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ABSTRACT

It is known that the (1 + (λ, λ)) Genetic Algorithm (GA) with self-

adjusting parameter choices achieves a linear expected optimiza-

tion time on OneMax if its hyper-parameters are suitably chosen.

However, it is not very well understood how the hyper-parameter

settings influences the overall performance of the (1 + (λ, λ)) GA.
Analyzing such multi-dimensional dependencies precisely is at the

edge of what running time analysis can offer. To make a step for-

ward on this question, we present an in-depth empirical study of

the self-adjusting (1 + (λ, λ)) GA and its hyper-parameters. We

show, among many other results, that a 15% reduction of the av-

erage running time is possible by a slightly different setup, which

allows non-identical offspring population sizes of mutation and

crossover phase, and more flexibility in the choice of mutation rate

and crossover bias – a generalization which may be of independent

interest. We also show indication that the parametrization of muta-

tion rate and crossover bias derived by theoretical means for the

static variant of the (1 + (λ, λ)) GA extends to the non-static case.

CCS CONCEPTS

• Theory of computation→ Random search heuristics.

ACM Reference Format:

Nguyen Dang and Carola Doerr. 2019. Hyper-Parameter Tuning for the

(1+(λ, λ))GA. InGenetic and Evolutionary Computation Conference (GECCO
’19), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3321707.3321725

1 INTRODUCTION

The (1 + (λ, λ)) Genetic Algorithm (GA) is a crossover-based evo-

lutionary algorithm that was introduced in [13] to demonstrate

that the idea of recombining previously evaluated solutions can be

beneficial also on very smooth functions. More precisely, it was

proven in [11, 13] that the (1 + (λ, λ)) GA achieves an o(n logn) ex-
pected optimization time on OneMax, the problem of maximizing

functions of the type fz : {0, 1}n → R,x 7→ |{1 ≤ i ≤ n | xi = zi }|.
All purely mutation-based algorithms, in contrast, are known to

require Ω(n logn) function evaluations, on average, to optimize

these functions [14, 23].

The (1 + (λ, λ)) GA has three parameters, the population size

λ of mutation and crossover phase, the mutation rate p, and the

crossover bias c . It was shown in [13] that an asymptotically optimal

linear expected running time can be achieved by the (1+ (λ, λ)) GA
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when choosing these parameters in an optimal way, which depends

on the fitness of a current-best solution. This result was extended

in [11] to a self-adjusting variant of the (1 + (λ, λ)) GA, which
uses a fixed parametrization p = λ/n, c = 1/λ, and an adaptive

success-based choice of λ. More precisely, in the self-adjusting

(1 + (λ, λ)) GA the parameter λ is chosen according to a one-fifth

success rule, which decreases λ to λ/F if an iteration has produced

a strictly better solution, and increases λ to F 1/4λ otherwise. This

linear runtime result proven in [11] was the first example where a

self-adjusting choice of the parameter values could be rigorously

shown to outperform any possible static setting.

Despite these theoretically appealing results, the performances

reported in the original work introducing this algorithm [13] are

rather disappointing in that they are much worse than those of

Randomized Local Search for all tested problem dimensions up to

n = 5 000. It was pointed out in [9] that this is partially due to a sub-

optimal implementation; the average optimization times reduce

drastically when enforcing that at least one bit is flipped in the

mutation phase. In this case, the self-adjusting (1+ (λ, λ)) GA starts

to outperform RLS already for dimensions around 1 000. Another

possible reason lies in the fact that the hyper-parameters of the

self-adjusting (1 + (λ, λ)) GA had not been optimized. In [13] the

authors had taken some default values from the literature, and

show only some very basic sensitivity analysis with respect to the

update strength, but not with respect to any of the other parameters

such as the success rate. In [11] some general advice on choosing

the hyper-parameters is given, but their influence on the explicit

running time is not discussed, mostly due to missing precision in

the available results, which state the asymptotic linear order only,

but not the leading constants or lower order terms. Also the update

strength F for which the linear running time is obtained is only

shown to exist, but not made explicit in [11].

To shed light on the question how much performance can be

gained by choosing the hyper-parameters of the (1+(λ, λ))GAwith

more care, we present in this work a detailed empirical evaluation of

this parameter tuning question. Our first finding is that the default

setting studied in [13], which uses update strength F = 3/2 and the

mentioned 1/5-th success rule is almost optimal. More precisely, we

show that for all tested problem dimensions between n = 500 and

n = 10 000 only marginal gains are possible by choosing different

update strengths F and/or a success rule different from 1/5.

We then introduce a more general variant of the (1 + (λ, λ)) GA,
in which the offspring population sizes of mutation and crossover

phase need not be identical, and in which more flexible choices of

mutation strength and crossover bias are possible. This leaves us

with a five-dimensional hyper-parameter tuning problem, which we

address with the irace software [26]. We thereby find configurations

whose average optimization times are around 15% better than that

of the default self-adjusting (1+ (λ, λ)) GA, for each of the tested di-

mensions. The configurations achieving these advantages are quite

https://doi.org/10.1145/3321707.3321725
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stable across all dimensions, so that we are able to derive configu-

rations achieving these gains for all dimensions. We furthermore

show that the relative advantage also extends to dimensions 20 000

and 30 000, for which we did not perform any hyper-parameter

tuning. This five-dimensional variant of the (1+ (λ, λ)) GA is also of

independent interest, since it allows much greater flexibility than

the standard versions introduced in [11, 13].

We finally study if hyper-parameter tuning of a similarly ex-

tended static (1+ (λ, λ)) GA can give similar results, or whether the

asymptotic discrepancy between non-static and static parameter

settings proven in [11] also applies relatively small dimensions. We

show that indeed already for the smallest tested dimension, n = 500,

the average optimization time of the best static setting identified by

our methods is around 5% worse than the standard self-adjusting

(1+ (λ, λ)) GA from [11, 13], and by 22% worse than the best found

five-dimensional configuration. This disadvantage increases to 22%

and 45% in dimension n = 10 000, respectively, thus showing that

not only the advantage of the self-adjusting (1+ (λ, λ)) GA kicks in

already for small dimensions, but also confirming that the relative

advantage increases with increasing problem dimensions.

Apart from introducing the new (1 + (λ, λ)) GA variants, which

offer much greater flexibility than the standard versions, our work

significantly enhance our understanding of the hyper-parameter

setting in the (1 + (λ, λ)) GA, paving the way for a precise rigorous

theoretical analysis. In particular the stable performance of the

tuned configurations indicates that a precise running time analysis

might be possible. We furthermore learn from our work that the

parametrization of the mutation rate and the crossover bias, which

were suggested and proven to be asymptotically optimal for the

static case in [11], seem to be optimal also in the non-static case

with self-adjusting parameter choices. Finally, we also observe that

for the generalized dynamic setting 1 : x success rules with success

rates between 3 to 4 seem to be slightly better than the classic

one-fifth success rule with F = 3/2.

Broader Context: Parameter Control and Hyper-

Parameter Tuning. All iterative optimization heuristics

such as EAs, GAs, local search variants, etc. are parametrized

algorithms. Choosing the right parameter values is a tedious,

but important task, frequently coined the “Achilles’ heel of

evolutionary computation” [17]. It is well known that choosing

the parameter values of different parameter settings can result

in much different performances. Extreme cases in which a small

constant change in the mutation rate result in super-polynomial

performance gaps were shown, for example, in [15, 24].

To guide the user in the parameter selection task, two main

approaches have been developed: parameter tuning and parameter

control. Parameter tuning aims at developing tools that automatize

the process of identifying reasonable parameter values, cf. [2, 19,

20, 25, 26] for examples. Parameter control, in contrast, aims to not

only identify such good values, but to also track the evolution of

good configurations during the whole optimization process, thereby

achieving additional performance gains over an optimally tuned

static configuration, cf. [1, 12, 21] for surveys. In practice, parameter

control mechanisms are parametrized themselves, thus introducing

hyper-parameters,which again need to be chosen by the user or one

of the tuning tools mentioned above. This is also the route taken in

this present work: in Sections 2 and 3 we will use the iterated racing

algorithm irace [26] to tune two different sets of hyper-parameters

of the self-adjusting (1 + (λ, λ)) GA, a two-dimensional and a five-

dimensional one. In Section 4 we then tune the four parameters

of a generalized static (1 + (λ, λ)) GA variant. By comparing the

results of these tuning steps, we obtain the mentioned estimates

for the relative advantage of the self-adjusting over the best tuned

static parameter configuration.

Reproducibility, Raw Data, and Computational Re-

sources. Given the space limitations, we only display selected

statistics. We concentrate on reporting average values to match

with the available theoretical and empirical results. We recall that

in theoretical works the expected optimization time dominates

all other performance measures. Selected boxplots for the most

relevant configurations are provided in Section 5. Source codes,

additional performance statistics, summarizing plots, heatmaps

with different colormaps, and raw data can be found on our GitHub

repository at [10]. All experiments were run on the HPCaVe

cluster [4], whose each node consists of two 12-core Intel Xeon E5

2.3GHz with 128Gb memory.

2 TUNING THE DEFAULT (1 + (λ, λ)) GA
Our main interest is in tuning the self-adjusting variant of the

(1 + (λ, λ)) GA proposed in [13] and analyzed in [11]. As in these

works, we regard the performance of this algorithm on the One-

Max problem. The OneMax problem is one of the most clas-

sic benchmark problems in the evolutionary computation liter-

ature. It asks to find a secret string z via calls to the function

fz : {0, 1}n → R,x 7→ |{1 ≤ i ≤ n | xi = zi }| and is thus

identical to the problem of minimizing the Hamming distance to

an unknown string z ∈ {0, 1}n . It is referred to as “OneMax” in

evolutionary computation, since the performance of most EAs (in-

cluding the (1 + (λ, λ)) GA) is identical on any of the functions fz ,
and it therefore suffices to study the instance f(1, ...,1).

It is known that the best possible mutation-based (i.e., formally,

the best unary unbiased) black-box algorithms have an expected

optimization time on OneMax of order n logn [14, 23]. The (1 +

(λ, λ)) GA, in contrast, achieves a linear expected optimization time

if its parameters are suitably chosen [11, 13]. Parameter control, i.e.,

a non-static choice of these parameters, is essential for the linear

performance, since the (1 + (λ, λ)) GA with static parameter values

cannot have an expected optimization time that is of better order

than n
√
log(n) log log log(n)/log log(n), which is super-linear.

2.1 The dynamic (1 + (λ, λ)) GA dyn(α , β,γ ,A,b)
The (1 + (λ, λ)) GA is a binary unbiased algorithm, i.e., it applies

crossover but uses only variation operators that are invariant with

respect to the problem representation. We present the pseudo-code

of the (1+ (λ, λ)) GA in Algorithm 1, in which we denote by nint(.)

the nearest integer function, i.e., nint(r ) = ⌊(r )⌋ if r − ⌊r⌋ < 1/2

and nint(r ) = ⌈(r )⌉ otherwise.
The (1 + (λ, λ)) GA has two phases, a mutation phase and a

crossover phase, followed by a selection step. In the mutation phase
λ1 = nint(λ) offspring are evaluated. Each of them is sampled by

the operator flipℓ(.) uniformly at random (u.a.r.) from all the points

at a radius ℓ around the current-best solution x . The radius ℓ is
sampled from the conditional binomial distribution Bin>0(n,p),
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Algorithm 1: The self-adjusting (1 + (λ, λ)) GA variant

dyn(α , β,γ ,A,b) with five hyper-parameters.

1 Initialization: Sample x ∈ {0, 1}n u.a.r.;

2 Initialize λ← 1;

3 Optimization: for t = 1, 2, 3, . . . do

4 Mutation phase:

5 Sample ℓ from Bin>0(n,p = αλ/n);

6 for i = 1, . . . , λ1 = nint(λ) do x (i) ← flipℓ(x);

7 Choose x ′ ∈ {x (1), . . . ,x (λ1)} with

f (x ′) = max{ f (x (1)), . . . , f (x (λ1))} u.a.r.;

8 Crossover phase:

9 for i = 1, . . . , λ2 = nint(βλ) do

y(i) ← crossc=γ /λ(x ,x
′);

10 Choose y ∈ {x ′,y(1), . . . ,y(λ2)} with

f (y) = max{ f (x ′), f (y(1)), . . . , f (y(λ2))} u.a.r.;

11 Selection and update step:

12 if f (y) > f (x) then x ← y; λ← max{bλ, 1};

13 if f (y) = f (x) then x ← y; λ← min{Aλ,n − 1};

14 if f (y) < f (x) then λ← min{Aλ,n − 1};

which assigns to each positive integer 1 ≤ k ≤ n the probability

Bin>0(n,p) =
(n
k
)
pk (1−p)n−k/(1− (1−p)n ). Following the reason-

ing made in [9] we deviate here from the (1 + (λ, λ)) GA variants

investigated in [13], to avoid useless iterations. The variants ana-

lyzed in [11, 13] allow ℓ = 0, which is easily seen to create copies of

the parent only. As it cannot advance the search, we enforce ℓ ≥ 1.

In the crossover phase, λ2 offspring are evaluated. They are sam-

pled by the crossover operator crossc (·, ·), which creates an off-

spring by copying with probability c , independently for each posi-

tion, the entry of the second argument, and by copying from the

first argument otherwise. We refer to the parameter 0 < c < 1

as the crossover bias. Again following [9], we evaluate only those

offspring that differ from both their two parents; i.e., offspring that

are merely copies of x or x ′ do not count towards the cost of the

algorithm, since their function values are already known.

In the selection step, we replace the parent by its best offspring if

the latter is at least as good. When a strict improvement has been

found, the value of λ is updated to max{bλ, 1}. It is increased to

min{Aλ,n − 1} otherwise.
Note that in the description above and Algorithm 1 we have devi-

ated from the commonly used representation of the (1 + (λ, λ)) GA,
in that we have parametrized the mutation rate as p = αλ/n, the
offspring population size of the crossover phase as λ2 = nint(βλ),
the crossover bias as c = γ/λ, and in that we allow more flexible up-

date strengthsA and b. We thereby obtain a more general variant of

the (1+ (λ, λ)) GA, which we will show to outperform the standard

self-adjusting one considerably. In this present section, however,

we only generalize the update rule, not yet the other parameters.

That is, we work in this section only with the (1+ (λ, λ)) GA variant

dyn(1, 1, 1,A,b), which uses λ1 = λ2, p = λ/n, and c = 1/λ.
In our implementation we always ensure that p and c are at least

1/n and at most 0.99, by capping these values if needed. Slightly

Figure 1: Heatmap for dyn(α = β = γ = 1,A ∈ [1.02, 2],b ∈
[0.4, 0.988]), average optimization time capped at 20 000

better performances may be obtained by allowing even smaller

p-values, but we put this question aside for this present work.

2.2 Influence of the Update Strengths

As mentioned above, in our first set of experiments we focus on

investigating the influence of the update strengths A and b, i.e.,
we fix α = β = γ = 1 in the notation of Algorithm 1. In [13]

it was suggested to set A = (3/2)1/4 ≈ 1.11 and b = 2/3. These

settings had previously been suggested in [5, 22] in a much different

context, but seemed to work well enough for the purposes of [13]

and was hence not questioned further in that work (apart from

a simple evaluation showing that for n = 400 the influence of

varying the update strength F within the interval [1.1, 2] is not

very pronounced). Note that the choices of A and b correspond to

an implicit one-fifth success rule, in the sense that the value of λ is

stable if one out of five iterations is successful. The success rate (five
in this case) can be computed as 1− ln(b)/ln(A). We emphasize that

for notational convenience we prefer to speak of a success rate x
instead of a 1/x-th success rule.

The heatmap in Figure 1 shows the average running time of the

self-adjusting (1+ (λ, λ)) GA in dependence of the update strengths

A andb. We considered all combinations of 50 equally spaced values

for A ∈ {1.02, 1.04, . . . , 2} and for b ∈ {0.4, 0.412, . . . , 0.988} (2 500
hyper-parameter settings). For each setting, we performed 100

independent runs of the algorithm dyn(1, 1, 1,A,b). Each run has a

maximum budget of 150 000 function evaluations. Our results are

for problem dimension n = 1 000. To show more structure, we cap

in Figure 1 the values at 20 000, other versions with different color

schemes and cappings are available at [10].

The best configuration is (A = 1.06,b = 0.82) with an estimated

average optimization time of 6 495. This configuration has a success

rate of 4.4. The average optimization time of the default variant

dyn(1, 1, 1, (3/2)1/4, 2/3) from [13], denoted by dyn(default) in the

following, over 500 runs is 6, 671, and thus only 2.7% worse than

dyn(1, 1, 1, 1.06, 0.82). 29 of the 2 500 tested configurations have a

smaller average optimization time than dyn(default), all of them



GECCO ’19, July 13–17, 2019, Prague, Czech Republic N. Dang, C. Doerr

Figure 2: Average optimization time for different success

rates, sorted by value of A

with A-values at most 1.12 and b-value at least 0.64. 106 configura-
tions are worse by at most 3%, and 188 by at most 5%.

For a more stable comparison, we also ran dyn(1, 1, 1, 1.06, 0.82)

500 times, and its average optimization time increased to 6 573 for

these 500 independent runs, reducing the relative advantage over

dyn(default) to 1.5%. Boxplots with information about the runtime

distributions can be found in Section 5.

In Figure 2 we plot the average optimization time for different

success rates, sorted by the value A. Note that for each tested A-
value we have averaged here over all configurations using the same

rounded (by nint(·)) success rate. The performance of success rates 1

and 2 is much worse than 7 500 and is therefore not plotted. We plot

only results for success rates at most 10, for readability purposes.

We see that success rates 4 and 5 are particularly efficient, given the

proper values of A. The performance curves for success rates ≥ 4

seem to be roughly U-shaped with different values of A in which

the minimum is obtained. It could be worthwhile to extend the

mathematical analysis of the dyn(1, 1, 1,A,b) presented in [11] in

order to identify the precise relationship.

2.3 Tuning with irace

The computation of the heatmaps presented above is quite resource-

consuming, around 286 CPU days for the full heatmap with 2 500

parameter combinations for n = 1 000. Since we are interested in

studying the quality of the (1 + (λ, λ)) GA also for other problem

dimensions, we therefore investigate how well automated tuning

tools approximate the best known configuration. To this end, we

run the configuration tool irace [26] with adaptive capping [8]

enabled. This new mechanism was recently added to irace to make

its search procedure more efficient when optimizing running time

or time-compatible performance measurement. We use irace to

optimize the configuration of the dyn(1, 1, 1,A,b) for values of A
between 1 and 2.5, and values of b between 0.4 and 1. The allocated

budget is 10 and 20 hours of walltime on one 24-core cluster node

for n ≤ 5 000 and n > 5 000, respectively. This time budget is only a

fraction of the ones required by heatmaps (around 3% for n = 1 000).

For n = 1 000 irace suggests to use configuration (A = 1.071,b =
0.7854), which is similar to the one showing best performance in

the heatmap. The average optimization time of this configuration

is 6, 573 (this number, like all numbers for the configurations sug-

gested by irace are simulated from 500 independent runs each), and

Figure 3: Parameter values suggested by irace for the (1 +

(λ, λ)) GA variant dyn(1, 1, 1,A,b). The success rate equals 1 −
ln(b)/ln(A)

thus identical to the best one from the heatmap computations. The

suggested configuration corresponds to a 4.52 success rate.

Confident that irace is capable of identifying good parameter

settings, we then run irace for various problem dimensions between

500 and 10 000. The by n normalized average optimization time of

the suggested configurations are reported in Figure 4 in column

dyn(1, 1, 1,A,b). The chosen A-values are between 1.04 and 1.12

and the b-values are between 0.63 and 0.88, with corresponding

success rates between 4.41 and 6.68, cf. Figure 3. We observe a quite

stable suggestion for the parameter values.

In Figure 4 we also display, in column dyn(default), the

normalized average optimization times of the default set-

ting (1, 1, 1, (3/2)1/4, 2/3). The relative disadvantage of the

dyn(1, 1, 1,A,b) over the dyn(default) ranges from −1.3% to 3.3%.

The negative values (in four dimensions) may be due to a subopti-

mal suggestion of irace, or due to the variance of the algorithms;

the relative standard deviation is between 5% and 10%, cf. also the

boxplots in Section 5.

We also observe that the normalized average optimization times

of dyn(default) increase slightly with increasing problem dimen-

sion. Note, however, that this does not necessarily tell us something

about the constant factor in the linear running time of this algo-

rithm, although the results indicate that this factor might be larger

than 7. Already for n = 1 000 the dyn(default) has a smaller average

optimization time than RLS, the relative advantage of dyn(default)

is around 2%, and increases to around 31% for n = 30 000.

3 5-DIMENSIONAL PARAMETER TUNING

Next we turn our attention to the five-dimensional (1 + (λ, λ)) GA
variant dyn(α , β,γ ,A,b), in which not only the update strengths

A and b are configurable, but also the dependence of p = αλ/n,
λ2 = nint(βλ), c = γ/λ. The dependencies of the parameters on λ
are based on a theoretical result proven in [11], where it is shown

that any static configuration with λ2 = λ1 (i.e., A = b = β =
1) that achieves optimal asymptotic expected performance must

necessarily satisfy p = Θ(λ/n) and γ = Θ(1/λ).
To investigate how much performance can be gained by this

flexibility, and how reasonable parameter values look like, we run

again irace, this time using the following parameter ranges: α ∈
(1/3, 10), β ∈ (1, 10),γ ∈ (1/3, 10),A ∈ (1.01, 2.5) andb ∈ (0.4, 0.99).
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Figure 4: By n normalized average optimization times for 500 independent runs each. For data sets dyn(1, 1, 1,A,b),
dyn(α , β ,γ ,A,b), and static(λ1, λ2,p, c) we have taken for each dimension the configuration suggested by irace; the other results

are for fixed configurations. Displayed numbers are for n = 10 000.

Figure 5: Hyper-parameters and success rate suggested by

irace for the dyn(α , β,γ ,A,b) configuration problem.

The allocated budget is the same as for the dyn(1, 1, 1,A,b), i.e., 240
CPU hours for n ≤ 5 000 and 480 CPU hours for n > 5 000.

The normalized average running times of the suggested configu-

rations are presented in Column dyn(α , β ,γ ,A,b) in Figure 4. We

observe that the parametrization of λ2, p, and c consistently allows

to decrease the average optimization time by around 14%, when

measured against the best dyn(1, 1, 1,A,b) variant.

3.1 Suggested Hyper-Parameters

The suggested parameter values are displayed in Figure 5. We ob-

serve that these are quite stable, in particular when ignoring the

3 000 and 7 000 dimensional configurations. More precisely, irace

consistently suggests configurations with α ≈ 0.45, β ≈ 1.6, γ ≈ 1,

A ≈ 1.16, and b ≈ 0.7, with corresponding success rates between

3 and 4. These stable values suggest that the parametrization cho-

sen in Algorithm 1 (and originally derived in [11] for the static

(1 + (λ, λ)) GA) is indeed suitable also for the non-static setting.

In Figure 6 we plot the average optimization time of the configu-

rations tested by irace for n = 5 000 in dependence of each of the

five hyper-parameters α , β ,γ ,A,b and in dependence of the success

rate 1− ln(b)/ln(A). Note that the number of runs differs from point

to point, depending on how many evaluations irace has performed

for each of these configurations. It is important to note that the

capping procedure may stop an algorithm before it has found an

optimal solution, in order to save time for the evaluation of more

promising configurations. The plotted values are the averages of

the successful runs only. An exception to this rule is the chart on

the lower right, which shows the whole range of all 2 212 tested

configurations; these values are the average time after which the

configurations had either found the optimum or were stopped by

the capping procedure. We thus see that irace has indeed tested

across the whole range of admitted parameter values. Around 38%

of all 4 961 runs were stopped before an optimum had been found.

However, we already see here that for each parameter there are

configurations which use a good value for this parameter, but which

shows quite poor overall performance. These results indicate that

no parameter alone explains the performance, but that interaction

between different parameter values is indeed highly relevant; we

will discuss this aspect in more detail below.

Out of the 2 212 tested configurations only 765 configurations

had at least one successful run. The averages of all successful runs

are plotted in the upper right chart of Figure 6. We observe that

the well-performing region of values for each parameter is quite

concentrated. The charts on the left and in the middle column zoom

into those configurations which had an average optimization time

smaller than 35 000. These plots give a good indication where the

interesting regions for each parameter are. We also plot the average

optimization time in dependence of the success rate and see good

performance for success rates between 3 and 4.

For 348 tested configurations only successful runs were reported;

i.e., for these configurations none of the runs had been stopped be-

fore it had found an optimal solution. When restricting the zoomed

plots in Figure 6 to only those 348 configurations, we obtain a very

similar picture. We omit a detailed discussion but note that these

plots can be found in our repository [10].

The final configuration suggested by irace,

dyn(0.3594, 1.4128, 1.2379, 1.1672, 0.691) has an average op-

timization time of 29 165 in the 500 independent runs conducted

for the values reported in Figure 4. During the irace optimization

the estimated average was 28 876 (across 50 runs).
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Figure 6: Average running times of different configurations on 5 000-dimensional OneMax. See text for a description.

We see that some of the configurations in Figure 6 have a smaller

average optimization time than this latter value. In fact, there are

292 such configurations with at least one successful run and 62 con-

figurations with only successful runs. As we can see from the plots

in Figure 6 all these configurations have very similar parameter

values. This observation nevertheless raises the question why irace

has not suggested one of these presumably better configurations

instead. To understand this behavior, we investigate in more detail

the working principles of irace, and find two main reasons. One is

that the time budget did not allow a further investigation of these

configurations, so that statistical evidence that they are indeed su-

perior to the suggested one was not sufficient. A second reason

is that the capping suggested in [8] resulted in a somewhat harsh

selection of “surviving” configurations. We leave the question if

any of the 292 configurations would have been significantly better

than the suggested one for future work. Overall, our investigation

suggests that some adjustments to irace’s default setting might

be useful for applications similar to ours, where the performance

measure may potentially suffer from high variance.

We next investigated the influence of each parameter on the

overall running time. To this end, we have applied the functional
analysis of variance (fANOVA) [18] on the performance data given

by irace. fANOVA can efficiently recognize the importance of both

individual algorithm parameters and their interactions through

their percentage of contributions on the total performance variance.

The software PyImp [3] is used for the analysis. Obtained results are

quite consistent among different dimensions. The most important

parameter is α , which explains on average 57% of the total variance.

The second most important parameter is γ , explaining around 22%

of the total variance, on average. Other important effects include

pairwise interaction between α and γ or A. Individual parameters

and their pairwise interaction effects are able to explain almost

100% of the total variance, so that there is no need to consider

higher-order interactions.

Finally, we derive from the suggested parameter val-

ues two configurations that we investigate in more detail:

dyn(0.45, 1.6, 1, 1.16, 0.7) and dyn(1/2, 2, 1/2, (3/2)1/4, 2/3), which

we abbreviate as dyn(C) and dyn(C2), respectively. While dyn(C)

consistently shows better performance than dyn(C2), the latter

might be easier to analyze by theoretical means. Their normalized

average optimization time across all tested dimensions can be

found again in Figure 4. They are considerably better than that

of dyn(default) = dyn(1, 1, 1, (3/2)1/4, 2/3), between 14% and

16% across all tested dimensions for dyn(C) and between 11%

and 13% for dyn(C2). dyn(C2) is between 1% and 4% worse than

the (for each dimension independently tuned) best suggested

dyn(α , β ,γ ,A,b) configuration. For dyn(C) we even observe that

the average running times for the 500 runs are smaller than

those of dyn(α , β ,γ ,A,b) for 10 out of the 15 tested dimensions.

The advantages of dyn(C) and dyn(C2) over dyn(default) also

translate to larger dimensions, for which we did not perform

hyper-parameter tuning. For n = 20, 000 and n = 30, 000 the

advantage of dyn(C) over dyn(default) are 16% each, and for

dyn(C2) a relative advantage of 14% is observed.

3.2 Fixed-Target Analysis

Finally, we address the question where the advantage of the self-

adjusting (1 + (λ, λ)) GA over RLS originates from. To this end

we perform an empirical fixed-target runtime analysis for two

selected configurations, the default configuration dyn(default) and

the configuration dyn(C) mentioned above.

The fixed-target running times have been computed with IOH-

profiler [16], a recently announced tool which automates the per-

formance analysis of iterative optimization heuristics. The average

results of 100 independent runs forn = 10 000 are shown in Figure 7.

We observe that RLS is significantly better for almost all target val-

ues. In fact, the configuration dyn(C) has better first hitting times

than RLS only for OneMax values greater than 9 978, i.e., only for

the last 22 target values. We recall from Figure 4 that the average

optimization time of dyn(C) is better than that of RLS by around

36% for n = 10 000. To study at which point dyn(C) starts to perform

better than RLS, we compute the gradient of the curves plotted in
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Figure 7: Average fixed-target running times for RLS and

two selected dyn(α , β ,γ ,A,b) configurations, capped at 7,100

function evaluations.

Figure 7, showing that this happens around target value 9 750. For

the default configuration dyn(default) the situation is as follows:

It is has smaller first hitting time than RLS only for target values

≥ 9 995, although its overall average running time is smaller by

around 23%. The gradient of dyn(default) is better than that of RLS

starting at target value around 9 850. Finally, dyn(C) has smaller

average hitting time than dyn(default) for Om-values at least 8, 934,

and a better gradient starting at around 8 370. We show in Figure 7

the hypothetical running times of an algorithm that runs RLS until

target value Om(x) = 9 750 and then switches to dyn(C). Its aver-

age running time is 17% smaller than that of dyn(C), raising the

interesting question how to detect such switching points on the fly.

4 TUNING THE STATIC (1 + (λ, λ)) GA
We had concentrated in the previous sections on optimizing dy-

namic versions of the (1 + (λ, λ)) GA, since the theoretical results
guarantee configurations for which linear expected running time

can be obtained. In contrast, the best possible expected running

time that can be achieved with static parameters λ = λ1 = λ2, and

arbitrary p and c is of order n
√
log(n) log log log(n)/log log(n) [11].

While this rules out the possibility that there exists a static con-

figuration that performs similarly well as dyn(C) across all dimen-

sions, it is not known to date whether for concrete problem di-

mensions there exist static configurations that are similar in per-

formance than the dynamic variants dyn(default), dyn(C), or even

dyn(α , β ,γ ,A,b). We next show that for the tested problem dimen-

sions between 500 and 10 000 this does not seem to be the case.

We study the four-dimensional variant static(λ1, λ2,p, c) pre-
sented in Algorithm 2. Following [13], we enforce again that the mu-

tation strength ℓ is strictly greater than zero, by sampling from the

conditional distribution Bin>0(n,p) in line 4. We also allow λ1 , λ2,
whichwas not the case in [13]. In line with suggestions from [11, 13]

we set p = k/n, and optimize for integer k ∈ {1, . . . , 100}. We allow

the same range for λ1 and λ2. The crossover bias c is optimized

within the range [0.01, 1/2].

The normalized average running time of the best configuration

that irace has been able to identify with its given budget are re-

ported in column static(λ1, λ2,p = k/n, c) of Figure 4. We observe

that these running times are significantly larger than those of the

Figure 8: Suggested hyper-parameters for the static(λ1, λ2,p =
k/n, c) by dimension. λ1, λ2, and k use the scale on the left, c
the one on the right.

dynamic (1+ (λ, λ)) GA variants. The relative disadvantage against

the default dynamic variant dyn(default) monotonically increases

from around 5% for n = 500 to around 22% for n = 10, 000. Against

the best dynamic variant dyn(α , β ,γ ,A,b) this relative disadvantage
increases from around 21% to around 44%.

We also see from the results in Figure 4 that, with few exceptions,

the normalized average running time increases with the problem

dimension. This is in line with what the super-linear lower bound

proven in [11] suggests (note, however, that the theoretical results

for the static (1+ (λ, λ)) GA assumes λ1 = λ2). The relative increase
of the normalized average running time is smaller than for RLS,

again in line with the known theoretical results. The comparison

with RLS also shows that the static (1 + (λ, λ)) GA variants start

to outperform RLS at problem dimension 3 000. For n = 10 000 the

relative advantage of static(λ1, λ2,p, c) over RLS is around 6%.

Finally, we study in Figure 8 the parameter values of the configu-

rations suggested by irace. We observe that across all dimensions λ1
is significantly smaller than λ2, which was different for the dynamic

(1+ (λ, λ)) GA variants. Both λ1 and k are relatively stable, with val-

ues ranging between 5 and 7 for λ1 and between 5 and 10 for k . The
values of λ2 fluctuates significantly more, between 43 and 78. The

crossover rate is always within the range [0.0108, 0.0158], and thus

also quite stable. Since in the original works c = 1/λ is assumed, we

Algorithm2:The static (1+(λ, λ))GAvariant static(λ1, λ2,p =
k/n, c) with four static parameters.

1 Initialization: Choose x ∈ {0, 1}n u.a.r.;

2 Optimization: for t = 1, 2, 3, . . . do

3 Mutation phase:

4 Sample ℓ1 from Bin>0(n,p = k/n);

5 for i = 1, . . . , λ1 do x (i) ← flipℓ(x);

6 Choose x ′ ∈ {x (1), . . . ,x (λ1)} with

f (x ′) = max{ f (x (1)), . . . , f (x (λ1))} u.a.r.;

7 Crossover phase:

8 for i = 1, . . . , λ2 do y
(i) ← crossc (x ,x

′);

9 Choose y ∈ {y(1), . . . ,y(λ2)} with

f (y) = max{ f (y(1)), . . . , f (y(λ2))} u.a.r.;

10 Selection step: if f (y) ≥ f (x) then x ← y;



GECCO ’19, July 13–17, 2019, Prague, Czech Republic N. Dang, C. Doerr

Figure 9: Distribution of the by n normalized optimization times of different (1 + (λ, λ)) GA variants. Heatmap-1000 refers to

dyn(1, 1, 1, 1.06, 0.82), which was the best configuration identified in the heatmap from Section 2.2

also note that for both cλ1 and cλ2 the factor between the minimal

and maximal value is as small as 1.8 and 1.5, respectively, with no

clear monotonic relationship.

5 RUNTIME DISTRIBUTION

In all figures mentioned above we have only considered average

values, to obtain results that are more easily comparable with ex-

isting theoretical and empirical works. With Figure 9 we address

the question how the running times are distributed. This figure

provides boxplots for all tested dimensions ≤ 10 000. The plots

confirm the performance advantages of the five-dimensional dy-

namic (1+ (λ, λ)) GA variants dyn(α , β,γ ,A,b) and dyn(C) over the
2-dimensional versions dyn(1, 1, 1,A,b) and dyn(default). All adap-
tive versions perform consistently better than the best static version

static(λ1, λ2,p, c) in term of both median values and variance. These

advantages get more visible as the problem sizes increase. We also

perform two types of statistical tests - paired Student t-test and

Wilcoxon signed-rank test - between those versions. Results con-

firm that the difference between them are statistically significant

with a confidence level of 99.9%.

6 CONCLUSION

We have presented a very detailed study of the hyper-parameters

of the static and the self-adjusting (1 + (λ, λ)) GA on the OneMax

problem. Among other results, we have seen that the self-adjusting

(1 + (λ, λ)) GA gains only around 1% − 3% in average optimization

time with optimized update strengths A and b. We have then intro-

duced a more flexible variant, the dyn(α , β ,γ ,A,b), in which the

offspring population sizes of mutation and crossover phase need

not be identical, and which offers more flexibility in the choice

of the mutation rate and the crossover bias. This has reduced the

average optimization times by another 15%. Interestingly, the pa-

rameter values by which these performance gains are achieved are

quite consistent across all tested dimensions. We then analyzed a

configuration in which we fixed the hyper-parameters according

to the suggestions made by the tuning in lower dimensions 500 to

10 000, and show that it performs very well also on the 20 000 and

30 000 dimensional OneMax problem.

Our results suggest that the (1+ (λ, λ)) GA can gain performance

by introducing the additional hyper-parameters. We plan on inves-

tigating the gains for other problems, in particular the MaxSAT

instances studied in [7]. Since all results shown in this work are

quite consistent across all dimensions, we also plan on analyzing

the advantages of the dyn(α , β ,γ ,A,b) by rigorous means, both

in terms of optimization time, but also in terms of more general

fixed-target running times. As we have demonstrated in Section 3.2,

the latter reveal that the advantage of the (1 + (λ, λ)) GA over RLS

lies in the very final phases of the OneMax optimization problem,

i.e., when finding improving moves is hard. Efficiently switching

between the two algorithms at the time at which the (1+ (λ, λ)) GA
starts to outperform RLS carries the potential to reduce the opti-

mization time further. Automating such online algorithm selection

is another line of research that we plan to investigate further. Tech-

niques from the literature on parameter control [12, 21], adaptive

operator selection [17], and hyper-heuristics [6] might prove useful

in this context.
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