
HAL Id: hal-02175763
https://hal.sorbonne-universite.fr/hal-02175763v1

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast re-optimization via structural diversity
Benjamin Doerr, Carola Doerr, Frank Neumann

To cite this version:
Benjamin Doerr, Carola Doerr, Frank Neumann. Fast re-optimization via structural diversity. The
Genetic and Evolutionary Computation Conference, Jul 2019, Prague, Czech Republic. pp.233-241,
�10.1145/3321707.3321731�. �hal-02175763�

https://hal.sorbonne-universite.fr/hal-02175763v1
https://hal.archives-ouvertes.fr

Fast Re-Optimization via Structural Diversity
Benjamin Doerr

École Polytechnique, CNRS, LIX

Palaiseau, France

Carola Doerr

Sorbonne Université, CNRS, LIP6

Paris, France

Frank Neumann

University of Adelaide, School of

Computer Science, Adelaide, Australia

ABSTRACT

When a problem instance is perturbed by a small modification, one

would hope to find a good solution for the new instance by building

on a known good solution for the previous one. Via a rigorous

mathematical analysis, we show that evolutionary algorithms, de-

spite usually being robust problem solvers, can have unexpected

difficulties to solve such re-optimization problems. When started

with a random Hamming neighbor of the optimum, the (1+1) evo-

lutionary algorithm takes Ω(n2) time to optimize the LeadingOnes

benchmark function, which is the same asymptotic optimization

time when started in a randomly chosen solution. There is hence

no significant advantage from re-optimizing a structurally good

solution.

We then propose a way to overcome such difficulties. As our

mathematical analysis reveals, the reason for this undesired be-

havior is that during the optimization structurally good solutions

can easily be replaced by structurally worse solutions of equal or

better fitness. We propose a simple diversity mechanism that pre-

vents this behavior, thereby reducing the re-optimization time for

LeadingOnes to O(γδn), where γ is the population size used by

the diversity mechanism and δ ≤ γ the Hamming distance of the

new optimum from the previous solution. We show similarly fast

re-optimization times for the optimization of linear functions with

changing constraints and for the minimum spanning tree problem.

CCS CONCEPTS

• Theory of computation→ Random search heuristics.

ACM Reference Format:

BenjaminDoerr, Carola Doerr, and FrankNeumann. 2019. Fast Re-Optimization

via Structural Diversity. InGenetic and Evolutionary Computation Conference

(GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3321707.3321731

1 INTRODUCTION

Evolutionary algorithms have been applied to many real-world

problems in important areas such engineering [5] and supply chain

management [3]. The underlying optimization problems arising

in these real-world applications are usually not static, but have

dynamic and stochastic components. Due to the ability to adapt to

changing environments, evolutionary algorithms have been applied

to various stochastic and dynamic problems [19, 22]. Furthermore,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00

https://doi.org/10.1145/3321707.3321731

many optimization problems faced in practice occur repeatedly,

with slight variations in the precise instance data. Instead of solving

these instances from scratch, it is common practice to start the

optimization in a solution that showed good quality for previously

solved problems [29, 35].

Theoretical investigations regarding the behavior of evolution-

ary algorithms and other bio-inspired algorithms have been car-

ried out for different types of dynamic problems (see [27] for an

overview). This includes the MAZE problem for which difference

in terms of performs for simple evolutionary algorithms and ant

colony optimization approaches have been pointed out. In the con-

text of dynamic constraints, linear functions with dynamically

changing linear constraints have been investigated [31]. These

investigations have been extended experimentally to the knapsack

problem with a dynamic constraint bound. In addition, a general

study of a simple evolutionary multi-objective approach for gen-

eral costs functions with dynamic constraints has been provided

in [26], which analyses the approximation behaviour of the algo-

rithm in terms of the submodularity ratio of the problem. Other

important studies included investigations on dynamic makespan

scheduling [18], dynamic shortest paths [14] and variants of the

dynamic vertex cover problem [20, 30]. A general method to ana-

lyze the runtime of evolutionary algorithms in dynamic contexts

has been given in [4].

With this paper, we contribute to the theoretical understand-

ing of evolutionary algorithms when dealing with re-optimization

problems. As dynamic problems change over time, a previously

high quality solution xold may become unsuitable after a dynamic

change has happened. We assume that a user of the algorithm is

aware of the fact that a change has occurred. This is in contrast to

classical dynamic problems where often the algorithm has to deal

with changes automatically during the run and has to adapt to the

changed problems. However, it should be noted that evolutionary

algorithms for dynamic problems often incorporate a change detec-

tion mechanism [24]. After a change, the solution xold might still

be structurally quite close to a solution that is of high quality after

the dynamic change has occurred. This is especially the case if only

a few components have changed. Previously examined approaches

have indirectly build on this by using a multi-objective formulation

of the given problemwhere the constraint is treated as an additional

objective [25, 26, 31].

We explore the use of a previously good solution in a more

direct way by proposing a population-based approach that directly

searches for improvements close to the previously best solution xold.
In our studies, we consider problems where the dynamic change is

quantified by a parameterδ . It is often desirable not to deviate from a

previously chosen solution that much in terms of design parameters

as such changes might be difficult to implement. Therefore, we

search for solutions after a given change has occurred that are

close to the solution in the decision space prior to the change. We

https://doi.org/10.1145/3321707.3321731
https://doi.org/10.1145/3321707.3321731

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Benjamin Doerr, Carola Doerr, and Frank Neumann

present a simple evolutionary algorithm called (γ +1) REA. It works
with a diverse set of solutions at Hamming distance at most γ from

a previously good solution xold, where γ is a parameter of the

algorithm. In order to have global search capabilities, it also keeps

the best solution found for the considered problem at a time. The

population of (γ + 1) REA contains for each i , 0 ≤ i ≤ γ , the best-

so-far solution at Hamming distance i to xold. With this diversity

mechanism, we aim at putting a stronger emphasis on exploring

the neighborhood of the previous best solution.

We show the effectiveness of our approach on a wide range of

optimization problems by rigorous runtime analyses [1, 12, 17].

Our analyses use common rigorous techniques from this area of

research to show the working principles of our proposed method.

We start by investigating the classical LeadingOnes problem and

consider the scenario that the problem is perturbed by flipping δ
bits of the target bit string. We show that a solution of fitness at

least as high as the best possible solution within Hamming distance

i ≤ γ + 1 to xold is computed in expected time less than or equal to

2e(γ+1)in. For Hamming distances i > γ+1, we bound the expected
time to find such a solution from above by 2en2. Furthermore, we

show a lower bound of Ω(n2) for computing an optimal solution

at Hamming distance δ ∈ [γ + 2,n], that is, when the optimal

solution is (just a little) further away from the starting solution

than Hamming distance γ . This lower bound also holds when re-

optimizing with the classic (1 + 1) EA. These lower bounds show

that it is indeed the proposed diversity mechanism that makes the

difference between an easy re-optimization and a re-optimization

that is not faster than optimizing from a random solution.

We then investigate the effectiveness of our approach on a con-

straint optimization problem where the constraint bound changes.

Investigating our algorithm on the class of linear functions with a

uniform constraint, we show that it re-computes an optimal solu-

tion in expected time O(γδn), where δ is the amount by which the

constraint bound changes.

Finally, we investigate the minimum spanning tree problem. This

classical combinatorial optimization problem has been subject to

a wide range of theoretical investigations in the area of runtime

analysis of bio-inspired computing [15, 16, 21, 23, 34]. We consider

a dynamic version of the problem where either δ edges are added

or removed from the current graph. Our results show that (γ +
1) REA is able to recover an optimal solution in timeO(γδn) in both

situations.

The paper is structured as follows. We introduce the algorithm

and setting for dynamic changes in Section 2. In Section 3, we

present our results for re-optimizing the LeadingOnes problem.

We analyze linear functions with a dynamic uniform constraint in

Section 4. We present the results for re-optimizing the minimum

spanning tree problem in Section 5 and finish with some concluding

remarks.

2 THE (γ + 1) RE-OPTIMIZATION EA

Our algorithm, the (γ + 1) Re-Optimization EA (REA), has as input

a user-specified solution xold. We typically assume that xold was a

solution of high quality for the function f old.
We are concerned in this work with the situation in which the

function f old is perturbed by some change, resulting in a new

Algorithm 1: The (γ + 1) REA for the re-optimization

(here: maximization) of a function f : {0, 1}n → R, which

emerged from the function f old by a dynamic change.

1 Input: Solution xold;

2 Initialization:

3 x0, x∗ ← xold;

4 for i = 1, 2, . . . ,γ + 1 do x i ← undefined, f i ← −∞;

5 Optimization: for t = 1, 2, 3, . . . do

6 Select parent x by choosing x∗ with probability 1/2 and

uniformly at random from {x i | i ∈ [0..γ + 1]} \ {x∗}
otherwise;

7 Create y from x by flipping in each bit independently

with probability 1/n; // standard bit mutation

8 if f (y) ≥ f (x∗) then x∗ ← y;

9 i ← min{H (y, xold),γ + 1};

10 if f (y) ≥ f i then x i ← y, f i ← f (y);

objective function f . We study the time needed to recover a solu-

tion of quality at least f old(xold). That is, in the context of maxi-

mization problems, we study the number of function evaluations

that are needed by (γ + 1) REA to generate a solution y with

f (y) ≥ f old(xold), and in the context of minimization problems

we require a solution y with f (y) ≤ f old(xold).
Note that in this work we study both maximization and mini-

mization problems. Algorithm 1 summarizes the (γ + 1) REA for

maximization problems; we will describe it below. For minimization

problems, only three changes are necessary: the f i are initialized by
∞ in line 3, and the ≥-signs in lines 8 and 10 need to be exchanged

for a ≤-sign.

We quantify the difference between the old function f old and

the new function f by a parameter δ , which denotes the smallest

distance at which a solution of quality at least f old(xold) exists. That

is, there exists a solution y at Hamming distance H (y, xold) = δ for

which f (y) ≥ f old(xold) and for all solutionsy′withH (y′, xold) < δ

it holds that f (y′) < f old(xold). In our applications we assume that

an upper bound γ ≥ δ of this perturbation is known to the user

(and set γ = n otherwise).

Our algorithm stores for each i , i ∈ [γ] := {1, 2, . . . ,γ }, one best-

so-far solution x i of Hamming distance i to xold. For notational

convenience we define x0 := xold. In order to advance the search

beyond the radius of γ (e.g., if we risk that the upper bound γ is too

small), the algorithm also stores an additional search point xγ+1

which is the best-so-far solution of Hamming distance greater than

γ to xold. The points x i , i ∈ [γ + 1] are initialized as undefined, the

best function value at distance i , f i , as −∞.
In every iteration the (γ + 1) REA first selects a parent individual

x from which one offspring y will be generated. The parent is

chosen through a biased random selection. With probability 1/2

we select as x the search point x∗ with the best-so-far objective

value. We choose x uniformly at random from {x i | i ∈ [0..γ +1] :=
{0} ∪ [γ]} \ {x∗} otherwise. That is, each x i , x∗ is selected with

probability 1/(2(γ + 1)). A new solution candidate y is created from

the selected parent x by standard bit mutation with mutation rate

Fast Re-Optimization via Structural Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

p = 1/n. If the Hamming distance i = H (y, xold) of y to xold is at

most γ this offspring y replaces the previous best individual x i at
distance i if it is at least as good, i.e., if and only if f (y) ≥ f (x i). For

offspring y with H (y, xold) > γ , the selection is made between y
and xγ+1, by applying the same selection rules as in the case i ≤ γ .

Note that, despite the name, the (γ + 1) REA maintains a popula-

tion size of sizeγ +2. We use (γ +1) REA for notational convenience.

The biased parent selection of the (γ + 1) REA is meant to avoid

too severe slow-downs when the upper bound γ of the perturbation

is large. With uniform parent selection the slowdown caused by

sub-optimal search points can be as large as proportional to the

population size γ + 2. With the biased selection, in contrast, each

step simulates, with probability 1/2, a regular (1 + 1) EA.

The advantages of storing the points x i , i ∈ [0..γ + 1] will be

motivated in the next section, using the example of re-optimizing

the LeadingOnes problem as illustration.

3 RE-OPTIMIZING LEADINGONES

As a first example to demonstrate the working principles of the

(γ + 1) REA we regard the LeadingOnes problem, one of the most

classical benchmark problems in the theory of evolutionary compu-

tation. It has the characteristic property that the decision variables

can only be optimized sequentially, that is, only when the first i
variables are set to the optimal value the (i+1)-st variable has an in-

fluence on the fitness. Such behaviors are common in non-artificial

problems, see, e.g., the examples in [9, Section 4] or [10, Section 3.2]

for two different shortest path problems.

For a “target string” z ∈ {0, 1}n and a permutation σ of the index

set [n], the LeadingOnes function fz,σ is defined via

fz,σ (x) := max{j ∈ [0..n] | ∀k ∈ [j] : xσ (k) = zσ (k)}

for all x ∈ {0, 1}n . Our aim is maximizing the LeadingOnes func-

tions. We note that z is the unique global maximum of fz,σ , re-
gardless of σ . This problem is referred to as LeadingOnes because

traditionally only the non-permuted instance f(1, ...,1),id with tar-

get string (1, . . . , 1) was studied. This function simply returns the

number of initial (leading) ones of each solution candidate. Many

EAs, and including our (γ + 1) REA, show exactly the same per-

formance on any of the instances fz,σ and it thus suffices to study

this particular instance with z = (1, . . . , 1) and σ being the identity

function id.

When perturbing the LeadingOnes function, small changes can

result in large changes in fitness: if we assume that xold is an optimal

solution for fz,σ , i.e., x
old = z, then changing z to z′ by flipping

the i-th bit of z gives a new fitness value fz′,σ (x
old) = i − 1. We

also note that the new optimal solution, which is z′, is at Hamming

distance one of xold. However, all the solutions which differ from

xold only in positions of index greater than i have the same fitness

value i − 1. In consequence, the (1+ 1) EA performs a random walk

on this plateau until it eventually flips the i-th bit. When i is small,

it is likely that at this point the (1 + 1) EA has lost track of the

previously good entries in the positions j > i , so that it then has to

recover significant parts of the tail of z. This unfavorable behavior
of the (1+ 1) EA motivates our decision to store for each Hamming

distance i ∈ [0..γ] a best-so-far solution x i , and to assign positive

probability of selecting x i as parent individual even if f (x i) is

strictly smaller than the current-best fitness f (x∗). In the situation

described above, in which only the i-th bit has been flipped, the

(γ + 1) REA always has a chance of at least 1/(2(γ + 1)) of selecting

xold as parent individual. Conditioning on xold being the selected
parent, the probability to sample as offspring the new optimal

solution z′ is at least 1/(en), since exactly the i-th bit needs to be

flipped. The expected optimization time of the (γ + 1) REA is hence

at most 2e(γ + 1)n, whereas the expected re-optimization time of

algorithms not using the diversity mechanism can be considerably

larger, cf. Lemma 3.4.

Summary of our results for LeadingOnes. In the remainder

of this section we formalize the observations made above. In Sec-

tion 3.1 we prove an upper bound for the expected re-optimization

time of the (γ + 1) REA on LeadingOnes, which in particular

shows that the (γ + 1) REA finds the best solution that is in dis-

tance i ≤ γ + 1 from xold in time O(γ in) only. We complement this

results by a lower bound for the performance of the (1 + 1) EA

(Lemma 3.4 in Section 3.2), which shows that for this algorithm the

re-optimization times are Ω(n2) when the fitness of xold is at most

n/2, even when the Hamming distance of xold and xopt is small.

In particular, when started with a random Hamming neighbor of

the optimum, the (1 + 1) EA still needs Ω(n2) iterations to find the

optimum.

These bounds show that the (γ + 1) REA is significantly faster

in solving re-optimization problems of the LeadingOnes type. We

also provide a lower bound for the (γ +1) REA (Theorem 3.3) which

shows that H (xold, xopt) ≤ γ + 1 is a necessary condition for a

fast re-optimization: Already from H (xold, xopt) = γ + 2 on the

(γ + 1) REA can have an at least quadratic expected re-optimization

time. Upper and lower bounds thus illustrate the trade-off between

choosing a too large γ , which results in a slow-down that is linear

in γ , and a too small γ , which results in an at least quadratic re-

optimization time. On the other hand, our results also prove that

the (γ +1) REA with a too small γ still has an expected optimization

time of at most 2en2, which is not much worse than the known

1

2
en2 upper bound for the (1 + 1) EA.

3.1 Upper Bound for LeadingOnes

Theorem 3.1 provides an upper bound for the re-optimization time

of the (γ + 1) REA on the LeadingOnes problem in which the

target string has been modified from xold to xopt. Both situations

of an accurate and a too small upper bound γ on the perturbation

δ = H (xold, xopt) are covered by this bound. More precisely, the

theorem shows that regardless of γ and δ the (γ + 1) REA has

an expected re-optimization time that is at most quadratic. When

γ ≥ δ − 1 the expected re-optimization time isO(γn). Since for this
problem it provides no additional difficulties, we not only compute

the expected runtimes, but we follow the approach suggested in [6]

and first show a domination statement and then derive from that

the expected runtime and a tail bound.

Theorem 3.1. Let f be a generalized LeadingOnes function

with unique optimum xopt. Let xold ∈ {0, 1}n . For all i ∈

[0..H (xold, xopt)], letTi be the the number of function evaluations that

the (γ + 1) REA needs to find a solution y with f (y) ≥ max{ f (y′) |

y′ ∈ {0, 1}n,H (y′, xold) ≤ i}.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Benjamin Doerr, Carola Doerr, and Frank Neumann

(1) If i ≤ γ +1, thenTi is dominated by a sum of i independent geo-
metric distributions with success rate

1

2e(γ+1)n . Consequently,

E[Ti] ≤ 2e(γ + 1)in =: µ+,

Pr[Ti ≥ (1 + ε)µ
+] ≤ exp

(
−

ε2i

2(1 + ε)

)
for all ε ≥ 0.

(2) Regardless of i , the time Ti is dominated by a sum of n inde-

pendent geometric random variables with success rate
1

2en .

Consequently,

E[Ti] ≤ 2en2 =: µ+,

Pr[Ti ≥ (1 + ε)µ
+] ≤ exp

(
−

ε2n

2(1 + ε)

)
for all ε ≥ 0.

When γ ≥ δ − 1, the expected re-optimization time of the (γ + 1) REA
on the modified LeadingOnes function is thus at most min{2e(γ +

1)δn, 2en2}, provided that xold was an optimal solution for f old.

Proof. By the symmetry of all operators used in the (γ +1) REA,
we can assume without loss of generality that the optimum of f

is xopt = (1, . . . , 1). Let 0 ≤ i ≤ H (xold, xopt). We first consider the

case that i ≤ γ + 1. Due to the nature of the LeadingOnes function,

there is a unique search point x i ,∗ in {y ∈ {0, 1}n | H (y, xold) = i}

with maximal fitness. This search point is equal to xold in all bit

positions except the first i positions in which xold is zero. Hence

H (x i ,∗, xold) = i . If i ≤ γ , then let T ∗i be the iteration in which the

program variable x i takes the value x i ,∗. For i = γ + 1, let T ∗i = Ti .
Note that T ∗i stochastically dominates Ti for all i ≤ γ + 1, so it

suffices to show our claim for T ∗i instead of Ti .
We use a fitness level argument to estimate T ∗i . If i ≤ γ , then

for all j ≤ i , we say that the algorithm is in state j if x j = x j ,∗ and,
if j < i , also x j+1 , x j+1,∗ holds. For i = γ + 1, we say that the

algorithm is in state

• j < γ if x j = x j ,∗ and x j+1 , x j+1,∗,
• j = γ , when x j = x j ,∗ and f (x∗) < max{ f (y′) | y′ ∈

{0, 1}n,H (y′, xold) ≤ γ + 1},

• j = γ + 1 if f (x∗) = max{ f (y′) | y′ ∈ {0, 1}n,H (y′, xold) ≤
γ + 1}.

In both cases i ≤ γ and i = γ +1, we see that when the algorithm

is in state j < i , then with probability at least
1

2(γ+1) it chooses x
j

as parent and (in this case) with probability
1

n (1 −
1

n)
n−1 ≥ 1

en ,

flips exactly the unique bit that x j ,∗ and x j+1,∗ differ in. Hence each
iteration in state j has a probability of at least

1

2(γ+1)en of ending

in a higher state. By the classic fitness level theorem [33] we obtain

the bound E[T ∗i] ≤ 2e(γ + 1)in. By the domination version of the

fitness level theorem [6, Theorem 2] we also obtain the domination

result and the tail bound, for the latter using a Chernoff bound for

sums of independent geometric random variables [6, Theorem 3(i)].

When i is arbitrary, and not necessarily at most γ + 1, we can
still apply the classic fitness level method to the fitness of the

best solution x∗. Note that when x∗ has some fitness j, then with

probability at least
1

2
this x∗ is chosen as parent and with probability

1

n (1−
1

n)
n−1 ≥ 1

en exactly the (j + 1)-st bit is flipped. The resulting
offspring y has a fitness greater than x∗ and thus replaces x∗ (and

possibly some xk). Hence in each iteration, with probability at least

1

2en the fitness of x∗ increases. Again, the fitness level theorems

give the claimed bounds for the time T to find the optimum. Since

T dominates all Ti , the claims for Ti are proven. �

3.2 Lower Bound for LeadingOnes

We now show that the (1 + 1) EA without diversity mechanism

can have a quadratic runtime to optimize LeadingOnes even when

started with a Hamming neighbor of the optimum. In fact, many

Hamming neighbors lead to this runtime, so this result also holds

when starting with a random Hamming neighbor. Using similar

arguments, we also show that the requirement i ≤ γ + 1 in the first

part of Theorem 3.1 cannot be relaxed. Already for a Hamming

distance of γ + 2, we have an expected quadratic optimization time.

The reason for these high runtimes is as follows. For the (1+1) EA,

the initial structurally good solution is easily replaced by other

solutions of same fitness, which are structurally further away from

the optimum. By this the advantage of starting with a good solution

is lost. When the optimum has Hamming distance at leastγ +2 from

xold, then (i) the (γ + 1) REA finds it hard to generate the optimum

from one of the xk , k ∈ [0..γ], as these have a Hamming distance at

least 2 from the optimum, and (ii) the (γ + 1) REA also finds it hard

to find the optimum via optimizing x∗ as this search point again

quickly becomes structurally distant from the optimum.

The rough reason for structurally good solutions moving away

from the optimum is that bits with higher index than the current

fitness plus one are neutral, that is, they are subject to mutation,

but have no influence on the fitness and can therefore not bias the

selection. For such bits, independent of their initial values in xold,
the probabilities of being zero or one converge to 1/2. This was first

shown in [8, proof of Theorem 10] and later exploited in several

analyses how evolutionary algorithms optimize the LeadingOnes

function [2, 11, 13, 28, 32].

For the sake of completeness, we quickly repeat the statement

in [8] and its proof (where we note that in [8] apparently the bi-

nomial coefficients were forgotten in the proof). We note that an

essentially identical result (their assumption t ≥ n ln(n) can be

freely omitted) was independently proven in [13] with identical

arguments).

Lemma 3.2. Let X0,X1, . . . be a sequence of binary random vari-

ables such that Pr[Xt = Xt−1] = 1 − 1

n and Pr[Xt = 1 − Xt−1] =
1

n
independently for all t ≥ 1. Then

Pr[Xt = X0] =
1

2
+ 1

2
(1 − 2

n)
t ,

Pr[Xt , X0] =
1

2
− 1

2
(1 − 2

n)
t .

Proof. We have

Pr[Xt = X0] − Pr[Xt , X0]

=

t∑
i=0
2|i

(
t

i

) (
1

n

)i (
1 −

1

n

)t−i
−

t∑
i=0
2-i

(
t

i

) (
1

n

)i (
1 −

1

n

)t−i
=

t∑
i=0

(
t

i

) (
−
1

n

)i (
1 −

1

n

)t−i
=

(
−
1

n
+

(
1 −

1

n

))t
=

(
1 −

2

n

)t
.

Fast Re-Optimization via Structural Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

The claims follow from Pr[Xt = X0] + Pr[Xt , X0] = 1 and

elementary transformations. �

We are now ready to state and prove our lower bound result.

For the ease of presentation, we only cover the case that γ ≤ n
4
−

2. Since constant factors play no important role in the proof, it

is immediately clear from the proof that this condition could be

relaxed to γ ≤ (1 − ε)n for any constant ε > 0. Further, we are

optimistic that the result holds for all values of γ . However, we feel
that the case of values of γ that are linear in n is not interesting

enough to justify the extra effort. Note that for γ = Ω(n) and
δ ≥ γ + 2 our starting solution has a linear Hamming distance from

the optimum. This can hardly be seen as re-optimization from a

solution close to the optimum.

Theorem 3.3. Let γ ≤ 1

4
n−2. Let f be the LeadingOnes function

with unique optimum xopt = (1, . . . , 1). For all δ ∈ [γ + 2..n] there is

an xold ∈ {0, 1}n with H (xold, xopt) = δ such that the expected time

the (γ + 1) REA started with xold takes to find the optimum of f is

Ω(n2).

Proof. Let xold be the search point defined by xold
1
= · · · =

xoldδ = 0 and xoldδ+1 = · · · = xoldn = 1. Note that H (xold, xopt) = δ .
Consider the first iteration t0 in which the search point stored

in x∗ reaches a fitness of at least γ + 2. Let x be the parent chosen

(which by assumption has a fitness of at most γ + 1) and let y be

the offspring generated in this iteration (which will end up in x∗).
Since the algorithm as mutation operation flips bits independently

with probability
1

n and since we know f (y) ≥ γ + 2, we have

y1 = · · · = yγ+2 = 1 and all further bits are obtained from the

corresponding bit of x by flipping it with probability
1

n . Let I0 :=

{i ∈ [γ + 3..⌈ 1
2
n⌉] | xi = 0} and I1 := {i ∈ [γ + 3..⌈

1

2
n⌉] | xi = 1}.

We compute

Pr[f (y) ≥ 1

2
n] =

⌈ 1
2
n ⌉∏

i=γ+3
Pr[yi = 1]

=
∏
i ∈I0

Pr[yi = 1]
∏
i ∈I1

Pr[yi = 1]

= (1n)
|I0 |(1 − 1

n)
|I1 | ≤ (1 − 1

n)
n/2−γ−2

≤ (1 − 1

n)
n/4 ≤ e−1/4.

Let us condition on f (y) ≤ 1

2
n in the following (and recall that

we have this event with probability at least 1 − e−1/4 ≥ 0.2). We

first argue that we can assume that whenever in the following

0.1n2 iterations we choose an xk , k ∈ [0..γ], as parent, then the

offspring does not replace the current value of x∗. Since the search

point stored by the algorithm in xk , k ∈ [0..γ], at all times has a

Hamming distance of at least γ + 2 − k ≥ 2 from any search point

with fitness γ + 2 or larger, the probability that an xk is mutated

to a search point with fitness at least the one of x∗, is at most

n−2. By a simple union bound over 0.1n2 iterations, we obtain that

with probability at least 0.9, in no iteration of the time interval

I = [t0 + 1..t0 + 0.1n
2] an offspring of an xk makes it into x∗.

Taking also this assumption, we can ignore all iterations in the

time interval I that use a parent different from x∗ as they cannot

generate the optimum and cannot interfere with the process on

x∗. In the remaining iterations in I , the (γ + 1) REA simulates a

(1 + 1) EA using x∗ as population. By Lemma 3.4 below, the first

1

16
n2 of these iterations (or fewer, if there are fewer such iterations

in I) with constant probability do not create the optimum. Taking

this and all assumptions taken on the way together, we see that with

constant probability, the (γ + 1) REA within
1

16
n2 iterations does

not find the optimum. Consequently, the expected optimization

time is Ω(n2).
�

We finish the proof of the main result by providing the missing

ingredient that the (1+1) EA with constant probability needs a qua-

dratic number of function evaluations to optimize LeadingOnes

even when initialized with an arbitrary search point of fitness at

most n/2, that is, even when the initial search point is a Hamming

neighbor of the optimum. This result might be of independent in-

terest. Again, we did not try to optimize the constants, in particular,

a quadratic runtime could also be shown when the initial fitness is

as large as (1 − ε)n for an arbitrarily small positive constant ε .

Lemma 3.4. Consider a run of the (1 + 1) EA on the Leadin-

gOnes function f , initialized with an arbitrary search point x0 such
f (x0) ≤ n/2. Let T be the first iteration in which an optimal solution

is generated. Then Pr[T ≤ n2/16] ≤ 1

e + exp(−Ω(n)).

Proof. Let t0 be any number such that among the first t0 itera-
tions of the (1 + 1) EA, in exactly n − 1 iterations, called relevant

iterations in the following, an offspring y is created that agrees with

the parent x in the first f (x) bits. Note that the remaining t0−(n−1)
iterations create offspring worse than the parent, so that they have

no influence on the optimization process except wasting time. In

each relevant iteration, with probability exactly 1/n an offspring

strictly better than the parent is generated (namely when the first

missing bit is flipped). Hence with probability (1 − 1

n)
n−1 ≥ 1/e ,

none of the n − 1 relevant iterations creates a strict improvement.

Let us condition on this event in the following.

We now regard in detail the search point x resulting from the

first t0 iterations. Put differently, we analyze the parent individual
of iteration t0 + 1. By our assumption, we have f (x) = f (x0). As
discussed before, we can ignore the non-relevant iterations as they

do not change the current individual. In each relevant iteration, the

parent is replaced by the offspring, which was generated by flipping

each bit greater than f (x) + 1 independently with probability 1/n.
Consequently, for i ∈ [f (x)+ 2..n], the value xi is obtained from x0i
by n − 1 times independently flipping the bit value with probability

1/n (independently from the other bits).

This observation remains true (in an analogous fashion) for

future generations t ≥ t0: Let x be the search point at the end of

some iteration t ≥ t0 and assume by induction that it is such that

for all i ≥ f (x) + 2, the bit value xi of the i-th bit is obtained from

x0i by flipping it some number nt ≥ n − 1 times independently

with probability 1/n. Let y be the offspring generated (from x) in
iteration t + 1 and let x ′ be the outcome of the selection between

x and y. Clearly, for all i ≥ f (x) + 2, the bit value yi of the i-th
bit is obtained from x0i by flipping it nt + 1 times independently

with probability
1

n . If f (y) < f (x), then y is discarded and our

claim holds for x ′ since it holds for x . If f (y) ≥ f (x), then the first

f (y) + 2 bits of y are determined by the fitness, but the remaining

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Benjamin Doerr, Carola Doerr, and Frank Neumann

bits have no influence on the decision to continue with y. Hence
for all i ≥ f (x) + 2, the value of yi is obtained from x0i by flipping

it nt + 1 times independently with probability 1/n. Obviously, the
same statement holds for x ′ in this case.

In summary, we see that under the assumption taken initially

(which holds with probability at least 1/e), in all iterations fol-

lowing iteration t0, the parent individual x is such that all bits

i ∈ [f (x) + 2..n] independently have the distribution of taking

the initial bit value x0i and flipping it some number nt ≥ n − 1

of times independently with probability
1

n . By Lemma 3.2, inde-

pendent of the initialization of the bit value and independently

for all i ≥ f (x) + 2, we have Pr[xi = 1] ≤ 1

2
+ 1

2
(1 − 2

n)
nt ≤

1

2
+ 1

2
(1 − 2

n)
(n−1) ≤ 1

2
+ 1

2
(1 − 2

n)
n/2 ≤ 1

2
+ 1

2e =: p ≤ 0.7.

We use this statement to describe the fitness gain in one iteration

t > t0. To have a positive fitness gain from a parent x , it is necessary
that the first f (x) bits do not flip and that bit f (x) + 1 does flip

(we call this event a success). This happens with probability (1 −
1

n)
f (x) 1

n ≤
1

n . Since in this case, each further bit of the offspring is

one with probability at most p, regardless of the outcomes of the

other bits, the fitness gain in case of a success is dominated by a

geometric distribution with parameter 1 − p.
We finish the proof by showing that the total fitness gainX in the

time interval [t0 + 1..t0 +
1

6
n2] with high probability is less than

1

2
n

and thus not sufficient to reach the optimum (recall that the fitness

after iteration t0 still was the initial fitness f (x
0) ≤ 1

2
n). Since the

probability for a success is at most
1

n regardless of what happened in

the previous iterations, by Lemma 3 of [6] the number of successes

in these
1

16
n2 iterations is dominated by a sum of

1

16
n2 independent

binary random variables with success probability
1

n . Applying a

common Chernoff bound, e.g., the simple multiplicative bound in

Theorem 10.1 of [7], we see that with probability 1− exp(n/48), the
number of successes is at most

1

8
n. In this case, the fitness gain X

is dominated by a sum of
1

8
n independent geometric distributions

with success probability 1 − p. Hence E[X] = 1

8(1−p)n and, using a

Chernoff bound for geometric random variables like Theorem 3 (i)

of [6],

Pr[X ≥ 1

2
n] ≤ Pr[X ≥ 1.2E[X]] ≤ exp

(
−

(0.2n)2

2 · 1
8
n(1 + 0.2n/n)

)
= exp(−Ω(n)).

Hence, under our initial assumption of having no fitness gain in the

first n − 1 iterations, with probability 1 − exp(−Ω(n)) the expected
runtime of the EA is more than n2/16. Since the initial assumption

was satisfied with probability 1/e , the claim is proven. �

4 RE-OPTIMIZING LINEAR FUNCTIONS

WITH MODIFIED UNIFORM CONSTRAINTS

The next example for which we analyze the performance of the

(γ + 1) REA is a constrained optimization problem. Specifically, we

study the maximization of a linear profit function p : {0, 1}n →

R, x 7→
∑n
i=1wixi subject to the uniform constraint

∑n
i=1 xi ≤ B.

The perturbation concerns the size of the uniform constraint: in the

perturbed problem, the size bound B is replaced by B − δ or B + δ .
As mentioned in the introduction, this problem has been previ-

ously studied in [31], and constitutes one of the few constrained

optimization problems for which the running time of EAs has been

formally analyzed. Shi et al. analyzed the expected reoptimization

time of the (1+1) EA and of three multi-objective EAs. In our termi-

nology, they thus assume that xold was an optimal solution for the

problem (before the size bound B had been changed), and bound the

expected time needed by the EAs to identify an optimal solution x∗

for the perturbed problem. A main conclusion of the work by Shi et

al. is that it can be beneficial to regard the constrained problem as

a two-objective problem with the size (i.e., the number of ones) of

the solution as one objective, and the profit values p(x) as second
objective.

For the (1 + 1) EA, Shi et al. transform the constrained problem

maxp(x) =
n∑
i=1

wixi (1)

s.t.

n∑
i=1

xi ≤ B

into a pseudo-Boolean objective function

f : {0, 1}n → R, x 7→ p(x) −Cmax

{ n∑
i=1

xi − B, 0
}
, (2)

where C := n |wmax | + 1 for wmax := max{|wi | | 1 ≤ i ≤ n}. With

this choice, the penalty term guides the search towards the feasible

region, which, once hit by the (1+1) EA, is not left by this algorithm,

thanks to its elitist selection. It is proven in [31] that the (1 + 1) EA

has an O(n2 log(Bwmax)) expected reoptimization time.

We analyze the expected optimization time of the (γ + 1) REA
on this problem formulation. The following theorem shows that

it is O(nγδ), provided that the perturbation estimate γ satisfies

γ ≥ δ − 1.

Theorem 4.1. Let f old : {0, 1}n → R, x 7→ p(x) −
Cmax{

∑n
i=1 xi − Bold, 0} be a function as in (2), with linear profit

function p. Let xold be an optimal solution for f old satisfying∑n
i=1 x

old

i ≤ B
old

(i.e., xold is feasible solution for the correspond-

ing constrained problem (1)). Let δ be a positive integer satisfying

δ ≤ min{B
old
,n − B

old
}, let B ∈ {B

old
− δ ,B

old
+ δ }, and let

f : {0, 1}n → R, x 7→ p(x) − Cmax{
∑n
i=1 xi − B, 0} be the per-

turbed fitness function that we obtain from f old by replacing the

penalty term Cmax{
∑n
i=1 xi − Bold, 0} by Cmax{

∑n
i=1 xi − B, 0}.

For all i ∈ [γ +1] the expected number of fitness evaluations needed

by the (γ + 1) REA to identify a solution of function value at least

max{ f (y) | H (y, xold) ≤ i} is O(nγ i).

Proof. Let i ≤ γ + 1. Let T i denote the random variable that

counts the number of function evaluations needed by the (γ+1) REA
to identify an optimal solution x i ,∗ at Hamming distance i from

xold; i.e., a solution x i ,∗ ∈ argmax{ f (y) | H (y, xold) = i}.
For an inductive proof, we first bound E[T 1]. Note that at any

point in time the size of the population is at most γ + 2. The solu-

tion xold (which is never removed from the population) has thus

a probability of at least 1/(2(γ + 1)) of being selected as parent

individual. Conditioning on xold being selected as parent, the prob-

ability of flipping a 0-bit of maximal weight (B > B
old

) or a 1-bit

of minimal weight (B < B
old

), respectively, and no other bit is at

Fast Re-Optimization via Structural Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

least (1/n)(1 − 1

n)
n−1 ≥ 1/(en). The expected waiting time for cre-

ating a point x1 ∈ argmax{ f (y) | H (y, xold) = 1} is thus at most

2en(γ + 1) = O(nγ).
For fixed j ∈ [i − 1] assume that x j has already been updated

to a point of maximal possible fitness, i.e, f (x j) = max{ f (y) |

y ∈ {0, 1}n with H (y, xold) = j}. By the same reasoning as above,

the probability to select x j as parent is at least 1/(2(γ + 1)), and

the probability to flip a 0-bit (1-bit) of maximal (minimal) weight

is at least 1/(en), showing that E[T j+1] ≤ E[T j] + 2en(γ + 1) =

O(nγ (j + 1)) by the induction hypothesis. �

We note, without going into great detail, that the expected reop-

timization time can strongly depend on the structure of the weights

of the linear profit function. For an illustrative example, let us as-

sume that the profit function is the BinaryValue function, i.e.,

the linear function with wi = 2
n−i

. Assume that B
old
= cn for

some c < 1. Assume further that xold is an optimal solution for

f old, i.e., xold is the string with entry 1 in positions i ≤ B
old

and

entry 0 in positions i > B
old

. Finally, assume that the new size

bound is B = B
old
+ 1, i.e., we have δ = 1. Then, regardless of γ ,

the expected reoptimization time is at least linear in n, since the
B-th bit needs to be flipped in order to obtain the unique optimal

solution for the perturbed function, which is the string having the

first B entries equal to one, and all others equal to zero. If, on the

other hand, the linear profit function is the OneMax function (i.e.,

the linear functions with w1 = w2 = . . . = wn = 1), the expected

reoptimization time for the same perturbation of the size bound is

constant. More precisely, it suffices to select xold as parent and to

flip in it exactly one of the (1 − c)n zero-bits. Unless a new optimal

solution has already been found, the probability that a solution

with fitness f old is selected as parent equals 1/2, regardless of γ .
The probability to create an optimal solution for the new problem

instance is thus at least (1/2)(1 − c)n/(en) = Θ(1). This example

can easily be extended to many other situations. A more detailed

discussion of these effects can be found in [31].

5 MINIMUM SPANNING TREES

The classical minimum spanning tree (MST) problem can be for-

mulated as follows. Given an edge-weighted undirected graph

G = (V , E,w), with n = |V | nodes andm = |E | edges, the goal is to
find a subset E ′ ⊆ E of minimal cost such that the graphG(V , E ′) is
connected. We denote bywi the weight of edge ei , 1 ≤ i ≤ m, and

assume that weights are strictly positive. We consider the search

space {0, 1}m where x ∈ {0, 1}m gives a selection of edges, i.e.,

edge ei is selected if and only if xi = 1.

We consider the fitness function f (x) = (c(x),w(x)) where c(x)
denotes the number of connected components of the graph given

by x and w(x) =
∑m
i=1wixi is the weight of the chosen edges.

The fitness function should be minimized with respect to lexico-

graphic order which is equivalent to assigning to each additional

components a large penaly. This standard formulation of the MST

problem has already been investigated in [16] and a multi-objective

formulation trading off c(x) andw(x) against each other has been

considered in [15].

5.1 Additional Edges

We first consider the case where δ edges e < E are added to the

graph G = (V , E). Let x∗ = (x∗
1
, . . . , x∗m) be a solution representing

a minimum spanning tree before a change has occurred.

We assume that the number (but not necessarily the endpoints,

nor the weights) of the additional edges is known. The size of

the search space is thus increased by δ . The new edges are labeled

em+1, . . . em+δ . The (γ +1) REA uses as input for the reoptimization

the search point xold = (x∗
1
, . . . x∗m, xm+1, . . . xm+δ) with xm+1 =

. . . = xm+δ = 1.

Since the number of edges in an MST of a graph with n vertices

is n − 1, we know in this setting—unlike the cases considered in the

previous sections—that the actual perturbation is δ . We nevertheless

assume that a general bound γ ≥ δ is used in the (γ + 1) REA, since

xold may have been communicated without the size bound δ .
We start our performance analysis of (γ + 1) REA with some

structural observations about the minimum spanning tree in the

extended graph.

Lemma 5.1. Let T be a minimum spanning tree for a given graph

G = (V , E,w) and let Gδ be obtained from G by adding a set Eδ
consisting of δ edges that satisfy E ∩ Eδ = ∅. Then there exists a

minimum spanning tree T ∗ of Gδ that can be obtained by removing

δ edges from T ∪ Eδ .

Proof. LetT ∗ be a minimum spanning tree ofT ∪Eδ . Obviously
T ∗ can be obtained from T ∪ Eδ by deleting δ edges. We show that

T ∗ is also a minimum spanning tree of Gδ . As T is a minimum

spanning tree of G, for any cut that is obtained by removing an

edge e ofT , there is no edge in E \T that has a smaller weight than

e and connects the two components (as T is a minimum spanning

tree of G). Hence, only edges of Eδ can result in a spanning tree of

smaller weight than T and a minimum spanning tree of T ∪ Eδ is

also a minimum spanning tree of Gδ . �

According to Lemma 5.1, we can obtain a minimum spanning

tree ofGδ by deleting δ edges ofT ∪Eδ in decreasing order of their

weights that do not disconnect the graph.

Lemma 5.2. Let T be a minimum spanning tree for a given graph

G = (V , E,w) and let Gδ be obtained from G by adding a set Eδ
consisting of δ edges not previously present in E. An optimal solution

x i , 1 ≤ i ≤ δ , representing a connected graph of Hamming distance

exactly i to xold is obtained from T ∪ Eδ by sequentially removing

exactly i edges of the largest weight such that the graph does not get

disconnected.

Furthermore, an optimal solution x i+1 at Hamming distance i + 1

from xold can be obtained from x i by removing the largest edge whose

removal does not make the graph disconnected.

Proof. Consider the graphGδ . According to Lemma 5.1 we can

obtain a minimum spanning tree T ∗ for Gδ by removing those δ
edges from T ∪ Eδ that are of largest weight and whose removal

does not make the graph disconnected. It suffices to remove these

edges sequentially, in decreasing order of weight.

Let E∗ = {e1, . . . , eδ } ⊆ T ∪ Eδ , with w(e1) ≥ . . . ≥ w(eδ) be
such a set of δ edges whose removal yields a minimum spanning

tree. For 1 ≤ i ≤ δ set Ei := {e1, . . . , ei }; i.e., Ei is a subset of

E∗ consisting of a set of edges having the i largest weights (ties

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Benjamin Doerr, Carola Doerr, and Frank Neumann

are broken arbitrarily). Let x i be the string obtained from xold by
flipping those bits that correspond to the edges Ei . The Hamming

distance H (xold, x i) of x i to xold is i , and the weight of x i equals

w(x i) = w(xold) −w(Ei).
We show that x i is an optimal solution at Hamming distance

i to xold, in the sense that c(x i) = 1 and w(x i) = min{w(y) |

H (xold,y) = i, c(y) = 1}. Let yi be a solution representing a con-

nected graph at Hamming distance i to xold having the smallest

weight among all such solutions. Since c(x i) = 1 = c(yi), we only
need to show that w(x i) = w(yi). If yi is obtained by removing

exactly i edges from xold then we have w(x i) = w(yi) due to the

construction of x i . If yi is not obtained by removing exactly i edges,
then an additional edge e < Eδ has to be inserted. In this case,

by the restriction that H (yi , xold) = i , there can be at most i − 1

edges that have been removed from xold, and these edges have to

be such that the resulting graph is not disconnected. This implies

w(yi) ≥ w(xold) −w(Ei−1) > w(x i), contradicting the choice of yi .

We therefore obtain that yi is obtained from xold by removing i
edges and therefore we havew(x i) = w(yi).

Hence, the optimal solution x i is a solution obtained from xold

by removing a set Ei of largest weight that does not make the

graph disconnected. Having reached an optimal solution x i which

is a subset of the edges chosen by xold, an optimal solution x i+1

is obtained by flipping the 1-bit corresponding to the largest edge

whose removal does not make the graph disconnected. �

Theorem 5.3. Let γ ≥ δ . Then the expected time until (γ + 1) REA
has computed a minimum spanning tree after the addition of δ edges

to the graph G = (V , E,w) when starting with xold is O(γδn).

Proof. Let Gδ be the graph obtained form G by the addition of

the δ edges.

As in the previous two sections we perform an inductive proof

and show that for each 1 ≤ i ≤ δ the expected number of iterations

needed by the (γ + 1) REA to obtain an optimal solution x i at

Hamming distance i from xold is O(γ in). Let x0 = xold and let

i ∈ [0..δ − 1] be such that the (γ + 1) REA has found an optimal

solution at Hamming distance i from xold. By Lemma 5.2 an optimal

solution x i+1 at Hamming distance i + 1 from xold is obtained from
x i by flipping in it exactly one of those 1-bits that correspond to an

edge of largest weight and which is such that its removal does not

make the graph disconnected, and flipping no other bit in x i . The
solution x i is selected with probability at least 1/(2(γ + 1)) and the

corresponding mutation happens with probability at least 1/(en),
so that the expected time needed to create from x i an optimal point

x i+1 at Hamming distance i + 1 isO(γn). Since the value of i has to
be increased at most δ times, a minimum spanning treeT ∗ ofGδ is

obtained from xold in expected time O(γδn). �

5.2 Removal of Edges

We now consider the case where a set of δ edges Eδ ⊂ E is removed

from the graph G = (V , E,w) such that a still connected graph

Gnew = (V , E \ Eδ ,wnew) is obtained (where wnew denotes the

restriction ofw to the edges in E \ Eδ). Let x
∗ = (x∗

1
, . . . , x∗m) be a

solution representing a minimum spanning tree of G. We remove

the bits corresponding to the removed edges in order to obtain

the solution xold that we are using for the initialization of the

reoptimization process. Without loss of generality and to ease the

presentation, we assume that the last δ bits are removed, which

implies xold = (x∗
1
, . . . , x∗m−δ).

Theorem 5.4. Let γ ≥ δ . Then the expected time until the (γ +
1) REA has computed a minimum spanning tree after the removal of

δ edges from G = (V , E,w) when starting with xold is O(γδn).

Proof. Let δ ′ ≤ δ be the number of edges that have been re-

moved from the minimum spanning tree represented by x∗ for

G = (V , E,w). The solution xold is a minimum spanning forest of

Gnew = (V , E \ Eδ ,wnew) consisting of δ ′ + 1 connected compo-

nents. For our analysis, we always pick the solution x i such that

for x i and all x j , 0 ≤ j ≤ i < δ ′, a minimum spanning forest with

δ ′− j+1 connected components forGnew has already been obtained.

Solution x i is chosen as a parent for mutation with probability at

least 1/(2(γ + 1)). It is well known (and used, for example, in Prim’s

algorithm) that flipping the bit corresponding to an edge of minimal

weight that does not create a cycle produces a solution x i+1 that is
a minimum spanning forest with δ ′ − i connected components at

Hamming distance i + 1 to xold. There are at most δ ′ steps in which

the value of i has to be increased such that a minimum spanning

tree forGδ which has Hamming distance δ ′ ≤ δ to xold is obtained.
This implies that a minimum spanning tree forGδ is obtained after

an expected number of O(γδ ′n) = O(γδn) steps. �

6 CONCLUSIONS

The task of re-optimizing a previously encountered problem plays a

crucial role in real-world applications. We contribute to the theoret-

ical understanding and design of evolutionary algorithms for such

dynamically changing problems and introduced a diversity-based

approach which searches for good solutions around a good solution

prior to the perturbation. This allows the algorithm to remember

good components of the given problem. Our theoretical results

show that this leads to highly effective evolutionary algorithms as

it prevents recomputation of previously obtained knowledge about

the given problem.

ACKNOWLEDGMENTS

This work has been supported by the Australian Research Council

through grants DP160102401 and DP190103894, by COST action

CA15140 (‘ImAppNIO’), and by a public grant as part of the In-

vestissement d’avenir project, reference ANR-11-LABX-0056-LMH,

LabEx LMH, in a joint call with Gaspard Monge Program for op-

timization, operations research and their interactions with data

sciences. Parts of this research has been conducted during a re-

search visit of Frank Neumann as invited professor at Sorbonne

University, with financial support from the LIP6 laboratory.

REFERENCES

[1] Anne Auger and Benjamin Doerr. 2011. Theory of Randomized Search Heuristics:

Foundations and Recent Developments. Vol. 1. World Scientific.

[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed and

AdaptiveMutation Rates for the LeadingOnes Problem. In Proc. of Parallel Problem

Solving from Nature (PPSN’10) (Lecture Notes in Computer Science), Vol. 6238.

Springer, 1–10.

Fast Re-Optimization via Structural Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

[3] Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz (Eds.). 2012. Vari-

ants of Evolutionary Algorithms for Real-World Applications. Springer. https:

//doi.org/10.1007/978-3-642-23424-8

[4] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and

Dorian Nogneng. 2018. A New Analysis Method for Evolutionary Optimization

of Dynamic and Noisy Objective Functions. In Proc. of Genetic and Evolutionary

Computation Conference (GECCO’18). ACM, 1467–1474.

[5] Kalyanmoy Deb. 2012. Optimization for Engineering Design - Al-

gorithms and Examples, Second Edition. PHI Learning Private Lim-

ited. http://phindia.com/bookdetails/optimization_for_engineering_design_

-algorithms_and_examples_by-deb_kalyanmoy_-isbn-978-81-203-4678-9

[6] Benjamin Doerr. 2018. Better Runtime Guarantees Via Stochastic Domination.

In Proc. of Evolutionary Computation in Combinatorial Optimization (EvoCOP’18).

Springer, 1–17. Full version available at https://arxiv.org/abs/1801.04487.

[7] Benjamin Doerr. 2018. Probabilistic Tools for the Analysis of Randomized Op-

timization Heuristics. CoRR abs/1801.06733 (2018). arXiv:1801.06733 http:

//arxiv.org/abs/1801.06733

[8] Benjamin Doerr, Michael Gnewuch, Nils Hebbinghaus, and Frank Neumann.

2007. A Rigorous View on Neutrality. In Proc. of IEEE Congress on Evolutionary

Computation (CEC’07). IEEE, 2591–2597.

[9] Benjamin Doerr, Edda Happ, and Christian Klein. 2011. Tight Analysis of the

(1+1)-EA for the Single Source Shortest Path Problem. Evolutionary Computation

19 (2011), 673–691.

[10] Benjamin Doerr, Edda Happ, and Christian Klein. 2012. Crossover Can Provably

be Useful in Evolutionary Computation. Theoretical Computer Science 425 (2012),

17–33.

[11] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. 2013. When Do Evolutionary

Algorithms Optimize Separable Functions in Parallel?. In Proc. of Foundations of

Genetic Algorithms (FOGA’13). ACM, 48–59.

[12] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms - The Computer Science

Perspective. Springer.

[13] Jörg Lässig and Dirk Sudholt. 2013. Design and Analysis of Migration in Parallel

Evolutionary Algorithms. Soft Computing 17 (2013), 1121–1144.

[14] Andrei Lissovoi and Carsten Witt. 2015. Runtime Analysis of Ant Colony Opti-

mization on Dynamic Shortest Path Problems. Theoretical Computer Science 561

(2015), 73–85.

[15] Frank Neumann and Ingo Wegener. 2006. Minimum Spanning Trees Made Easier

via Multi-Objective Optimization. Natural Computing 5 (2006), 305–319.

[16] Frank Neumann and Ingo Wegener. 2007. Randomized local search, evolutionary

algorithms, and the minimum spanning tree problem. Theoretical Computer

Science 378 (2007), 32–40. https://doi.org/10.1016/j.tcs.2006.11.002

[17] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combina-

torial Optimization: Algorithms and Their Computational Complexity (1st ed.).

Springer.

[18] Frank Neumann and Carsten Witt. 2015. On the Runtime of Randomized Local

Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling.

In Proc. of International Joint Conference on Artificial Intelligence (IJCAI’15). AAAI

Press, 3742–3748.

[19] T.T. Nguyen and X. Yao. 2012. Continuous Dynamic Constrained Optimization:

The Challenges. IEEE Transactions on Evolutionary Computation 16, 6 (2012),

769–786. https://doi.org/10.1109/TEVC.2011.2180533

[20] Mojgan Pourhassan, Wanru Gao, and Frank Neumann. 2015. Maintaining 2-

Approximations for the Dynamic Vertex Cover Problem Using Evolutionary Algo-

rithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’15).

ACM, 903–910. https://doi.org/10.1145/2739480.2754700

[21] Günther R. Raidl, Gabriele Koller, and Bryant A. Julstrom. 2006. Biased Mu-

tation Operators for Subgraph-Selection Problems. IEEE Trans. Evolutionary

Computation 10 (2006), 145–156. https://doi.org/10.1109/TEVC.2006.871251

[22] Pratyusha Rakshit, Amit Konar, and Swagatam Das. 2017. Noisy evolutionary

optimization algorithms - A comprehensive survey. Swarm and Evolutionary

Computation 33 (2017), 18–45. https://doi.org/10.1016/j.swevo.2016.09.002

[23] Joachim Reichel and Martin Skutella. 2009. On the size of weights in randomized

search heuristics. In Proc. of Foundations of Genetic Algorithms (FOGA’09). ACM,

21–28. https://doi.org/10.1145/1527125.1527130

[24] Hendrik Richter and Shengxiang Yang. 2013. Dynamic Optimization Using

Analytic and Evolutionary Approaches: A Comparative Review. In Handbook of

Optimization - From Classical to Modern Approach, Ivan Zelinka, Václav Snásel,

and Ajith Abraham (Eds.). Intelligent Systems Reference Library, Vol. 38. Springer,

1–28. https://doi.org/10.1007/978-3-642-30504-7_1

[25] Vahid Roostapour, Aneta Neumann, and Frank Neumann. 2018. On the Perfor-

mance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Prob-

lem. In Proc. of Parallel Problem Solving from Nature (PPSN’18) (Lecture Notes

in Computer Science), Vol. 11101. Springer, 158–169. https://doi.org/10.1007/

978-3-319-99253-2_13

[26] Vahid Roostapour, Aneta Neumann, Frank Neumann, and Tobias Friedrich. 2018.

Pareto Optimization for Subset Selection with Dynamic Cost Constraints. CoRR

abs/1811.07806 (2018). arXiv:1811.07806 http://arxiv.org/abs/1811.07806 Confer-

ence version appears at AAAI 2019.

[27] Vahid Roostapour, Mojgan Pourhassan, and Frank Neumann. 2018. Analysis

of Evolutionary Algorithms in Dynamic and Stochastic Environments. CoRR

abs/1806.08547 (2018). arXiv:1806.08547 http://arxiv.org/abs/1806.08547

[28] Jonathan E. Rowe and Dirk Sudholt. 2014. The Choice of the Offspring Population

Size in the (1, λ) Evolutionary Algorithm. Theoretical Computer Science 545 (2014),

20–38.

[29] Baruch Schieber, Hadas Shachnai, Gal Tamir, and Tami Tamir. 2018. A Theory

and Algorithms for Combinatorial Reoptimization. Algorithmica 80, 2 (2018),

576–607. https://doi.org/10.1007/s00453-017-0274-8

[30] Feng Shi, Frank Neumann, and Jianxin Wang. 2018. Runtime Analysis of Ran-

domized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. In

Proc. of the Genetic and Evolutionary Computation Conference (GECCO’18). ACM,

1515–1522. https://doi.org/10.1145/3205455.3205580

[31] Feng Shi, Martin Schirneck, Tobias Friedrich, Timo Kötzing, and Frank Neumann.

2017. Reoptimization Times of Evolutionary Algorithms on Linear Functions

Under Dynamic Uniform Constraints. In Proc. of the Genetic and Evolutionary

Computation Conference (GECCO’17). ACM, 1407–1414.

[32] Dirk Sudholt. 2018. On the Robustness of Evolutionary Algorithms to Noise:

Refined Results and an Example where Noise Helps. In Proc. of the Genetic and

Evolutionary Computation Conference (GECCO’18). ACM, 1523–1530.

[33] Ingo Wegener. 2001. Theoretical Aspects of Evolutionary Algorithms. In Proc. of

Automata, Languages and Programming (ICALP’01) (Lecture Notes in Computer

Science), Vol. 2076. Springer, 64–78.

[34] Carsten Witt. 2014. Revised analysis of the (1+1) EA for the minimum span-

ning tree problem. In Proc. of Genetic and Evolutionary Computation Conference

(GECCO’14). ACM, 509–516. https://doi.org/10.1145/2576768.2598237

[35] Anna Zych-Pawlewicz. 2018. Reoptimization of NP-Hard Problems. InAdventures

Between Lower Bounds and Higher Altitudes - Essays Dedicated to Juraj Hromkovič

on the Occasion of His 60th Birthday (Lecture Notes in Computer Science), Vol. 11011.

Springer, 477–494. https://doi.org/10.1007/978-3-319-98355-4_28

https://doi.org/10.1007/978-3-642-23424-8
https://doi.org/10.1007/978-3-642-23424-8
http://phindia.com/bookdetails/optimization_for_engineering_design_-algorithms_and_examples_by-deb_kalyanmoy_-isbn-978-81-203-4678-9
http://phindia.com/bookdetails/optimization_for_engineering_design_-algorithms_and_examples_by-deb_kalyanmoy_-isbn-978-81-203-4678-9
https://arxiv.org/abs/1801.04487
http://arxiv.org/abs/1801.06733
http://arxiv.org/abs/1801.06733
http://arxiv.org/abs/1801.06733
https://doi.org/10.1016/j.tcs.2006.11.002
https://doi.org/10.1109/TEVC.2011.2180533
https://doi.org/10.1145/2739480.2754700
https://doi.org/10.1109/TEVC.2006.871251
https://doi.org/10.1016/j.swevo.2016.09.002
https://doi.org/10.1145/1527125.1527130
https://doi.org/10.1007/978-3-642-30504-7_1
https://doi.org/10.1007/978-3-319-99253-2_13
https://doi.org/10.1007/978-3-319-99253-2_13
http://arxiv.org/abs/1811.07806
http://arxiv.org/abs/1811.07806
http://arxiv.org/abs/1806.08547
http://arxiv.org/abs/1806.08547
https://doi.org/10.1007/s00453-017-0274-8
https://doi.org/10.1145/3205455.3205580
https://doi.org/10.1145/2576768.2598237
https://doi.org/10.1007/978-3-319-98355-4_28

	Abstract
	1 Introduction
	2 The (c+1) Re-Optimization EA
	3 Re-Optimizing LeadingOnes
	3.1 Upper Bound for LeadingOnes
	3.2 Lower Bound for LeadingOnes

	4 Re-Optimizing Linear Functions with Modified Uniform Constraints
	5 Minimum Spanning Trees
	5.1 Additional Edges
	5.2 Removal of Edges

	6 Conclusions
	Acknowledgments
	References

