
HAL Id: hal-02175767
https://hal.sorbonne-universite.fr/hal-02175767

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online selection of CMA-ES variants
Diederick Vermetten, Sander van Rijn, Thomas Back, Carola Doerr

To cite this version:
Diederick Vermetten, Sander van Rijn, Thomas Back, Carola Doerr. Online selection of CMA-ES
variants. The Genetic and Evolutionary Computation Conference, Jul 2019, Prague, Czech Republic.
pp.951-959, �10.1145/3321707.3321803�. �hal-02175767�

https://hal.sorbonne-universite.fr/hal-02175767
https://hal.archives-ouvertes.fr

Online Selection of CMA-ES Variants
Diederick Vermetten

Leiden Institute for Advanced Computer Science

Leiden, The Netherlands

Sander van Rijn

Leiden Institute for Advanced Computer Science

Leiden, The Netherlands

Thomas Bäck

Leiden Institute for Advanced Computer Science

Leiden, The Netherlands

Carola Doerr

Sorbonne University, LIP6, and CNRS

Paris, France

ABSTRACT
In the field of evolutionary computation, one of the most challeng-

ing topics is algorithm selection. Knowing which heuristics to use

for which optimization problem is key to obtaining high-quality

solutions. We aim to extend this research topic by taking a first step

towards a selection method for adaptive CMA-ES algorithms. We

build upon the theoretical work done by van Rijn et al. [PPSN’18],
in which the potential of switching between different CMA-ES

variants was quantified in the context of a modular CMA-ES frame-

work.

We demonstrate in this work that their proposed approach is

not very reliable, in that implementing the suggested adaptive

configurations does not yield the predicted performance gains. We

propose a revised approach, which results in a more robust fit

between predicted and actual performance. The adaptive CMA-

ES approach obtains performance gains on 18 out of 24 tested

functions of the BBOB benchmark, with stable advantages of up

to 23%. An analysis of module activation indicates which modules

are most crucial for the different phases of optimizing each of the

24 benchmark problems. The module activation also suggests that

additional gains are possible when including the (B)IPOP modules,

which we have excluded for this present work.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; Bio-
inspired optimization; Online algorithms; Algorithm design tech-

niques.

KEYWORDS
Evolution Strategies, Algorithm Configuration, Algorithm Selection

1 INTRODUCTION
The creation of optimization algorithms has long been a topic of

study in Mathematics and Computer Science. As the complexity

of optimization problems increased, the need for fast heuristic

algorithms became clear. Techniques like evolution strategies have

been around for quite some time, and much research has been

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00

https://doi.org/10.1145/3321707.3321803

done into improving them, such as the popular Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [17].

For CMA-ES, many adaptations have been developed over the

last decade, all with the goal of creating a better optimization al-

gorithm for certain types of problems. However, with all these

different options to choose from, it can be difficult to know which

version to use. The comparison of different CMA-ES variants con-

sistently shows that there is no single best variant [4, 16], giving

rise to the question how to best choose which of the variants to use

for which kind of optimization problems. In addition, all CMA-ES

variants have several hyper-parameters, whose values can have

considerable impact on their performance. This means that besides

the algorithm selection problem we also face an algorithm config-
uration problem. These two problems are highly interlinked. The

choice of algorithm and corresponding parameter configuration for

a given problem at hand thereby forms itself a new optimization

problem, which has gained increasing attention in the last decades.

With the increased accuracy of performance prediction models,

state-of-the-art research in evolutionary computation focuses on

automating the decision of which algorithm and which parameter

configuration to select. Among the most widely used prediction

models are Gaussian processes [6, 7], but also techniques from

the machine learning community, such as random forests [19, 22].

Surveys on algorithm selection are available in [18, 21, 23].

While algorithm selection generally considers static choices of
algorithms, we aim to extend existing work to allow for adaptive
changes of the algorithm configuration. Note here that on-the-fly
algorithm selection and configurations are also studied under the

umbrella term hyper-heuristics [10, 11]. To date, however, research

on hyper-heuristics mostly focuses on discrete optimization and

much less on continuous optimization. In particular, we are not

aware of any previous approaches to address a dynamic selection

of CMA-ES module variants.

We base our work on the modular CMA-ES framework intro-

duced in [27]. Within this framework, we can create many variants

of CMA-ES by turning on or off certain modules, e.g. elitism, orthog-

onal sampling, and different weighting schemes (cf. Table 1). Each

module combination gives a different configuration of the modular

CMA-ES.

Using this modular CMA-ES framework, a theoretical analysis

of the potential benefits of adaptive CMA-ES configurations has

been provided in [26]. In this work, we will extend their study to

all 24 BBOB functions [14], quantifying the actual performance

gains, identify a need for a more reliable prediction, and propose

an alternative method, which shows a much better fit between

predicted performances and actual achieved running times.

https://doi.org/10.1145/3321707.3321803

GECCO ’19, July 13–17, 2019, Prague, Czech Republic D. Vermetten, S. van Rijn, Th. Bäck, and C. Doerr

We focus on the case in which the CMA-ES variant can be

changed only once. Our main results show that even such single

switches allow for performance gains on 18 out of the 24 studied

BBOB functions. In 11 cases the relative gain against the best static

configurations are larger than 5%, 8 functions show a relative gain

≥ 10% and the largest observed improvement (for F21) is 51%. How-

ever, the 51% is achieved for one particular configuration swap only,

and when averaging the 10 best adaptive configuration pairs, the

relative gain over the best static variant vanishes. We nevertheless

see other functions with stable relative gains. The largest stable

gains of around 20% are obtained for F5 and F6.

All numbers reported above are with respect to the default

parameter-choices. That is, we focus in this work exclusively on the

algorithms selection aspect, thereby leaving the question of con-

figuring the default hyper-parameters for future work. Additional

performance gains can be expected from such parameter tuning,

as, for example, the results presented in [8] indicate.

Investigating the best-performing modules per each stage of the

optimization process, we identify which configurations are most

efficient for which parts of the optimization process.

Structure of the paper: Section 2 summarizes the modular

framework, in which we build our adaptive CMA-ES. We introduce

our implementation of the approach used in [26] in Section 3, fol-

lowed by a discussion of our additional techniques for configuration

selection. Section 4 shows that the original approach is not very

stable. In Section 5 we discuss the results from our experiment, with

a focus on the configurations and switching points at which the

modules are changed. We conclude our contribution in Section 6

by looking at possible directions for future work.

2 THE MODULAR CMA-ES FRAMEWORK
The adaptive CMA-ES configurations we use were implemented

in the modular CMA-ES framework introduced in [27], which is

freely available at [25].

This framework implements 11 different modules. Of these 11

modules, 9 are binary and 2 are ternary, allowing for a combined

total of 4,608 different configurations. The full list of available

modules is shown in Table 1.

To clarify the terminology, note that we follow the example

given in [26] and consider each combination of the 11 modules a

“configuration”. As mentioned in the introduction, we do not, in this

work, change or optimize the hyper-parameters of the CMA-ES

variants (such as the population size, the speed of the step size

adaptation, etc.). We use the default values for these parameters

instead.

For our benchmarking, we use the BBOB-suite of benchmark

functions [15]. We used all noiseless, five-dimensional functions.

Each BBOB “function” is a set of functions (commonly referred to

as “instances”) with similar fitness landscapes. In accordance with

most comparative studies within the BBOB framework, we study

the first five instances. For each of these instances, we run every

configuration five times. This results in 2,649,600 total runs. The

budget for these runs are set at 10
4 · D.

While this gives us data for a total of 4,608 different configura-

tions, we ended up only using only one third of the configuration

space in our adaptive experiments. This is due to the fact that

Module name 0 1 2

1 Active Update [20] off on -

2 Elitism (µ , λ) (µ+λ) -

3 Mirrored Sampling [9] off on -

4 Orthogonal Sampling [29] off on -

5 Sequential Selection [9] off on -

6 Threshold Convergence [24] off on -

7 TPA [12] off on -

8 Pairwise Selection [1] off on -

9 Recombination Weights [3] log(µ+ 1

2
)−

log(i)∑
j wj

1

µ -

10 Quasi-Gaussian Sampling off Sobol Halton

11 Increasing Population [2, 13] off IPOP BIPOP

Table 1: Overview of the CMA-ES modules available in the
used framework. The entries in row 9 specify the formula
for calculating each weightwi .

switching between configurations with a different setting for in-

creasing population ((B)IPOP) would possibly create an information

deficit, in that we do not know what population size we should

have at the moment of switching. To eliminate this uncertainty,

we decided not to consider (B)IPOP in our adaptive experiments,

i.e., we dropped two options out of three. This leaves us with 1,536

configurations to consider.

3 ADAPTIVE CONFIGURATIONS
Our main research question in this work is the following. For each

of the 24 BBOB functions f we aim to estimate from the detailed

runtime data of the 1,536 static configurations the triples (C1,C2, τ)
that exhibit the best performance for optimizing f . Each triple is in-

terpreted as follows. The first configuration, C1, is run until hitting

target value (“splitpoint”) τ . Immediately after the first iteration in

which a solution of fitness ≤ τ is sampled, we switch to configura-

tion C2 and run this configuration until the target 10
−8

is reached

or the budget exhausted.

The long term vision of our research is to extend our study to a

landscape-aware configuration. To this end, we will combine our

data with explanatory landscape analysis, and to build an automated

tool to select CMA-ES configurations on the fly. Put differently, we
aim at extending the per instance algorithm configuration approach

analyzed in [8] to the modular CMA-ES and towards a non-static

selection. Rather than absolute performance gains, our main inter-

ests is therefore in identifying the best performing configurations

per each function and each phase of the optimization process.

3.1 Performance Measures
The hitting time for a certain target is defined as follows:

Definition 3.1 (Hitting Time). The hitting time of a target ϕ, a
configuration c and a run i on a function f (written asHT (f , c,ϕ, i))
is defined as the first function evaluation during run i of c in which a
function value with a difference of at most ϕ to the global optimum

is observed.

In this paper, we use two different performance measures. The

first is the average hitting time (AHT), which is based on the previ-

ously defined hitting time as follows:

Online Selection of CMA-ES Variants GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Definition 3.2 (AHT). The average hitting time of a configuration

c for a target ϕ on function f is defined as:

AHT (f , c,ϕ) =

{
∞ if ∃i : HT (f , c,ϕ, i) = ∞∑

i HT (f ,c ,ϕ,i)∑
i 1

otherwise

This method places an infinite penalty on non-finished runs. This

can be beneficial when dealing with relatively few configurations to

avoid selecting those which are unreliable. However, when dealing

with more difficult functions and more runs, we want to deal with

these non-finished runs differently. This can be done using the

expected running time (ERT), which is defined as follows:

Definition 3.3 (ERT). The expected running time (ERT) of a con-

figuration c and target ϕ on a function f is calculated as follows:

ERT (f , c,ϕ) =

∑
i (F (f , c,ϕ, i) · b + HT (f , c,ϕ, i))∑

i (1 − F (f , c,ϕ, i))
,

where b is the budget of each run (i.e., the maximum number of

evaluations) and F (f , c,ϕ, i) = 1 if run i on function f failed to

reach the target ϕ, while F (f , c,ϕ, i) = 0 otherwise.

Note that if each run of a configuration c on function f found a

solution x with f (x) − fopt ≤ ϕ, then ERT (f , c,ϕ) = AHT (f , c,ϕ).

3.2 Selecting Adaptive Configurations
We gather the AHTs for targets Φ = {102−(0.2·i) | i ∈ {0 . . . 50}}.

Based on these AHT values, the adaptive configurations suggested

in [26] are chosen as follows:

• For each configuration c , each of the 24 BBOB functions f ,
and each of the 51 target values ϕ, we calculate the AHT

over all 25 runs (5 runs for each of the first five instances).

• From this data, we determine the best target value ϕmin for

which there exists at least one configuration whose 25 runs

all reached this target.

• For every target value ϕ ∈ Φ satisfying ϕ > ϕmin we calcu-

late the best configuration before this target, i.e., we select

the configuration c for which AHT (c,ϕ) is minimized. We

denote this configurationC1. We then compute the best con-

figuration c from this target until ϕmin, which we denote as

C2, i.e., C2 is the configuration for which AHT (f , c,ϕmin) −

AHT (f , c,ϕmin) is minimized. In [26], the theoretical per-

formance (TH for ’theoretical hitting time’) is then calcu-

lated asTH (f ,C1,C2,ϕ) = AHT (f ,C1,ϕ) −AHT (f ,C2,ϕ)+
AHT (f ,C2,ϕmin).

• From this data we compute the target value τ for which

the overall performance TH (f ,C1,C2,ϕ) is minimized. This

gives us the adaptive configuration (C1,C2, τ). We refer to τ
as the ‘splitpoint’ of the adaptive configuration.

We illustrate this approach in Fig. 1. In this figure we can clearly

see that following C1 until the splitpoint and then switching to C2

gives an adaptive configuration which reaches the target with less

evaluations than the best static configuration.

3.3 Mitigating Uncertainty in the Selection
Initial experiments showed a poor match between the predicted and

achieved performance of the adaptive configurations as selected

by the previously described procedure. A relatively large variance

10e2.0 10e0.0 10e-2.0 10e-4.0 10e-6.0 10e-8.0
Target

0

500

1000

1500

2000

E
va

lu
at

io
ns

C1

C2

static

Adaptive (theory)

Figure 1: Example of a theoretical adaptive configuration
performing better than a static configuration (on F5).
among the performance profiles of the original runs was identified

as cause for this. To select good adaptive configurations despite this

variance in the original data, we use the following two techniques:

Sliding window: Instead of considering only the performance

at a single target and choosing that as the splitpoint to use, we

consider a sliding window around the target, and take the average

of the performances at all these targets. This should deal with

variance by smoothing out the hitting times. Using this method

and the AHT, the value we assign to a splitpoint and configuration

pair is defined as follows:

Definition 3.4 (Sliding window value). For a function f , adaptive
configuration (C1,C2,ϕi) and usingAHT as a performance measure,

we define the sliding window value SWV as follows:

SWV (f ,C1,C2,ϕi) =

{
∞ if i < w or (50 − i) < w∑i+w
j=i−w HT (f ,ϕ j ,C1,C2) otherwise

Here,w determines the radius of the window, in our case we use

w = 2 for a window of size 2w + 1 = 5.

Worst Case: Instead of considering the mean performance, we

take a version of the worst-case performance. To still deal with the

different instances, we take the worst-case performance for every

instance and average these to get a performance value. This should

reduce the impact of the variance, since even when we assume to

get bad runs, this configuration performs the best out of all possible

adaptive configurations. This way, the variance might improve the

performance of the adaptive configuration.

We run our tests with 3 different settings: sliding window using

means, using worstcase, and the original method.

3.4 Two-Stage Configuration Selection
In addition to these two techniques, we introduce an entirely new

procedure to more robustly select which adaptive configurations

to run. This is based on the finding that the static configurations

are not quite stable enough to use as a baseline. The first step in

this process consists of selecting some static configurations for

which we should gather more data. The configurations we will

consider are made up of two parts. The first part consists of the

50 best performing static configurations.
1
We then extend this set

by looking at the configurations which have been selected to be a

part of the 50 theoretically best adaptive configurations. Since this

1
The best static configurations are determined by their AHT at the final reached

target. If fewer than 50 configurations reached this target for a function, we extend

these configurations by the ones that have the lowest AHT for the previous target.

We repeat this process until we have selected 50 configurations.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic D. Vermetten, S. van Rijn, Th. Bäck, and C. Doerr

1400 1500 1600 1700 1800 1900 2000 2100 2200
Predicted ERT

1000

1500

2000

2500

3000

3500

A
ch

ie
ve

d
E

R
T

Y=X

Figure 2: ERT of the selected static configurations for F10.
The predicted values are based on the original 5 × 5 runs,
while the achieved ones are on 5 × 50 runs.

might not be a diverse set of configurations, as one configuration

might be chosen as C1 50 times, we decide to limit the amount of

times a certain configuration can be selected as C1 and as C2 to

three times each (’limited selection method’). This should give us a

more diverse set of configurations which might contribute to good

adaptive configurations. We then rerun these configurations using

50 runs on each of the 5 instances, for a total of 250 runs each.

In total, this set of configurations will contain anywhere from

50 to 150 configurations to rerun. We can then compare the ERT of

the reruns to the original data. This is done for F10 in Fig. 2, from

which we can see that this fit is indeed not very good.

Based on the new, more robust data set, we can now determine

the best adaptive configurations to run. This is done using the

means and a sliding window method. We still use a sliding window,

but instead of taking the worst-case runs for every instance, we

revert back to using the AHT. This is done because we have a lot

more data available, and the mean should be more stable. We still

use the same limited selection method as described previously.

4 INITIAL EXPERIMENTS
As previously mentioned, our first aim was to extend the work pre-

sented in [26]. We recall that in [26] only 4 selected functions have

been considered. We extend this to all 24 BBOB-functions. We then

run the adaptive configurations suggested by this approach, and

observe that the fit between the theoretical performance prediction

and the actual running times is not very stable.

Using the approach mentioned in the Section 3.2, we can calcu-

late the theoretical improvements when using adaptive configura-

tions. These results are not shown here, but are available in [28].

Note that our results differ slightly from those found in the original

paper [26]. The reason for this is twofold: First, the configuration

space we consider is more restricted since we do not use the (B)IPOP

module. Second, we added another restriction on which configura-

tions to use in the adaptive configurations. We require both C1 and

C2 to reach the target ϕmin. This is done to avoid situations where

a C1 is selected which very quickly converges to a local optimum

and gets stuck there. In practice, switching to C2 would then still

result in being stuck in this local optimum, which would not be a

benefit to finding the global optimum.

Overall, we found expected improvements to range from 0 to

15%. The 0% improvements are caused by the fact that for some

functions, only one or two configurations manage to reach the

selected target value. So in these cases, we have C1 = C2, leading

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

102

103

104

105

E
R

T

23%

10%

31%44%

19%37%

43%49%
27%

55%
36%

13%

59%

35%

49%

46%
15%17%

56%87%

74%

66%

33%

65%

Achieved

Expected

Figure 3: Comparison of the expected ERTs (logscale) for
the adaptive configurations against the achieved values. Per-
centage differences are shown as well.

to the same performance for the adaptive and static configuration.

This is present in 4 out of the 24 functions, while all others do have

some level of expected improvement.

When running the adaptive configurations,
2
we decided on run-

ning them on the same 5 instances as the original data, but instead

of the 5 runs per instance which we used to gather the data for

the static configurations, we run them 50 times per instance. This

should give us more robust results to work with.

The resulting ERTs are compared to the ones we expected in

Fig. 3. This comparison shows a clear mismatch between the actu-

ally achieved and the expected ERT values. This indicates that the

original approach suggested in [26] and summarized in Section 3.2

is not very reliable.

5 RESULTS
We next show how the ideas presented in Sections 3.3 and 3.4 yield

more robust results.

In a first step, we ran the adaptive configurations determined by

the additional methods described in Section 3.3. The results from

running these adaptive configurations showed that these ideas

alone are not sufficient to obtain reliable performance predictions.

More detailed information about these experiments can be found

in [28]. We summarize the main findings.

In total, we manage to see improvements (relative to the rerun

static configuration) on 10, 8 and 13 functions for the original,

sliding window with AHT, and sliding window using worst-case

methods, respectively. That is, the sliding window using the worst-

case approach performs slightly better than the other two methods

we tested. We expect this to be caused by the fact that this method is

less prone to major decreases in performance as a result of variance.

Even though we do see improvements for several functions, all

methods have significant outliers, both in positive and negative

sense. This seems to be caused by the fact that the ERT of the static

configurations is not robust. As shown in Fig. 2, the ERT on the

5×50 runs can deviate significantly from the original ERT calculated

based on 5× 5 runs. And since the static configurations do not have

robust ERTs, the adaptive configurations which are based on these

values are not necessarily reliable. This lead us to implementing

the two-stage approach, as described in Section 3.4.

2
Implementation detail: For all our experiments, when switching between different

configurations, we reset all static parameters that depend on the configuration. The

dynamic parameters such as population, covariance matrix, etc. are kept from the first

configurations.

Online Selection of CMA-ES Variants GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Variant Representation Short name

CMA-ES 00000000000 CM0

Active CMA-ES 10000000000 CM1

Elitist CMA-ES 01000000000 CM2

Mirrored-pairwise CMA-ES 00100001000 CM3

IPOP-CMA-ES 00000000001 CM4

Active IPOP-CMA-ES 10000000001 CM5

Elitist Active IPOP-CMA-ES 11000000001 CM6

BIPOP-CMA-ES 00000000002 CM7

Active BIPOP-CMA-ES 10000000002 CM8

Elitist Active BIPOP-CMA-ES 11000000002 CM9

Table 2: Common CMA-ES Variants. A selection of ten com-
mon CMA-ES variants is listed here, taken from [27].

5.1 Comparison of different methods
We next compare the resulting ERT using three different methods:

the original method from Section 3.2, the worst-case method using

sliding window from Section 3.3 and the two-stage method from

Section 3.4. Since the two-stage approach selects and evaluates 50

configurations instead of just one, we show both the ERT of the

configuration with the best predicted performance, as well as the

one which performed best out of all 50 selected configurations.

This is shown in Fig. 4. From this figure, we can see that for most

functions, an improvement relative to the static configuration is

achieved for at least some configuration selected in the two-stage

method. However, this does not always correspond to the config-

uration which was predicted to perform best. In the remainder of

this paper, we focus on the two-stage approach to see how these

performances can be achieved.

5.2 Performance Comparison
The results of the two-stage method are shown in more detail in

Fig. 6 for F10. From this figure, we can see that the fit between theory

and practice is quite good, and many of the adaptive configurations

manage to outperform the best static configuration by around 10%.

Some outliers are present, but the general trend is positive. In this

figure, we also note the ERT of the best “common” CMA-ES variant.

The set of these configurations is taken from [27] and shown in

Table 2.

Table 3 summarizes the results of the two-stage method for all 24

benchmark functions. The first notable result from this table is the

fact that the best “common” static configuration can outperform

the general best static. This is caused by the fact that these common

configurations can have (B)IPOP enabled, which is not the case for

the best static. In these cases, we assume that this (B)IPOP module

is important to finding the optimum, and an adaptive configuration

without this module will not be able to perform very well.

Next, we consider the functions for which the best static ERT

is lower than that of the common variants. For these functions,

we manage to improve upon this best static configuration when

using an adaptive configuration. More specifically, we can see that

when the best static configuration from the entire configuration

space does not have (B)IPOP enabled, we can reliably achieve an

improvement when using adaptive configurations.

We also note that when the best static configurationwith (B)IPOP

significantly outperforms the best rerun configuration, we do not

manage to get the same improvements. If we would consider the

best static configurations to include those with (B)IPOP and com-

pare the performance of the adaptive configurations to those, no

improvement is made at all.

In total, we find performance gains on 18 out of 24 functions of

the BBOB benchmark, with stable advantages of up to 23%.

5.3 Module Activation Plots
Wewill now study two functions in more detail. Plots and values for

other functions are available in [28]. The functions we will analyze

are F10, for which we see a decent improvement for most adaptive

configurations, and F24, for which we see very negative results.

First, we look at which static configurations have been selected,

and how they are used within the adaptive configurations. To do

this, we introduce what we call combined module activation plots.
These plots consist of two parts, corresponding toC1 andC2 respec-

tively. In each of these subplots, every line indicates a configuration.

The lowest line corresponds with the theoretically best adaptive

configuration, increasing from there.

In Fig. 5 and 7 we see these combined module activation plots for

the selected adaptive configurations for F10 and F24 respectively.

These figures clearly show that for F10 there is a pattern present

among the adaptive configurations: the modules TPA and threshold

start activated and in almost all cases get turned off after the split-

point. Such patterns are not present in the adaptive configurations

for F24. This seems to indicate that for F24 the splits are mostly

chosen because of small variances between the different configura-

tions, instead of actual inherent properties of the configurations to

perform well at certain points of the search.

For the other BBOB-functions, we gathered the same data. In

Fig. 8 we plot a heatmap of the module activity in the 50 best

adaptive configurations for all functions we considered. For every

function and all binary modules, we indicate in how many (out of

50) configurations they are selected, while differentiating between

C1 (left) and C2 (right). From this figure, we can see that for some

functions, there are clear differences between the two parts. These

functions correspond to those in which the adaptive configura-

tions improved upon the static ones. For the other functions, the

differences between the two parts are not as pronounced.

This conclusion is supported by Fig. 10, where we show the

relation between module difference and the fraction of adaptive

configurations which do improve upon the best static configuration.

The module difference is calculated as follows:

M =
9

max

j=1

∑
50

i=1 |C1(i, j) −C2(i, j)|

50

Here, we have C1(i, j) indicating the value of module j of the con-
figuration chosen as C1 in adaptive configuration number i , and
the same holds for C2(i, j). We only use the binary modules in this

calculation, so the sampler is ignored. Based on this figure, we can

see that there seems to be a correlation between the module differ-

ence percentage and the potential of the adaptive configurations.

This supports our claim that the functions where few modules are

consistently changed do not exploit any inherent properties of the

functions, and instead rely on small differences in search behaviour

to predict improvements. While for the functions which do see

larger module differences between the first and second part, the

GECCO ’19, July 13–17, 2019, Prague, Czech Republic D. Vermetten, S. van Rijn, Th. Bäck, and C. Doerr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

−40

−20

0

20

40
Im

pr
ov

em
en

t
(%

)
Original Approach from [26]

Worstcase-window

Two-Stage Predicted Best

Two-stage Actual best

Figure 4: Relative improvement in ERTs of the adaptive configurations over the best static configuration.

active
elitis

t

mirro
red

orth
ogonal

sequentia
l

threshold tpa

selectio
n
weights

sampler

Off

On

F10: Combined module activation for C1

active
elitis

t

mirro
red

orth
ogonal

sequentia
l

threshold tpa

selectio
n
weights

sampler

Off

On

F10: Combined module activation for C2

Off

Sobol

Halton

Off

Sobol

Halton

Figure 5: Combined module activation plot for the 50 best
adaptive configurations for F10.

0 10 20 30 40 50
Config nr (sorted based on window-value)

1400

1600

1800

E
R

T

Best static (1566.50)

Best common static (2314.84)

Theory

Actual

Figure 6: F10: ERT of adaptive configurations compared to
the best static and “common” static configurations.

predicted improvements are more likely to be based on inherent

properties of the function.

5.4 Summary of Results
From our experiment, we found large differences in the potential of

our approach between functions. For some functions, such as F10,

our approach seems quite stable, resulting in improvements of over

10% for several adaptive configurations, as can be seen in Fig. 6.

However, this is not representative of all functions. We can see from

Table 3, in the column “Amount of impr (% of configs)”, that there

active
elitis

t

mirro
red

orth
ogonal

sequentia
l

threshold tpa

selectio
n
weights

sampler

Off

On

F24: Combined module activation for C1

active
elitis

t

mirro
red

orth
ogonal

sequentia
l

threshold tpa

selectio
n
weights

sampler

Off

On

F24: Combined module activation for C2

Off

Sobol

Halton

Off

Sobol

Halton

Figure 7: Combined module activation plot for the 50 best
adaptive configurations for F24.

are many functions for which few if any adaptive configurations

manage to outperform the static configurations.

The total improvements gained over the static configurations can

be seen in Fig. 9. In this figure, we can see the relative differences

between the best static and best adaptive configurations. We can

see that, for the functions where the non-IPOP common static

configuration performs similarly to the general best common static

ones, the adaptive configuration manages to outperform the static

one. This is in line with our previous comments, indicating that

the lack of (B)IPOP modules in our configuration space is a large

part of the reason why some functions do not see the amount of

improvement we would have hoped for.

To verify that the negative improvements are indeed not caused

by our approach itself, we we compare the best expected and

achieved ERT of the adaptive configurations for each function.

This is shown in Fig. 11. We can see that the fit between achieved

and predicted ERT is quite good, with some negative outliers for

the functions with relatively high predicted ERT. This seems to

confirm that our methodology is solid, and that the reason we are

not seeing improvement for some functions is most likely caused

by the limited configuration space and evaluation budgets.

Online Selection of CMA-ES Variants GECCO ’19, July 13–17, 2019, Prague, Czech Republic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

active
elitist

mirrored
orthogonal
sequential
threshold

tpa
selection

weights

M
od

ul
e

0

10

20

30

40

50

Figure 8: Heatmap of the module activations in the 50 best adaptive configuration for all our functions. For each function,
activations for C1 are on the left, while those for C2 are on the right. The black lines separate the functions from each other.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Function ID

−50

−25

0

25

50

Im
pr

ov
em

en
t

%

1%
44%

15%
47%

1%
49%

6%
-43%

24%
35%

21%
37%

14%
9%

1%
16%

-0%
23%

12%
40%

9%
41%

6%
28%

-9%
2%

3%
46%

-4%
-35%

-4%
-65%

4%
-338%

-19%
100%

13%
100%

10%
3%

51%
100%

21%
-179%

5%
100%

vs common

vs non-IPOP common

vs best static

Figure 9: Comparison of the best achieved split ERT relative to the ERTs of the common statics (with and without IPOP; 5 × 5

runs) and the best non-IPOP static on 5 × 50 runs. Improvements are cut of at 60% and -50%, respectively. The precise values
of the improvements are shown above the x-axis for the improvement relative to the best static (top) and relative to the best
common (bottom) configuration. The precise ERT values can be found in Table 3

20 40 60 80 100
Maximum module difference %

0

25

50

75

Im
pr

ov
em

en
t

(%
of

co
nf

s.
)

Figure 10: Relation between the maximum module differ-
ence % and the fraction of configurations which manage to
improve relative to the best static configuration.

103 104

Predicted ERT

103

104

A
ch

ie
ve

d
E

R
T

X=Y

Improvement

No improvement

Figure 11: Relation between the best predicted and best
achieved ERT for adaptive configurations. Blue dots repre-
sent functions for which the average of the 10 best achieved
ERT is lower than the best static ERT, while yellow dots in-
dicate the other functions.

6 CONCLUSION AND FUTUREWORK
In this work, we have shown the potential for configuration adapta-

tion in CMA-ES to outperform static configurations. We have deter-

mined that for more difficult functions (B)IPOP might be required

to be able to achieve improvements, but for the easier functions

this module is not required.

Since this work breaks the black-box assumption of optimiza-

tion by including knowledge of the value of the global optimum,

which we need to determine when the target τ is hit to switch

configurations, it is not directly applicable to real-world problems.

A next step would be to implement some form of landscape

analysis and base the splitpoint and configurations on features of

the function. We would expect the improvement on real-world

problems to be larger than those we achieved on the BBOB-suite

of functions, since we expect that the transition in the local fitness

landscape as seen by the algorithms is more drastic than in the

“sterile” BBOB functions. A cross-validation of our approach on

problems found in practice forms therefore another step that we

plan to work on in the near future.

Another approach would be to extend the framework we used

with more modules, and allow the (B)IPOP module to be used in

adaptive configurations. This would greatly increase the configura-

tion space, and might necessitate a different approach to determin-

ing which configurations to consider.

Finally, we plan on extending our work by tuning the hyper-

parameters of the most successful CMA-ES configurations.

ACKNOWLEDGMENTS
This work was supported by the Paris Ile-de-France Region. Our

experiments were run on the Leiden DSLAB and DAS-4 [5] servers.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic D. Vermetten, S. van Rijn, Th. Bäck, and C. Doerr

F
i
d

T
a
r
g
e
t

C
o
m
m
o
n

c
o
n
fi
g

C
o
m
m
o
n

E
R
T

C
o
m
m
o
n

c
o
n
fi
g

(
n
o
n

I
P
O
P
)

n
o
n

I
P
O
P

E
R
T

B
e
s
t

s
t
a
t
i
c

(
B
)
I
P
O
P

B
e
s
t

s
t
a
t
i
c

E
R
T

B
e
s
t

r
e
r
u
n

c
o
n
fi
g

B
e
s
t

r
e
r
u
n

E
R
T

B
e
s
t

a
d
a
p
t
i
v
e

E
R
T

R
e
l
a
t
i
v
e

i
m
-

p
r
o
v
e
-

m
e
n
t

P
r
e
d
i
c
t
e
d

a
d
a
p
t
i
v
e

E
R
T

A
v
g
1
0

s
p
l
i
t
s

E
R
T

F
r
a
c
t
i
o
n

o
f
i
m
p
r
.

c
o
n
fi
g
s

(
%
)

1
1
0
e
-
8
.0

C
M

6
7
9
5

C
M

2
7
9
9

0
4
1
2

0
0
1
1
0
0
1
1
0
1
0

4
5
3

44
6

1
.4
%

42
2

4
5
3

6
%

2
1
0
e
-
8
.0

C
M

4
2
,3
1
3

C
M

2
2
,3
3
8

0
1
,3
4
8

1
0
0
1
0
1
1
0
0
1
0

1
,4
4
8

1,
23

6
1
4
.6
%

1
,2
8
2

1
,2
8
3

7
2
%

3
1
0
e
0
.4

C
M

9
1
7
,8
7
1

/
∞

2
2
,7
5
2

0
0
1
1
0
0
0
0
1
1
0

9
,3
1
6

9,
18

9
1
.4
%

9
,1
0
4

9
,7
7
1

2
%

4
1
0
e
0
.8

C
M

7
7
,3
0
1

/
∞

2
2
,8
3
7

0
0
1
1
0
0
1
0
0
1
0

1
1
,1
6
2

10
,4
56

6
.3
%

11
,0
24

1
1
,0
3
4

6
%

5
1
0
e
-
8
.0

C
M

4
1
,7
0
0

C
M

3
1
,7
3
1

0
1
,2
6
8

0
0
1
1
1
0
0
0
0
1
0

1
,4
6
1

1,
11

0
2
4
.0
%

1,
32
0

1
,1
2
8

9
5
%

6
1
0
e
-
8
.0

C
M

2
1
,5
4
0

C
M

2
1
,5
4
0

0
1
,1
0
6

0
1
1
1
0
0
0
1
0
1
0

1
,2
3
4

97
1

2
1
.3
%

1,
10
4

1
,0
0
8

9
0
%

7
1
0
e
-
8
.0

C
M

5
2
,7
6
8

/
∞

1
1
,4
7
1

0
1
0
0
0
1
0
1
0
1
0

2
,9
1
2

2,
51

7
1
3
.5
%

2,
59
8

3
,0
0
2

4
%

8
1
0
e
-
8
.0

C
M

4
2
,6
2
3

/
∞

2
1
,7
6
5

0
0
1
1
0
0
0
0
0
1
0

2
,2
3
3

2,
21

6
0
.8
%

2,
03
9

2
,2
3
9

4
%

9
1
0
e
-
8
.0

C
M

4
2
,5
2
4

/
∞

1
1
,7
2
6

0
0
1
1
0
0
0
0
0
2
0

1
,9
3
8

1
,9
4
0

-
0
.1
%

1,
72
0

2
,0
9
5

0
%

1
0

1
0
e
-
8
.0

C
M

2
2
,3
1
5

C
M

2
2
,3
1
5

2
1
,4
3
7

0
1
0
0
0
1
1
0
0
1
0

1
,5
6
6

1,
38

6
1
1
.5
%

1
,4
2
5

1
,4
2
3

6
2
%

1
1

1
0
e
-
8
.0

C
M

0
2
,4
4
4

C
M

0
2
,4
4
4

0
1
,3
9
9

1
1
1
1
0
1
1
0
0
1
0

1
,5
8
6

1,
43

6
9
.4
%

1
,4
5
6

1
,4
7
5

6
2
%

1
2

1
0
e
-
8
.0

C
M

2
4
,5
0
9

C
M

2
4
,5
0
9

0
3
,0
1
9

0
0
1
1
0
0
0
0
0
1
0

3
,4
6
3

3,
25

6
6
.0
%

3,
19
2

3
,3
1
2

3
7
%

1
3

1
0
e
-
8
.0

C
M

1
3
,6
3
2

C
M

1
3
,6
3
2

2
2
,7
9
8

1
0
1
1
0
0
0
1
0
0
0

3
,2
5
3

3
,5
4
4

-
8
.9
%

3,
16
1

3
,7
3
6

0
%

1
4

1
0
e
-
8
.0

C
M

0
2
,6
1
9

C
M

0
2
,6
1
9

1
1
,3
2
9

0
1
0
0
1
1
1
0
0
1
0

1
,4
7
1

1,
42

3
3
.3
%

1,
36
4

1
,4
3
4

4
6
%

1
5

1
0
e
0
.4

C
M

4
4
,5
9
8

/
∞

1
1
,8
4
7

0
0
1
1
0
0
0
0
1
1
0

5
,9
8
0

6
,2
0
4

-
3
.7
%

5
,8
2
2

6
,8
8
3

0
%

1
6

1
0
e
-
2
.0

C
M

8
1
0
,3
7
9

/
∞

1
3
,1
5
1

0
0
1
1
0
0
1
0
0
1
0

1
6
,5
3
4

1
7
,1
4
0

-
3
.7
%

15
,1
27

1
8
,7
5
3

0
%

1
7

1
0
e
-
4
.4

C
M

7
5
,4
3
7

/
∞

2
2
,2
0
9

0
0
1
1
0
0
1
0
0
1
0

2
4
,7
3
8

23
,8
24

3
.7
%

6,
87
0

2
8
,9
9
1

2
%

1
8

1
0
e
-
4
.0

/
∞

/
∞

1
6
,8
5
0

0
0
1
1
0
1
0
1
1
1
0

2
8
,3
1
2

3
3
,7
5
4

-
1
9
.2
%

5
,2
9
8

3
8
,4
3
2

0
%

1
9

1
0
e
-
0
.6

/
∞

/
∞

1
3
,9
9
4

0
0
1
0
0
0
0
0
1
2
0

8
,6
6
6

7,
55

9
1
2
.8
%

8,
50
3

8
,3
7
8

1
4
%

2
0

1
0
e
0
.2

C
M

6
2
,6
2
8

/
∞

2
7
6
9

0
0
0
1
0
0
1
1
0
1
0

2
,8
1
7

2,
54

7
9
.6
%

2,
80
0

2
,7
8
5

8
%

2
1

1
0
e
-
0
.6

/
∞

/
∞

2
5
,8
8
9

0
0
0
0
1
1
1
0
0
1
0

2
8
,3
8
6

13
,9
49

5
0
.9
%

21
,0
40

3
0
,3
3
8

4
%

2
2

1
0
e
0
.0

C
M

7
2
,7
1
4

/
∞

2
6
5
3

0
0
0
0
0
1
1
0
0
1
0

9
,5
4
6

7,
58

1
2
0
.6
%

9,
05
4

9
,0
8
5

1
0
%

2
3

1
0
e
-
0
.8

/
∞

/
∞

2
5
,7
2
1

0
0
1
1
0
0
1
0
0
1
0

2
0
,2
9
6

19
,3
28

4
.8
%

18
,2
63

2
1
,3
8
6

6
%

2
4

1
0
e
1
.0

C
M

8
2
,9
5
3

/
∞

2
1
,1
8
7

0
0
1
1
0
0
0
0
1
1
0

1
,8
7
7

2
,0
5
3

-
9
.4
%

1,
85
0

2
,3
5
8

0
%

Ta
bl
e
3:

O
ve

rv
ie
w

of
th
e
re
su

lt
s
fr
om

th
e
ex

pe
ri
m
en

t
de

sc
ri
be

d
in

Se
ct
io
n
3.
4.

T
he

“C
om

m
on

co
nfi

g”
an

d
“C

om
m
on

co
nfi

g
(n
on

IP
O
P)
”
ar
e
se
le
ct
ed

fr
om

th
e
co

nfi
gu

ra
ti
on

s
in

Ta
bl
e
2.

T
he

co
lu
m
n
“B

es
t
st
at
ic

(B
)I
PO

P
”
an

d
it
s
ER

T
(“
B
es
t
st
at
ic

ER
T
”)

ar
e
se
le
ct
ed

fr
om

th
e
fu
ll
co

nfi
gu

ra
ti
on

sp
ac
e
us

in
g
th
e

5
×
5
ru

n
da

ta
.T

he
re
m
ai
ni
ng

ER
Ts

ar
e
fr
om

th
e
5
×
5
0
ru

ns
,a

s
de

sc
ri
be

d
in

Se
ct
io
n
3.
4.

T
he

co
lu
m
ns

“B
es
ta

da
pt
iv
e”

an
d
“P

re
di
ct
ed

ad
ap

ti
ve

ER
T
”
do

no
t

ne
ce
ss
ar
il
y
re
la
te

to
th
e
sa
m
e
co

nfi
gu

ra
ti
on

.W
he

n
th
is

is
no

t
th
e
ca
se
,i
t
is

in
di
ca
te
d
by

th
e
it
al
ic

va
lu
es

in
th
e
pr

ed
ic
te
d
co

lu
m
n.

T
he

co
lu
m
n
“R

el
at
iv
e

im
pr

ov
em

en
t”

sh
ow

s
th
e
re
la
ti
ve

im
pr

ov
em

en
ti
n
ER

T
of

th
e
be

st
ad

ap
ti
ve

co
nfi

gu
ra
ti
on

vs
th
e
be

st
re
ru

n
st
at
ic

co
nfi

gu
ra
ti
on

.T
he

co
lu
m
n
“A

vg
10

sp
li
ts

ER
T
”
is

ca
lc
ul
at
ed

as
th
e
av

er
ag

e
of

th
e
10

be
st

ac
hi
ev

ed
ER

Ts
of

th
e
ad

ap
ti
ve

co
nfi

gu
ra
ti
on

s.
T
he

co
lu
m
n
“F
ra
ct
io
n
of

im
pr
.c

on
fi
gs

(%
)”

in
di
ca
te
s
ho

w
m
an

y
of

th
e
ad

ap
ti
ve

co
nfi

gu
ra
ti
on

s
pe

rf
or
m
ed

be
tt
er

th
an

th
e
“B

es
tr

er
un

”
co

nfi
gu

ra
ti
on

.

Online Selection of CMA-ES Variants GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. 2011. Mirrored Sampling in

Evolution Strategies with Weighted Recombination. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation (GECCO ’11). ACM,

New York, NY, USA, 861–868. https://doi.org/10.1145/2001576.2001694

[2] A. Auger and N. Hansen. 2005. A restart CMA evolution strategy with increasing

population size. In 2005 IEEE Congress on Evolutionary Computation, Vol. 2. 1769–
1776 Vol. 2. https://doi.org/10.1109/CEC.2005.1554902

[3] Anne Auger, Mohamed Jebalia, and Olivier Teytaud. 2005. Algorithms (X, sigma,

eta): Quasi-random Mutations for Evolution Strategies. In Artificial Evolution,
7th International Conference, Evolution Artificielle, EA 2005, Lille, France, October
26-28, 2005, Revised Selected Papers (Lecture Notes in Computer Science), El-Ghazali
Talbi, Pierre Liardet, Pierre Collet, Evelyne Lutton, and Marc Schoenauer (Eds.),

Vol. 3871. Springer, 296–307. https://doi.org/10.1007/11740698_26

[4] Thomas Bäck, Christophe Foussette, and Peter Krause. 2013. Contemporary
Evolution Strategies. Springer.

[5] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank

Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A medium-scale distributed

system for computer science research: Infrastructure for the long term. Computer
5 (2016), 54–63.

[6] Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss.

2010. Experimental methods for the analysis of optimization algorithms. Springer.
[7] Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss. 2010. The se-

quential parameter optimization toolbox. In Experimental methods for the analysis
of optimization algorithms. Springer, 337–362.

[8] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per

instance algorithm configuration of CMA-ES with limited budget. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 681–688.

https://doi.org/10.1145/3071178.3071343

[9] Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm.

2010. Mirrored Sampling and Sequential Selection for Evolution Strategies. In

Parallel Problem Solving from Nature, PPSN XI. Springer, Berlin, Heidelberg, 11–21.
https://doi.org/10.1007/978-3-642-15844-5_2

[10] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the state

of the art. JORS 64, 12 (2013), 1695–1724. https://doi.org/10.1057/jors.2013.71

[11] Edmund K Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong

Qu. 2007. A graph-based hyper-heuristic for educational timetabling problems.

European Journal of Operational Research 176, 1 (2007), 177–192.

[12] Nikolaus Hansen. 2008. CMA-ES with Two-Point Step-Size Adaptation.

arXiv:0805.0231 [cs] (May 2008). http://arxiv.org/abs/0805.0231 arXiv: 0805.0231.

[13] Nikolaus Hansen. 2009. Benchmarking a BI-population CMA-ES on the BBOB-

2009 Function Testbed. In Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers (GECCO
’09). ACM, New York, NY, USA, 2389–2396. https://doi.org/10.1145/1570256.

1570333

[14] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan TuÅąar, and Tea TuÅąar.

2016. COCO: Performance Assessment. arXiv:1605.03560 [cs] (May 2016). http:

//arxiv.org/abs/1605.03560 arXiv: 1605.03560.

[15] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup. report.
INRIA. https://hal.inria.fr/inria-00362649/document

[16] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík.

2010. Comparing results of 31 algorithms from the black-box optimization

benchmarking BBOB-2009. In Proceedings of the 12th annual conference companion
on Genetic and evolutionary computation. ACM, 1689–1696.

[17] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized

Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),

159–195. https://doi.org/10.1162/106365601750190398

[18] Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2016. Automated

Algorithm Selection and Configuration (Dagstuhl Seminar 16412). Dagstuhl
Reports 6, 10 (2016), 33–74. https://doi.org/10.4230/DagRep.6.10.33

[19] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-

based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[20] G. A. Jastrebski and D. V. Arnold. 2006. Improving Evolution Strategies through

Active Covariance Matrix Adaptation. In 2006 IEEE International Conference on
Evolutionary Computation. 2814–2821. https://doi.org/10.1109/CEC.2006.1688662

[21] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2018.

Automated Algorithm Selection: Survey and Perspectives. CoRR abs/1811.11597

(2018). arXiv:1811.11597 http://arxiv.org/abs/1811.11597

[22] Pascal Kerschke and Heike Trautmann. 2017. Automated Algorithm Selection on

Continuous Black-Box Problems By Combining Exploratory Landscape Analysis

and Machine Learning. arXiv preprint arXiv:1711.08921 (2017).
[23] Mario A Muñoz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. 2015.

Algorithm selection for black-box continuous optimization problems: a survey

on methods and challenges. Information Sciences 317 (2015), 224–245.

[24] A. Piad-Morffis, S. Estévez-Velarde, A. Bolufé-Röhler, J. Montgomery, and S. Chen.

2015. Evolution strategies with thresheld convergence. In 2015 IEEE Congress on
Evolutionary Computation (CEC). 2097–2104. https://doi.org/10.1109/CEC.2015.

7257143

[25] Sander van Rijn. 2018. Modular CMA-ES framework from [27], v0.3.0. https:

//github.com/sjvrijn/ModEA. Available also as pypi package at https://pypi.org/

project/ModEA/0.3.0/.

[26] Sander Van Rijn, Carola Doerr, and Thomas Bäck. 2018. Towards an Adaptive

CMA-ES Configurator. In Proc. of 15th International Conference on Parallel Problem
Solving from Nature (PPSN’18) (Lecture Notes in Computer Science), Vol. 11101.
Springer, 54–65. https://doi.org/10.1007/978-3-319-99253-2_5

[27] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.

Evolving the structure of Evolution Strategies. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). 1–8. https://doi.org/10.1109/SSCI.2016.7850138

[28] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr. 2019. On-

line Selection of CMA-ES Variants. CoRR abs/1904.07801 (2019). arXiv:1904.07801

http://arxiv.org/abs/1904.07801 A GitHub repository containing more data and

experiments from this project is available at https://github.com/Dvermetten/

Online_CMA-ES_Selection.

[29] Hao Wang, Michael Emmerich, and Thomas Bäck. 2014. Mirrored Orthogonal

Sampling with Pairwise Selection in Evolution Strategies. In Proceedings of the
29th Annual ACM Symposium on Applied Computing (SAC ’14). ACM, New York,

NY, USA, 154–156. https://doi.org/10.1145/2554850.2555089

https://doi.org/10.1145/2001576.2001694
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/11740698_26
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.1057/jors.2013.71
http://arxiv.org/abs/0805.0231
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1145/1570256.1570333
http://arxiv.org/abs/1605.03560
http://arxiv.org/abs/1605.03560
https://hal.inria.fr/inria-00362649/document
https://doi.org/10.1162/106365601750190398
https://doi.org/10.4230/DagRep.6.10.33
https://doi.org/10.1109/CEC.2006.1688662
http://arxiv.org/abs/1811.11597
http://arxiv.org/abs/1811.11597
https://doi.org/10.1109/CEC.2015.7257143
https://doi.org/10.1109/CEC.2015.7257143
https://github.com/sjvrijn/ModEA
https://github.com/sjvrijn/ModEA
https://pypi.org/project/ModEA/0.3.0/
https://pypi.org/project/ModEA/0.3.0/
https://doi.org/10.1007/978-3-319-99253-2_5
https://doi.org/10.1109/SSCI.2016.7850138
http://arxiv.org/abs/1904.07801
http://arxiv.org/abs/1904.07801
https://github.com/Dvermetten/Online_CMA-ES_Selection
https://github.com/Dvermetten/Online_CMA-ES_Selection
https://doi.org/10.1145/2554850.2555089

	Abstract
	1 Introduction
	2 The Modular CMA-ES Framework
	3 Adaptive Configurations
	3.1 Performance Measures
	3.2 Selecting Adaptive Configurations
	3.3 Mitigating Uncertainty in the Selection
	3.4 Two-Stage Configuration Selection

	4 Initial experiments
	5 Results
	5.1 Comparison of different methods
	5.2 Performance Comparison
	5.3 Module Activation Plots
	5.4 Summary of Results

	6 Conclusion and future work
	Acknowledgments
	References

