(Fq)

(A− αB) = [A,B]∗ ,

where (A,B) is a pair of polynomials with coefficients in Fqd . For degree 5, the
polynomials are built from monomials inM1, i.e. from 1, U , V and UV . To check
whether there are enough degrees of freedom to force a place too appear, we need
to consider how many (non equivalent) pairs of candidates relations we can try.

Since we use the new bracket instead of [·, ·], the counting changes slightly. Before
considering the property of the bracket, there is a total of 8 coefficients in Fqd , four in
each of A and B. Remark that, for any Λ ∈ Fqd , we have [ΛA,ΛB]∗ = Λq+1 [A,B]∗.
Simultaneously, the left side corresponding to (ΛA,ΛB) is Λq+1

∏
α∈P1(Fq)(A−αB).

Since Λq+1 appears on both sides, we see that (A,B) and (ΛA,ΛB) generate the
same equation. Thus, we can set the leading coefficient of A to 1. This removes
one of the coefficients.

In addition, because of the Fq-linearity of the bracket, for any λ ∈ Fq, we have
[A,B − λA]∗ = [A,B]∗ . Thus we can fix one component of the leading coefficient
of B to 0. Then, using [A, λB]∗ = λ [A,B]∗ we can fix one component of another
coefficient of B to 1. Finally, thanks to the relation [A− λB,B]∗ = [A,B]∗ , we can
set the corresponding component in A to 0.

This decreases the numbers of degrees of freedom to 7 − 3/d > 5, when d > 1.
Thus, we have enough degrees of freedom available. In the case d = 1, we are
in the base field where the logarithms of the degree-5 places have already been
precomputed as part of the extended factor base.

Let p5 be a place of degree 5 in ΣF
qd

(C). Using a variation on bilinear descent and
solving a bilinear system of equations in 6 unknowns over the extension field Fqd ,
we can obtained a relation involving p5. Since the number of variables is a small
constant, this is a very efficient computation.

26 ANTOINE JOUX AND CÉCILE PIERROT

The relation can be written in the form:∑
D∈Div |h(d)≤4

D = (p5) +D3

where D3 is a divisor of height 3. This shows that we can descend any divisors of
height 5 as a sum of divisors of height at most 4. Note that D3 and the divisors
on the left may not be elementary, however, in that case they decompose into
elementary divisors of lower degrees.

Note that we do not prove here that such a decomposition always exists. Instead
out counting of the degrees of freedom gives heuristic support to this fact. It might
be possible to adapt the proofs of [15] or [12] to our specific setting.

5.3.5. Degree-6 places. For degree 6, there are two options depending of the exten-
sion degree d.

When d ≥ 4, we can again build relations using only the monomials 1, U , V and
UV . In this case, it gives 7 − 3/d > 6 degrees of freedom. Thus, we can directly
descend to a sum of divisors of height at most 4.

For the remaining cases, d = 2 or d = 1, we need to use monomials from M2

to provide more degrees of freedom. However, if we use them all, the height of
the left-hand factor become 8 and the height of the bracket is 16. To control
this explosion, it suffices to fix three (essentially arbitrary) compelled points and
keep a basis of all functions going through these 3 points. This basis contains 5
polynomials, say g1, . . . , g5. Forming A and B as linear combinations of the gis
induces a systematic factor of total height 3 in every term A− αB (corresponding
to the compelled points). Furthermore, this systematic factor also appears in the
decomposition of the bracket together with an extra systematic factor also of height
3. This extra factor corresponds to the compelled points translated by −P1. Thanks
to the systematic factors, the height of the left becomes 5 while the height of the
right becomes 10. There is a total of 10 coefficients in A and B, which corresponds to
9− 3/d ≥ 6 degrees of freedom when removing identical relations as in the previous
case. More precisely, we can fix the coefficient of g1 in A to 1, one component of
the coefficient of g1 in B to 0, and one component of g2 to 1 in B and 0 in A.

Solving a bilinear system, we can find coefficients that lead to an equation:∑
D∈Div |h(d)≤5

D = (p6) +D4

where D4 is a divisor of height 4. This expresses the logarithm p6 as a sum of
logarithms of divisors of height at most 5.

5.3.6. Degree-8 places. For degree 8 places, we proceed as in the second method for
degree 6. We use monomials fromM2. With three compelled points as in degree 6,
we have 9 − 3/d degree of freedom. This is more than 8 as soon as d ≥ 4. In this
case, we can write the logarithm p8 as a sum of logarithms of divisors of height at
most 5.

When d is 1 or 2, we use only two compelled points. We thus have a basis of
6 polynomials and 9 − 3/d ≥ 8 degrees of freedom. The height after removing the
systematic factors become 6 for the left factors and 12 for the bracket. Thus, in the
lower levels of the tower of extension, we can write the logarithm p8 as a sum of
logarithms of divisors of height at most 6.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 27

5.3.7. Practical (un)efficiency of the approach. In the Frobenius representation zig-
zag, every step down the tower was based on the creation of one relation. As a
consequence, at every level, the total number of elements under consideration was
multiplied by O(q).

By contrast, here, we need two levels of relations for each of the middle levels of
the tower. As a consequence, the total number at each level is multiplied by O(q2),
which makes this approach much less appealing in practice.

6. Practical discrete experiment over F31345 . To study the practicality of the
elliptic representation in discrete logarithm computations, we have performed an
experiment using q = 35 = 243. We did run our experiment on a server. The
most time consuming steps where implemented in pure C, with calls to the magma
software [2] for verification purposes and complex Gröbner basis computations.

We define F243 as F3[a] where a is a root of the irreducible polynomial x5−x+1.
To define the full extension, we use the elliptic curve E with equation:

y2 = x3 + a x2 + x+ a35.

This curve has k = 269 points over F243, thus allowing us to define the extension
F243269 = F31345 = F243[v]. Note that this k is a prime close to the top of the Hasse
interval for a field with 35 elements. We also choose the point P1 = (1, a195) to
describe the action of Frobenius.

The trivariate description, i.e. the curve C obtained from the Semaev polynomial
is then defined by the three equations:

U V+a3 U W+a9 U+V W+V+a9W+a193=0

U W 2+a13 U W+a26 U+a239 V W 2+a239 V W+a239 V+a6W 2+a59W+a134=0

V 2W 2+V 2W+V 2+V W 2+a190 V W+a38 V+W 2+a38W+a110=0

Adding the two extra Frobenius relations V = Uq and W = V q we can use
a Gröbner basis algorithm to find the minimal polynomial Fv of our finite field
generator v.

For simplicity, we use the image of the point P1 by the pairing to the field as a
basis of the discrete logarithms in the subgroup of large order:

31345 − 1

648196409762
.

Of course, 648196409762 = 2× 112 × 10223× 262007 is small enough so that loga-
rithms modulo this number can be computed by generic algorithms.

6.1. First set of discrete logarithms. In an initial step, we constructed equa-
tions from a pair of polynomials (A,B) of the form:

A(U,V)=(U−U(P1))(V−V (P1))+CA (U−U(P1),B(U,V)=(V−V (P1))+DB (U−U(P1),

where CA and DB take all possible values in F243. Because of the compelled point
P1, every polynomial of the form A − αB factors into places of degree at most 3.
Going through all the possible pairs took 90s on a single core of our server and
created 22 575 equations in 17 887 variables corresponding to the places of degree 2
and 3.

This system of equations was then solved using Wiedeman algorithm, the stan-
dard four phases respectively took:
• First matrix multiplication sequence. 286 minutes on four cores,
• Fast Berlekamp-Massey. 14 minutes on a single core,

28 ANTOINE JOUX AND CÉCILE PIERROT

• Second matrix multiplication sequence. 146 minutes on four cores,
• Final sum and verification. 3 minutes on a single core.
The resulting 17 887 logarithms were tested by using magma to transfer places

to the finite field through pairings and verifying the exponentiation.

6.2. Discrete logarithms of degree-4 places. For places of degree 4, we used
the grouping technique described in Appendix B and worked with 244 groups. For
a typical group4, the cost of computations of the corresponding logarithms are
distributed as follow:
• Generating equations. Under a minute on a single core, about 13 500

unknowns per group.
• First matrix multiplication sequence. 8 minutes on four cores,
• Fast Berlekamp-Massey. 10 minutes on a single core,
• Second matrix multiplication sequence. 5 minutes on four cores,
• Final sum and verification. Under a second.
In total, 3 253 919 logarithms were computed for degree 4 places.

6.3. Discrete logarithms of some degree-5 places. For place of degree 5, a
fraction of the logarithms can be obtained by descending to degree 4. Unfortunately,
this is not enough to get all of them. To be able to go the descent phase, we divided
the places of degree 5 into 242× 244 groups of approximately equal size. Each full
set of 244 groups in turn permits a “descent” from degree 5 to degree 5 (inside the
specific set of group) for a fraction of places. In total, 20 full sets of 244 groups
were enough to enable the descent phase. The timings for each set of groups were
as follow:
• Generating equations. About 750 minutes for most sets (less for the first

three because of the cost of descent for later sets).
• Linear algebra. About 4 minutes on four cores, for a single group. I.e.

roughly 1000 minutes for a set.
• Final verification. About 15 000 minutes to recompute all equations, check

all logarithms and perform eventual corrections. The corrections are necessary
when the initial (truncated) systems of equations do not have full rank. In
that case, a small number of logarithms are possibly wrong and corrected in
this step.

In total, 1 753 982 logarithms were computed for the first set of degree 5 places.
Then, 754 224 for the second set and 323 074 for the third. Finally, the remaining
17 sets of roughly equal size (because of the choice to only use the first three for
degree-5 to degree-5 descent here) containing altogether 2 319 092 logarithms.

6.4. Descent. To illustrate the descent, we start from a challenge generated from
the expansion of the real constant Π. The exact formula is given in a magma ver-
ification script available on request, or given in Appendix C. Let us denote this
challenge value by Z.

In a first step, we consider many elements of the form Zi,j = Z · (u+1)i · (u+a)j .
Since the logarithms of v + 1 and v + a are known, finding the logarithm of one of
those is equivalent to finding the logarithm of Z. We consider many such elements
to have a better chance to find a smooth expression of one of them.

4There are a couple of groups with slightly different performances but this does not affect the
overall performance.

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 29

For each such element, we view it as a polynomial in v and using a continued
fraction algorithm to find an expression of Zi,j as a quotient of two half-degree
polynomials in v. We kept the Zi,j with the lowest possible degree obtained after
factoring the numerator and denominator. More precisely, we do not consider the
degree of the factorization into polynomials but into places of the curve C .

We considered 240 values of j and 30 000 values of i for each j. We run 48
instances in parallel on our server for a wall-clock time of 4200 minutes and a
CPU-time of approximately 140 days.

The best Zi,j contained places up to degree 36, it is given in the magma verifi-
cation script.

By using the bilinear descent, we were able to compute the logarithms of places
up to degree 18. As an illustration, we give in the magma file the logarithm of a
degree 18 polynomial in v, which was computated as the sum of logarithms of two
places of degree 18. Each of those two computations took about 4 days, using a
single core5. We also computed the logarithms of lower degree places.

However, our decomposition still contains three polynomials of respective degree
25, 34 and 36 (each corresponding to two places of the same degree) for which we
could not compute the logarithms. The reason for this aborted computation is that
the Gröbner basis descent did not terminate for theses cases. We considered using
the alternative approaches but did not find an option that would allow us to finish
the computation without requiring excessive development and/or running times.

REFERENCES

[1] Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete
logarithms over finite fields. Inf. Comput., 151(1-2):5–16, 1999.

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

[3] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 1–16, 2014.

[4] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren, editors. Handbook of Elliptic and Hyperelliptic
Curve Cryptography. Chapman and Hall/CRC, 2005.

[5] Jean Marc Couveignes and Reynald Lercier. Elliptic periods for finite fields. Finite
Fields and Their Applications, 15(1):1–22, 2009.

[6] Faruk Göloglu and Antoine Joux. A simplified approach to rigorous degree 2 elimination
in discrete logarithm algorithms. IACR Cryptology ePrint Archive, page 430, 2018.

[7] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the powers of 2. IACR
Cryptology ePrint Archive, 2014:300, 2014.

[8] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the discrete logarithm
problem in finite fields of fixed characteristic. Trans. Amer. Math. Soc., 270:3129–3145,
2018.

[9] Antoine Joux and Cécile Pierrot. Improving the polynomial time precomputation of
frobenius representation discrete logarithm algorithms - simplified setting for small
characteristic finite fields. In Advances in Cryptology - ASIACRYPT 2014 - 20th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages
378–397, 2014.

5Since magma was not installed on our main server, the computation of Gröbner basis were
delegated to a smaller server. However, during that time the main server was simply waiting for
the result.

30 ANTOINE JOUX AND CÉCILE PIERROT

[10] Antoine Joux and Cécile Pierrot. Technical history of discrete logarithms in small char-
acteristic finite fields - the road from subexponential to quasi-polynomial complexity.
Des. Codes Cryptogr., 78(1):73–85, 2016.

[11] Thorsten Kleinjung and Benjamin Wesolowski. A new perspective on the powers of two
descent for discrete logarithms in finite fields. IACR Cryptology ePrint Archive, page
647, 2018.

[12] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-polynomial
time in finite fields of fixed characteristic. Cryptology ePrint Archive, Report 2019/751,
2019. https://eprint.iacr.org/2019/751.

[13] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-polynomial
time in finite fields of fixed characteristic. Journal of the American Mathematical So-
ciety, 2021.

[14] Guido Lido. Discrete logarithm over finite fields of small characteristic. Master’s the-
sis, Universita di Pisa, September 2016. Available from https://etd.adm.unipi.it/t/
etd-08312016-225452.

[15] Guido Lido. Discrete logarithm over finite fields of small characteristic. Unpublished
(personal communication), 2019.

[16] Guido Lido. A provably quasi-polynomial algorithm for the discrete logarithm problem
in finite fields of small characteristic, 2022.

[17] Giacomo Micheli. On the selection of polynomials for the dlp quasi-polynomial time
algorithm for finite fields of small characteristic. SIAM Journal on Applied Algebra
and Geometry, 3(2):256–265, 2019.

[18] Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–
261, September 2004.

[19] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance (corresp.). IEEE Transactions
on Information Theory, 24(1):106–110, 1978.

[20] Carl Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In Dis-
crete algorithms and complexity, pages 119–143, 1987.

[21] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing Com-
pany, Incorporated, 2nd edition, 2008.

[22] Emanuela Ughi. On the number of points of elliptic curves over a finite field and a
problem of B. Segre. European Journal of Combinatorics, 4(3):263–270, 1983.

[23] Daqing Wan. Generators and irreducible polynomials over finite fields. Mathematics of
Computation, 66:1195–1212, 1997.

[24] William C. Waterhouse. Abelian varieties over finite fields. Annales scientifiques de
l’Ecole Normale Supérieure, 2(4):521–560, 1969.

https://eprint.iacr.org/2019/751
https://etd.adm.unipi.it/t/etd-08312016-225452
https://etd.adm.unipi.it/t/etd-08312016-225452

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 31

Appendix A. Notations and reminders about algebraic function fields
and divisors. Let K = Fq denote a finite field. Let C be a non-singular curve
in the n-dimensional projective space Pn(Fq) defined over K and π denote the
Frobenius map on Pn(Fq). We let K(C) denote the function field of C over K.
More details can be found in [4, 21] if needed. A discrete valuation on K(C) is a
map V from K(C) to Z such that for all x, y ∈ K(C) we have:

1. V(xy) = V(x) V(y);
2. V(x+ y) ≥ min(V(x), V(y));
3. V(x+ y) = min(V(x), V(y)) when V(x) 6= V(y).

We define an equivalence relation between valuations by saying that two valuations
V and V′ are equivalent whenever there exists a non zero rational constant α such
that for all x ∈ K(C), we have V′(x) = α V(x). We recall that a place of K(C) is an
equivalence class of discrete valuations of K(C) which are trivial on K. The set of
places of K(C) is denoted by ΣK(C). In every place p, there exists a unique valuation
whose value group is Z, it is called the normalized valuation of p and denoted Vp.

We recall that, for a non-singular curve C , there is a one-to-one correspondance
between places of K(C) and Galois orbit of points on C . The degree of a place p is
the number of points in the corresponding orbit, we denote it by Deg(p).

The divisor group Div(C) of C (over K) is defined as the free abelian group over
ΣK(C). An element D of Div(C) is expressed as:

D =
∑

p∈ΣK(C)

np(p),

where each np ∈ Z and np = 0 for all but finitely many places p. Since each
place corresponds to a Galois orbit of points, a divisor D can also be given in the
alternative form:

D =
∑

P∈C/Fq

nP (P),

where each nP ∈ Z, nP = 0 for all but finitely many points and nP = nQ if P and
Q belong to the same Galois orbit of points. A divisor D is said to be prime when
D = (p) for a place p ∈ ΣK(C).

The degree of a divisor D is defined as:

Deg(D) =
∑

p∈ΣK(C)

npDeg(p) =
∑

P∈C/Fq

nP .

In this paper, a degree-0 divisor that is the difference between a prime divisor and
the right number of times the point at infinity O is defined as an elementary divisor.
In particular, any elementary divisor associated to a point Q ∈ C /Fqd is a divisor
of the form:

d−1∑
i=0

πi(Q)− d(O).

A divisor D is called effective when np ≥ 0 for all p. Any divisor D can be
uniquely written as a difference of two effective divisors in the form D = D0−D∞,
where:

D0 =
∑

p ∈ ΣK(C)

np ≥ 0

np(p) and D∞ =
∑

p ∈ ΣK(C)

np < 0

−np(p).

32 ANTOINE JOUX AND CÉCILE PIERROT

The degree map from Div(C) to Z is a group morphism. Its kernel is denoted
Div0(C) and called the group of degree-0 divisors of C , it is a subgroup of Div(C).

We define the map div that sends an element f ∈ K(C)∗ to a divisor in the
following way:

div : K(C)∗ 7→ Div(C)

f 7→ div(f) =
∑

p∈ΣK(C)

Vp(f) p.

A divisor associated to a function in the above way is called a principal divisor. The
image of div, i.e. the set of all principal divisors, is denoted Princ(C). All principal
divisors have degree 0 and Princ(C) is a subgroup of Div0(C). Every principal
divisor can also be written as a difference of effective divisors as:

div(f) = div(f)0 − div(f)∞.

The places (or points) that occur in div(f)0 or div(f)∞ are respectively called
the zeroes or poles of f . Note that for two functions f and g of K(C)∗, we have
div(f) = div(g) if and only if there exists an element α ∈ K∗ such that g = α f .

Since Princ(C) is a subgroup of Div0(C), we can form the quotient group, which
is called the Picard group (or divisor class group) of C and denoted Pic0(C). Two
divisors have the same representative in the Picard group if and only if their differ-
ence is principal.

Appendix B. Relations for factor base extension. Let us describe our de-
composition in groups to extend the factor base to all elementary divisors of height
equal or lower than 4. The idea is to write a partition of q groups with q2 ele-
ments in each and to be able to decrease the height of the divisor associated to the
bracket on the right again. To illustrate the process, we define a first group with
the monomials:

g1 = UV
g2 = U + V
g3 = 1.

Defining then G as all the linear combinations of these three monomials with coef-
ficients in Fq permits to set our first (special) group as:

G = {div(Ψ∗(g)) | g ∈ G}.
All the divisors in the special group have height lower than 4. We now sieve on pairs
of polynomials (A,B) such that A = g1 + αg2 and B = g1 + βg3 where α, β ∈ Fq.
On the left side it is clear that all polynomials raised in the product belong to G. So
all the divisors in the corresponding sum on the left side have height lower than 4
(see Table 4.3.1) and belong to G. On the right side, we are left with a bracket
[A,B] leading to a height lower than 8. Again, the probability that it splits into
divisors with a height lower than 3 is too low. Yet, computing the brackets:

[g1, g2] = VW (U + V)− (V +W)UV = V 2(W − U)
[g1, g3] = V (W − U)
[g2, g3] = W − U

and thanks to bilinearity we obtain thatW−U is a common factor of [A,B]. Besides
we note that h(Ξ(W − U)) = 4.

Removing this constant contribution, we are left with a residual height of 4 on
the right side. If it decomposes into lower height divisors, this gives us a linear
equation involving the logarithms a subset of the divisors in G. With enough such

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 33

equations, we again use linear algebra to compute the logarithms of the elements
of G.

Note that the probability to find a good relation is 3/4 when q grows. We thus
expect 3q2/4 equations in q2/4.

Note that the pairs (A,B) that fail to give an equation are nonetheless useful!
Indeed, a pair (A,B) of sieving polynomials fails if [A,B] leads to a divisor with
height precisely 4. It means that after obtain the logarithm of elements of G we can
derive the logarithm of these extra divisors for free.

B.1. Construction of groups with one compelled point. Following the idea
of the special group G, we would like to construct small other groups of divisors that
have two properties. First, for each group, we need to be able to create relations
involving only heigh-4 divisors from this group on the left, possibly with divisors of
lower height. Second, we need to control the splitting probability of the bracket on
the right of the equation. We proceed using compelled points.

How to choose our generators g1, g2 and g3 in this case ? We recall that the naive
height-4 sieving is based on the monomials 1, U, V, UV . Since there is no reason to
favor nor U neither V , we propose to preserve symmetry between the two variables,
writing:

g1 = UV + k1U
g2 = UV + k2V
g3 = 1.

where k1 and k2 are in the base field Fq. Defining again groups:

Gk1,k2 = {Ξ(g1 + αg2 + βg3) |α, β ∈ Fq}

with q2 divisors each, we sieve on pairs of polynomials (A,B) such that A = g1+αg2

and B = g1 + βg3 where α, β ∈ Fq. On the left side all divisors have height lower
than 4 and belong to Gk1,k2 . On the right side, we are left with a bracket [A,B]
leading to a height lower than 8. To decrease this height we consider the brackets:

[g1, g2] = k1 [U,UV] + k2 [UV , V] + k1k2 [U, V]
[g1, g3] = VW + k1V − UV + k1U
[g2, g3] = VW + k2W − UV + k2V

Note that [A,B] is a linear combination of these brackets and that the last two
ones are associated to divisors of height lower than 4. Thus, removing a point in
div(Φ∗([g1, g2])) will suffice. Let us look at k1 [U,UV] + k2 [UV , V] + k1k2 [U, V] in
details. Calling cf the coefficient in Fq of the leading monomial6 of [g1, g2] for the
denominator of any fraction f , we see that we can force k1c[U,UV] + k2c[UV ,V] +

k1k2c[U,V] = 0 in Fq. We underline that for any fixed constant k1 6= −c[UV ,V]c
−1
[U,V]

there exists a unique k2 such that the previous equality is verified. It means that
we create q − 1 such groups. Besides, this annihilates the leading monomial so
decreases the weighted degree of [g1, g2] and leads to remove a point in the associated
divisor of [A,B]. Hence, we are left with a residual height of 7. We want the
corresponding divisor to be written as a sum of divisors of height 3 at most. The
heuristic probability to get a good relation is so equal to:

1− (1/7 + 1/6 + 1/5 + 1/4) ≈ 0.2405

as q tends to infinity.

6Considering the weighted degree in X and Y of each monomial.

34 ANTOINE JOUX AND CÉCILE PIERROT

This is slightly too low for the purpose. As a consequence, we need either to
improve the group construction or to make good use of the equations with a single
height-4 divisor in the bracket. Nevertheless, since 0.24 is close to 1/4, it is con-
ceivable that we can find enough relations in practice. We decided to test it and
we computed all the discrete logarithms up to height-5 for the target finite field
F31345 = F243269 with this method.

Remark 4. It is useful to know that:

[U,UV] = UV (V −W)
[UV , V] = VW (V −W)

[U, V] = V 2 − UW

B.2. Interaction with the action of Frobenius. Looking at our groupings, we
see that we have built a total of q different ones (including the special group G.
Since each grouping contains about q2/4, the computations (if successful) gives us
about q3/4 logarithms of height 4. This is much less than the total expected number
which is close to q4/4. However, the action of the Frobenius potentially multiply
these logarithms by a factor of k. For practical, we heuristically assume that this
is the case. The fact that we were able to compute the logarithms of all height-4
divisors for F31345 supports this assumption.

B.3. Going to height 5. We continue the extension to height 5 in similar fashion.
Since, this requires more degree of freedom, we no longer need to use compelled
points. Instead, we sieve on more general polynomials of the forms A = UV +
aUU + a1 and B = UV + bV V + b1. On the left-hand side, all factors of the form
A − αB have height 4. Thus they decompose in divisors of height at most 4 and
their logarithms can be directly obtained. On the right-hand side, the bracket has
height at most 8. We expect that it contains an elementary divisor of height 5
with probability close to 1/5. As a consequence, we obtain about q4/5 divisors of
height 5 without performing any linear algebra.

Again, thanks to the action of Frobenius, we expect to recover an overwhelming
fraction of divisors of height 5. This turn out to work for our example F31345 .

Appendix C. Verification of discrete logarithms for the target field F31345 .
Here is a Magma code that constructs the target finite field of our example thanks
to an elliptic curve and gives some discrete logarithms.

1 gf3po l<x>:=PolynomialRing (GF(3)) ;
2 g fext<a>:=ext<GF(3) | x^5−x+1>;
3 gf2po l<x2>:=PolynomialRing (g f ex t) ;
4 q :=3^5;
5
6 A:=a ;B:= g f ex t ! 1 ; C:=a^35;
7 E:=E l l i p t i cCurv e ([0 ,A, 0 ,B,C]) ;
8 P1:=E ! [1 , a ^195] ;
9

10 k:=#E;
11
12 co f :=648196409762;
13 M:=((q^k)−1) div co f ;
14

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 35

15 R1<U,W,V>:=PolynomialRing (g fext , 3) ;
16
17 // Use Semaev Polynomials to c r e a t e C
18 // U, V, W are abc i s s a e o f 3 po in t s P_U, P_V=P_U+P1 and P_W=P_V+P1
19 // F i r s t equat ion S3 (U,V,x_P1)=0
20 S1:=P1[1]+U+V;
21 S2:=P1 [1] ∗ (U+V)+U∗V;
22 S3:=P1 [1] ∗U∗V;
23 f1 :=(−(S1+A) ∗(S3+C)+(S2−B) ^2) ;
24
25 // Second equat ion S3 (V,W,x_P1)=0
26 s h i f t v a r :=hom<R1−>R1 |V, 0 ,W>;
27 f2 := s h i f t v a r (f 1) ;
28
29 // Third equat ion S3 (U,W,x_(2∗P1))=0
30 P2:=2∗P1 ;
31 Sb1:=P2[1]+U+W;
32 Sb2:=P2 [1] ∗ (U+W)+U∗W;
33 Sb3:=P2 [1] ∗U∗W;
34 f3 :=(−(Sb1+A) ∗(Sb3+C)+(Sb2−B) ^2) ;
35 // Remove degenerate sub−v a r i e t i e s to get C
36 IdealC :=RadicalDecomposit ion (I d ea l ([f1 , f2 , f 3])) [1] ;
37
38 // Add Frobenius c on s t r a i n t to get f i e l d d e f i n i t i o n (in V because o f

the chosen orde r ing o f the polynomial r i ng)
39 Fie ldDef :=GroebnerBasis (Bas i s (IdealC) cat [V−U^q ,W−V^q]) [3] ;
40 BigFie ld<v>:=ext<g f ex t | Univar iatePolynomia l (F ie ldDef) >;
41 Eext :=BaseChange (E, BigFie ld) ;
42 bool ,Q:= IsPo int (Eext , v) ;
43 Q2:=Q+Eext ! P1 ;
44 i f Q2 [1] ne Q[1]^ q then
45 Q:=−Q;
46 end i f ;
47
48 u:=(Q−Eext ! P1) [1] ;
49 w:=(Q+Eext ! P1) [1] ;
50
51 // Check the Frobenius r e l a t i o n s
52 a s s e r t u^q eq v ;
53 a s s e r t v^q eq w;
54
55 // Mappings po in t s to f i e l d s [can be extended to p laces , s e e paper]
56 FF<XX,YY>:=Funct ionFie ld (E) ;
57 HH:=hom<FF−>BigFie ld |Q[1] ,Q[2] >;
58
59 MyTatePairing := func t i on (P, ord , c o f)
60 prod :=BigFie ld ! 1 ;
61 pow:=BigFie ld ! 1 ;
62 ZeroPt :=Zero (E) ;
63 curPsum:=ZeroPt ;
64 curPdoub:=P;
65 e :=ord ;
66 whi l e (e ne 0) do
67 i f (e mod 2) eq 1 then
68 tmpD:=Div i so r (curPdoub)+Div i so r (curPsum)−Div i so r (curPdoub+

curPsum)−Div i so r (ZeroPt) ;
69 bool , fn := I sP r i n c i p a l (tmpD) ;
70 prod :=pow∗prod∗HH(fn) ;
71 curPsum:=curPdoub+curPsum ;

36 ANTOINE JOUX AND CÉCILE PIERROT

72 end i f ;
73 tmpD:=2∗Div i so r (curPdoub)−Div i so r (2∗ curPdoub)−Div i so r (ZeroPt) ;
74 bool , fn := I sP r i n c i p a l (tmpD) ;
75 pow:=pow^2∗HH(fn) ;
76 curPdoub:=curPdoub+curPdoub ;
77 e :=e div 2 ;
78 end whi l e ;
79 re turn prod^co f ;
80 end func t i on ;
81
82
83 P0:=−P1 ;
84
85 // Sanity check : Frobenius c o r r e c t n e s s a f t e r mapping to BigFie ld
86 L0:=MyTatePairing (P0 , k , c o f) ;
87 Ltes t :=MyTatePairing (14∗P0 , k , c o f) ;
88 a s s e r t Lte s t eq L0^(&+[q^ i : i in [0 . . 1 3]]) ;
89
90
91 // Chal lenge Log from Pi
92
93 R:=Rea lF ie ld (2000) ;
94 p i va l :=Pi (R) ;
95
96 Z:=&+[(Floor (p i va l ∗3^(va l+1)) mod 3) ∗v^(va l div 5) ∗a^(va l mod 5) : va l

in [0 . . 1 3 4 4]] ;
97
98 va l :=(Z∗(v+1)^9586∗(v+a) ^134) ;
99

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 37

100 tmp1 :=(1) ∗v^134+(−1+a^3)∗v^133+(a−a^4)∗v^132+(−1−a+a^2+a^4)∗v^131+(a
^3−a^4)∗v^130+(−a−a^3−a^4)∗v^129+(a+a^2+a^3−a^4)∗v^128+(a−a^3+a^4)
∗v^127+(−1+a^2)∗v^126+(−1−a^2+a^3)∗v^125+(1−a^2−a^3−a^4)∗v^124+(−a
−a^3−a^4)∗v^123+(−a+a^2+a^3−a^4)∗v^122+(−a−a^2+a^3)∗v^121+(a−a^2+a
^3−a^4)∗v^120+(−1+a−a^2−a^4)∗v^119+(a^2+a^3+a^4)∗v^118+(−a−a^2−a
^4)∗v^117+(−1−a^2−a^3−a^4)∗v^116+(−a^2+a^3)∗v^115+(a−a^2+a^3−a^4)∗
v^114+(1+a−a^2+a^3)∗v^113+(−1−a+a^3)∗v^112+(1+a+a^2+a^3+a^4)∗v
^111+(a−a^3)∗v^110+(−1−a^2−a^3+a^4)∗v^109+(a^2−a^3+a^4)∗v^108+(1−a
−a^2+a^3)∗v^107+(1−a+a^2+a^3)∗v^106+(a^2−a^3)∗v^105+(−1+a^2+a^3−a
^4)∗v^104+(−a−a^4)∗v^103+(1+a+a^3−a^4)∗v^102+(−1+a−a^2+a^3+a^4)∗v
^101+(a+a^3+a^4)∗v^100+(−1+a+a^2−a^3+a^4)∗v^99+(1−a+a^2−a^3)∗v
^98+(1+a^3−a^4)∗v^97+(−1+a+a^4)∗v^96+(−1−a−a^2−a^3)∗v^95+(−1+a−a
^2+a^3+a^4)∗v^94+(a^2+a^4)∗v^93+(−1+a−a^2−a^3+a^4)∗v^92+(−a−a^2−a
^3−a^4)∗v^91+(−a+a^2−a^3+a^4)∗v^90+(a^3)∗v^89+(−1−a^2)∗v^88+(a−a
^2+a^3+a^4)∗v^87+(−1−a+a^2)∗v^86+(1+a^2+a^3−a^4)∗v^85+(1+a+a^2+a
^3−a^4)∗v^84+(a−a^2+a^4)∗v^83+(−1−a^4)∗v^82+(a^3)∗v^81+(−1−a−a^3)∗
v^80+(−1+a+a^2−a^4)∗v^79+(a^4)∗v^78+(1−a+a^2+a^3−a^4)∗v^77+(1+a+a
^2+a^3−a^4)∗v^76+(−1−a+a^2−a^3−a^4)∗v^75+(−1+a^3+a^4)∗v^74+(1−a^2−
a^3+a^4)∗v^73+(1+a−a^3+a^4)∗v^72+(a−a^3)∗v^71+(1+a^3+a^4)∗v^70+(a−
a^2+a^3−a^4)∗v^69+(−1+a−a^2−a^4)∗v^68+(1+a−a^4)∗v^67+(−a^2+a^4)∗v
^66+(1+a+a^2−a^3+a^4)∗v^65+(a−a^2+a^4)∗v^64+(−1−a+a^2+a^3−a^4)∗v
^63+(−1+a^2+a^4)∗v^62+(1−a+a^3−a^4)∗v^61+(−1+a+a^2−a^3+a^4)∗v
^60+(1−a+a^3−a^4)∗v^59+(−1+a−a^2−a^3+a^4)∗v^58+(−1−a+a^3+a^4)∗v
^57+(−a^2−a^4)∗v^56+(a^2−a^4)∗v^55+(1)∗v^54+(−1+a^2−a^3+a^4)∗v
^53+(a+a^2−a^3−a^4)∗v^52+(a+a^2−a^3−a^4)∗v^51+(a^3−a^4)∗v^50+(1−a
^4)∗v^49+(1−a−a^2+a^3)∗v^48+(1+a+a^3)∗v^47+(−1+a^2−a^3+a^4)∗v
^46+(1−a^2+a^3)∗v^45+(1−a+a^2+a^3+a^4)∗v^44+(a−a^2)∗v^43+(1+a^2+a
^3)∗v^42+(−1+a−a^2+a^4)∗v^41+(1+a^2−a^3+a^4)∗v^40+(−1+a^2+a^3)∗v
^39+(1−a−a^2+a^3+a^4)∗v^38+(−1+a^2−a^3)∗v^37+(−a−a^3−a^4)∗v^36+(a
^2+a^4)∗v^35+(a^3−a^4)∗v^34+(1+a+a^3−a^4)∗v^33+(−a^2)∗v^32+(1−a+a
^2+a^3+a^4)∗v^31+(1+a−a^3−a^4)∗v^30+(−1−a−a^3)∗v^29+(1−a^2−a^3−a
^4)∗v^28+(−1+a^3)∗v^27+(−1+a^2−a^3)∗v^26+(1−a+a^2−a^3−a^4)∗v
^25+(−1−a−a^2)∗v^24+(−1+a−a^3+a^4)∗v^23+(1+a^2−a^3)∗v^22+(−1+a−a
^2−a^3+a^4)∗v^21+(−1+a−a^3)∗v^20+(−a−a^3)∗v^19+(1+a^3+a^4)∗v
^18+(1+a−a^2+a^4)∗v^17+(a−a^2−a^3)∗v^16+(1)∗v^15+(−a^2+a^3)∗v
^14+(1+a−a^3)∗v^13+(1−a+a^2+a^4)∗v^12+(−1−a^3)∗v^11+(−1−a−a^2+a^3−
a^4)∗v^10+(−a^4)∗v^9+(1+a) ∗v^8+(−1+a^2)∗v^7+(−1+a+a^2+a^3+a^4)∗v
^6+(1−a−a^2−a^3)∗v^5+(a−a^3−a^4)∗v^4+(−a+a^2+a^3−a^4)∗v^3+(1−a^2−a
^3)∗v^2+(−1+a+a^2−a^3−a^4)∗v+(−1) ;

101

38 ANTOINE JOUX AND CÉCILE PIERROT

102 tmp2 :=(1) ∗v^134+(−a−a^3)∗v^133+(1+a^3+a^4)∗v^132+(1−a+a^2−a^4)∗v
^131+(1+a−a^4)∗v^130+(1−a+a^2+a^3)∗v^129+(−1+a−a^2−a^3)∗v^128+(−1+
a−a^2−a^3+a^4)∗v^127+(a^2)∗v^126+(−1+a−a^2)∗v^125+(−a−a^3)∗v^124+(
a^2−a^3−a^4)∗v^123+(1+a^2+a^4)∗v^122+(−1−a^2+a^4)∗v^121+(−a−a^2−a
^4)∗v^120+(−1−a^2−a^3)∗v^119+(a+a^3)∗v^118+(1+a+a^2+a^4)∗v^117+(1+
a+a^2+a^3+a^4)∗v^116+(1−a+a^2−a^3−a^4)∗v^115+(−1−a−a^3+a^4)∗v
^114+(1−a+a^2+a^3+a^4)∗v^113+(−1+a+a^2+a^3+a^4)∗v^112+(a−a^3)∗v
^111+(a+a^2+a^3−a^4)∗v^110+(−a+a^2+a^3)∗v^109+(1−a−a^2)∗v^108+(−a)
∗v^107+(−1+a−a^3−a^4)∗v^106+(1+a^3+a^4)∗v^105+(−1+a^2)∗v^104+(−1+a
^4)∗v^103+(a+a^3)∗v^102+(−a+a^3+a^4)∗v^101+(−1−a−a^4)∗v^100+(−1+a+
a^3+a^4)∗v^99+(−1−a^3+a^4)∗v^98+(1−a+a^3−a^4)∗v^97+(1−a−a^2+a^4)∗v
^96+(−1+a−a^2−a^3−a^4)∗v^95+(a^4)∗v^94+(1−a^2−a^4)∗v^93+(a) ∗v
^92+(−1+a−a^2+a^3+a^4)∗v^91+(−1−a+a^2+a^3+a^4)∗v^90+(−1−a^3)∗v
^89+(−1−a−a^3)∗v^88+(1+a−a^2+a^3+a^4)∗v^87+(1+a^2)∗v^86+(1−a^2−a
^3−a^4)∗v^85+(a−a^2+a^3+a^4)∗v^84+(1−a−a^2−a^4)∗v^83+(−1−a+a^2−a
^3+a^4)∗v^82+(−a) ∗v^81+(1−a+a^3)∗v^80+(−1+a−a^2)∗v^79+(a−a^2+a^3)∗
v^78+(−1+a^2−a^3+a^4)∗v^77+(0)∗v^76+(1−a−a^2)∗v^75+(1−a+a^2+a^3)∗v
^74+(−1−a−a^2−a^3+a^4)∗v^73+(1−a−a^2+a^4)∗v^72+(a−a^2+a^4)∗v^71+(−
a+a^2+a^4)∗v^70+(−a−a^2−a^3+a^4)∗v^69+(1−a^2−a^4)∗v^68+(−1−a−a^4)∗
v^67+(−a^2−a^3+a^4)∗v^66+(1−a−a^3−a^4)∗v^65+(−1+a+a^2−a^3−a^4)∗v
^64+(1+a−a^2−a^3)∗v^63+(−a−a^4)∗v^62+(−1−a−a^3−a^4)∗v^61+(−1+a−a
^2+a^3−a^4)∗v^60+(1−a−a^2+a^4)∗v^59+(−1+a−a^4)∗v^58+(1+a−a^2+a^3)∗
v^57+(1−a^2)∗v^56+(1−a−a^3+a^4)∗v^55+(1+a) ∗v^54+(−a+a^3+a^4)∗v
^53+(−1−a^2−a^3+a^4)∗v^52+(−a−a^2+a^3)∗v^51+(1+a+a^3+a^4)∗v
^50+(−1−a−a^2−a^4)∗v^49+(a−a^3−a^4)∗v^48+(−a+a^2)∗v^47+(−a+a^2+a
^4)∗v^46+(1−a−a^2)∗v^45+(1+a^3)∗v^44+(−a^2+a^3)∗v^43+(a+a^3)∗v
^42+(−a+a^4)∗v^41+(1−a−a^2−a^3+a^4)∗v^40+(a−a^2−a^3)∗v^39+(1+a+a
^2+a^3)∗v^38+(1+a−a^2+a^3+a^4)∗v^37+(−1−a^2+a^3+a^4)∗v^36+(−1−a+a
^2−a^4)∗v^35+(−1−a−a^2+a^3−a^4)∗v^34+(1−a^2)∗v^33+(a−a^2)∗v^32+(1+
a^2−a^4)∗v^31+(−1−a^2−a^3+a^4)∗v^30+(a−a^2−a^3)∗v^29+(−1−a^2+a^3−a
^4)∗v^28+(−1+a−a^3)∗v^27+(1−a^3+a^4)∗v^26+(−1−a−a^2+a^3+a^4)∗v
^25+(−1−a^2−a^3)∗v^24+(−a−a^2+a^4)∗v^23+(−1+a+a^3+a^4)∗v^22+(1−a
^2+a^3−a^4)∗v^21+(−a+a^2)∗v^20+(a+a^2+a^3+a^4)∗v^19+(1−a+a^2+a^4)∗
v^18+(a−a^2+a^3)∗v^17+(a^2−a^4)∗v^16+(−1+a−a^2+a^3+a^4)∗v^15+(1−a
^2−a^4)∗v^14+(−a+a^3)∗v^13+(1+a−a^2+a^3)∗v^12+(1+a−a^2−a^3)∗v
^11+(−1+a^2−a^3)∗v^10+(1−a^3)∗v^9+(−a^2−a^3−a^4)∗v^8+(a+a^3−a^4)∗v
^7+(−1−a+a^2+a^3+a^4)∗v^6+(−1+a−a^4)∗v^5+(−1−a−a^4)∗v^4+(1+a−a^2−a
^3+a^4)∗v^3+(−1+a+a^3−a^4)∗v^2+(1−a+a^2+a^3)∗v+(−a−a^2) ;

103
104 // Check that the transformed cha l l eng e i s indeed tmp1/tmp2
105 a s s e r t va l eq a^170∗tmp1/tmp2 ;
106
107 gf2po l<x2>:=PolynomialRing (g f ex t) ;
108 coe f 1 :=El t seq (tmp1) ;
109 tmp1pol:=&+[coe f 1 [I]∗ x2^(i −1) : i in [1 . . 1 3 5]] ;
110 coe f 2 :=El t seq (tmp2) ;
111 tmp2pol:=&+[coe f 2 [I]∗ x2^(i −1) : i in [1 . . 1 3 5]] ;
112
113 // See that tmp1 and tmp2 indeed f a c t o r in to low degree po lynomia l s
114 Fac t o r i z a t i on (tmp1pol) ;
115 Fac t o r i z a t i on (tmp2pol) ;
116
117 // I l l u s t r a t i o n that Log o f (v+1) and log o f (v+a) are known :
118 logvp lus1 :=&+[q^ i : i in [0 . . 102]]+&+[q^ i : i in [0 . . 1 6 5]] ;
119 a s s e r t (v+1)^(k∗ co f) eq L0^logvp lus1 ;
120
121 logvp lusa :=
122 11502911033006233184807256127026551272685354648297133191813419811740245

ALGORITHMICS OF ELLIPTIC BASES FOR DISCRETE LOGARITHMS 39

123 19096369772664517195095690976317891170185918073903136468268956740533852

124 62436510092203462686175101041561921299421431042459190671930076470591806

125 64275794468568116752615302314211552263194070374314281232514612813030008

126 44488459173076648811617975518437322744393642709374505054882417347330228

127 40469704795180920051587886375261229886774645324896288065072127934016807

128 90841019053857555287212069984239022306742541277561399562993414812181172

129 79062762994554864785499020388078912844126133514101767509786784492881582

130 961256600048992950331313814096591316491983698974803579316710574;
131
132 a s s e r t (v+a) ^(k∗ co f) eq L0^logvp lusa ;
133
134 // Test ing a degree 18 log example (f i f t h polynomial in the

f a c t o r i s a t i o n o f tmp1pol)
135 img:=Evaluate (Fac t o r i z a t i on (tmp1pol) [5] [1] , v) ;
136 t e s t l o g :=
137 37136395580300663129781957665152172248705178396164098277017691871879601

138 62674430052475463656746729478101605755266043039473253360609423100118931

139 02228098408944343522827794016412504242743126499032220395257638699261207

140 61107877429151331579232468825213834147806683989819863919873136248124430

141 88440997273735109883647734172336189898107568976861709765710590635416766

142 97025191460565311463999937327653037338070556089424010355130743925046692

143 55119929116423052409545909684938875975087223993539678981585244366316408

144 67188674521365035577006337737874733921068638301454260168192635105294282

145 9422175240105948009968638092263847149795322351588415035424837;
146
147 // Ver i f y c o r r e c t n e s s o f the l og
148 a s s e r t img^co f eq L0^ t e s t l o g ;

E-mail address: antoine.joux@m4x.org
E-mail address: cecile.pierrot@inria.fr

mailto:antoine.joux@m4x.org
mailto:cecile.pierrot@inria.fr

	1. Introduction
	2. A Refresher on the Function Field Sieve Machinery
	Notations.
	A tool from FFS

	3. Representation of the Target Finite Field
	3.1. Choosing the elliptic basis
	3.2. Representing the curve with a different model
	3.3. Commutative diagram

	4. Harvesting Relations
	4.1. The usual systematic product
	4.2. Choice of A and B
	4.3. Defining a naive factor base
	4.4. Action of Frobenius and translation by P1
	4.5. Getting a smaller factor base
	4.6. How to get enough relations with the reduced factor base

	5. Extended Factor Base and Individual Discrete Logarithm
	5.1. From divisors of height 3 to divisors of height 4
	5.2. Computing Individual Discrete Logarithms
	5.3. Zig-zag descent.

	6. Practical discrete experiment over F31345
	6.1. First set of discrete logarithms
	6.2. Discrete logarithms of degree-4 places
	6.3. Discrete logarithms of some degree-5 places
	6.4. Descent

	REFERENCES
	Appendix A. Notations and reminders about algebraic function fields and divisors
	Appendix B. Relations for factor base extension
	B.1. Construction of groups with one compelled point.
	B.2. Interaction with the action of Frobenius.
	B.3. Going to height 5.

	Appendix C. Verification of discrete logarithms for the target field F31345.

