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ABSTRACT

The one-fifth success rule is one of the best-known and most widely

accepted techniques to control the parameters of evolutionary al-

gorithms. While it is often applied in the literal sense, a common

interpretation sees the one-fifth success rule as a family of success-

based updated rules that are determined by an update strength F
and a success rate s . We analyze in this work how the performance

of the (1+1) Evolutionary Algorithm (EA) on LeadingOnes depends

on these two hyper-parameters. Our main result shows that the

best performance is obtained for small update strengths F = 1+o(1)
and success rate 1/e . We also prove that the runtime obtained by

this parameter setting is asymptotically optimal among all dynamic

choices of the mutation rate for the (1+1) EA, up to lower order

error terms. We show similar results for the resampling variant of

the (1+1) EA, which enforces to flip at least one bit per iteration.

CCS CONCEPTS

• Theory of computation→ Random search heuristics;

1 INTRODUCTION

One of the key challenges in applying evolutionary algorithms

(EAs) in practice lies in suitable choices of the population sizes,

the mutation rates, crossover probabilities, selective pressure, and

possibly other parameters that determine the exact structure of the

heuristic. What complicates the situation is that the optimal values

of these parameters may change during the optimization process,

so that an ideal parameter setting requires to find not only good

initial values, but also suitable update rules that adjust the parame-

ters during the run. Parameter control is the umbrella term under

which such non-static parameter settings are studied. Parameter

control is indispensable in continuous optimization, where the step

size needs to be adjusted in order to obtain good convergence to

the optima, and is standard since the early seventies. In discrete

optimization, however, parameter control has received much less

attention, as commented in the recent surveys [1, 21]. This situa-

tion has changed substantially in the last decade, both thanks to

considerable advances in reinforcement learning, which could be

successfully leveraged to control algorithmic parameters [6, 18, 20],
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but also thanks to a number of theoretical results rigorously quan-

tifying the advantages of dynamic parameter settings over static

ones, cf. [10] for a summary of known results.

One of the best known parameter update rules is the one-fifth

success rule, which was independently designed in [7, 25, 26]. The

one-fifth success rule states that it is desirable to maintain a success

rate, measured by the frequency of offspring having a better fitness

than the current-best individual, of around 20%. Theoretical justi-

fication for this rule was given by Rechenberg, who showed that

such a success rate is optimal for controlling the step size of the

(1+1) Evolution Strategy (ES) optimizing the sphere function [25].

Based on this finding several parameter update rules were designed

that decrease the step size when the observed success rate is smaller

than this target rate, and which increase it for success rates larger

than 20%.

An interpretation of the one-fifth success rule which is suitable

also for parameter control in discrete domains was provided in [22].

Kern et al. propose to decrease the step size σ to σ/F after each

successful iteration, and to increase it to σF 1/4 otherwise. They

propose to consider an iteration successful if the offspringy created

in this iteration is at least as good as its parent x , i.e., if f (y) ≤ f (x)
in the context of minimizing the function f . With this rule, the step

size remains constant when one out of five iterations is successful,

since in this case after the fifth iteration σ has been replaced by

σ · (F 1/4)4/F . This version of the one-fifth success rule, typically us-

ing constant update strengths F > 1, was shown to work efficiently,

e.g., in [2]. In [9] it was proven to yield asymptotically optimal lin-

ear expected optimization time when applied to the (1 + (λ, λ)) GA
optimizing OneMax. No static parameter choice can achieve this ef-

ficiency, since all static variants of the (1+(λ, λ))Genetic Algorithm
(GA) require super-linear runtimes [9].

Other success-based multiplicative update rules had previously

been studied in the theory of evolutionary algorithms (EAs). For

example, Lässig and Sudholt [23] showed that for four classic bench-

mark problems the expected number of generations needed to find

an optimal solution is significantly reduced when multiplying the

offspring population size λ by two after every unsuccessful iteration
of the (1 + λ) EA and reducing λ to λ/2 otherwise. Similar rules

which also take into account the number of improved offspring

were empirically shown to be efficient in [19]. Recently, Doerr and

Wagner [17] showed that success-based multiplicative updates are

very efficient for controlling the mutation rate of the (1 + 1) EA>0,

the (1 + 1) EA variant proposed in [4], which enforces to flip at

least one bit per each iteration. More precisely, they analyze the

average optimization times of the (1 + 1) EA(A,b) algorithm which

increases the mutation rate p by a factor of A > 1 when the off-

springy satisfies f (y) ≥ f (x) (i.e., when it replaces its parent x ) and
which decreases p to bp, 0 < b < 1 otherwise. Their experimental

https://doi.org/10.1145/3321707.3321733
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results show that this algorithm for broad ranges of A and b has a

good performance on OneMax and LeadingOnes.

Our Results. In this work, we complement the empirical

study [17] and rigorously prove that for suitably chosen hyper-

parameters A and b the (1 + 1) EA using this multiplicative update

scheme has an asymptotically optimal expected runtime on the

LeadingOnes function Lo : {0, 1}n → [0..n] = {0} ∪ N≤n, x 7→
max{i ∈ [0..n] | ∀j ≤ i : x j = 1}, where in this work we refer

to a runtime as “asymptotically optimal” when it is optimal up

to lower order terms among all dynamic choices of the mutation

rate. For the (1 + 1) EA>0 we also rigorously prove a bound on the

expected optimization time on LeadingOnes, which we show by

numerical evaluations to coincide almost perfectly with the perfor-

mance achieved by the best possible (1 + 1) EA>0 with optimally

controlled mutation rates.

Following the suggestion made in [22], and adapting to the

common notation, we formulate our theoretical results using the

parametrization A = F s and b = 1/F , where F denotes again the

update strength and s the success ratio. As seen above, a success

ratio of 4 corresponds to a one-fifth success rule.

We prove that for the (1 + 1) EA the optimal success ratio is

e − 1 (i.e., a 1/e success rule). More precisely, we show that the

expected runtime of the self-adjusting (1 + 1) EA with constant

success ratio s > 0 and small update strength F = 1 + o(1) on
LeadingOnes is at most

s+1
4 ln(s+1)n

2 + o(n2). The expected runtime

with s = e − 1 is asymptotically optimal among all (1 + 1) EA

variants that differ only in the choice of the mutation rates. A key

ingredient in this proof is a lemma proving that the mutation rate

used by the (1 + 1) EA with self-adjusting mutation rates is, at

all times during the optimization process, very close to the target

mutation rate ρ∗(Lo(x), s) ≈ ln(s + 1)/Lo(x), which we define as

the unique mutation rate that leads to success probability 1/(s + 1).
We also extend our findings to the (1 + 1) EA>0 considered

in [17]. This resampling (1 + 1) EA variant is technically more

challenging to analyze, since the probabilities of the conditional

standard bit mutation operator (which enforces to flip one bit) are

more complex to handle, but also because the concept of target

mutation rates ceases to exist for fitness levels ℓ ≥ s
s+1n, since

it is impossible to achieve success rates of 1/(s + 1) or higher for
such values of ℓ without accepting duplicates as offspring. In this

regime the mutation rate approaches zero, and the (1 + 1) EA>0

resembles Randomized Local Search (RLS), which flips in each iter-

ation exactly one bit. This behavior is desirable since the optimal

number of bits to flip in solutions x with Lo(x) ≥ n/2 is indeed

equal to one. In contrast to the unconditional (1 + 1) EA, our bound

for the expected runtime of the self-adjusting (1 + 1) EA>0 does

not have a straightforward closed-form expression. A numerical

evaluation for dimensions up to n = 10 000 shows that the best

runtime is achieved for success ratio s ≈ 1.285. With this choice

(and using again F = 1+o(1)), the performance of the self-adjusting

(1 + 1) EA>0 is almost indistinguishable from (1 + 1) EA>0,opt, the

best possible (1 + 1) EA>0 variant using in each iteration the opti-

mal mutation rate. Both algorithms achieve an expected runtime

which is around 0.404n2.
For both algorithms, the self-adjusting (1 + 1) EA and the

(1 + 1) EA>0, we do not only bound the expected runtime but prove

also stochastic domination bounds, which provide much more in-

formation about the runtime [8]. We only show upper bounds in

this work, but we strongly believe that our bounds are tight, since

for the (1 + 1) EA we obtain asymptotically optimal runtime, and

for the self-adjusting (1 + 1) EA>0 the numerical bounds are almost

indistinguishable from those of (1 + 1) EA>0,opt.

Related Work. In [15, 24] variants of RLS flipping a dynamic

number of bits were analyzed. These schemes, which take inspira-

tion from the literature on hyper-heuristics, differ from our dynamic

setting in particular in the fact that they consider only a constant-

size set of possible parameter values. The mentioned analysis of

the (1 + (λ, λ)) GA using the one-fifth success rule presented in [9]

deviates from ours in that it only considers the order of magnitude,

but not the leading constants of the runtime.

Availability of Full Proofs. Full proofs and numerical data for

Fig. 3 are available in [12].

2 THE SELF-ADJUSTING (1+1) EA

We study the optimization time of the (1 + 1) EAwith self-adjusting

mutation rates, Algorithm 1. This algorithm starts the optimization

process with an initial mutation rate ρ = ρ0 and a random initial

solution x ∈ {0, 1}n . In every iteration one new solution candidate

y ∈ {0, 1}n is created from the current-best solution through stan-

dard bit mutation with mutation rate ρ, i.e., y is created from x by

flipping each bit, independently of all other decisions, with proba-

bility ρ. If y is at least as good as its parent x , i.e., if f (y) ≥ f (x), x
is replaced by its offspring y and the mutation rate ρ is increased to

min{F sρ, ρmax}, where F > 1 and s > 0 are two constants that re-

main fixed during the execution of the algorithm and 0 < ρmax ≤ 1

is an upper bound for the range of admissible mutation rates. If,

on the other hand, y is strictly worse than its parent x , y is dis-

carded and the mutation rate decreased to max{ρ/F , ρmin}, where

0 < ρmin is the smallest admissible mutation rate. The algorithm

continues until some stopping criterion is met. Since in our theoret-

ical analysis we know the optimal function value fmax, we use as

stopping criterion that f (x) = fmax. We call the number of function

evaluations until an optimum is found the runtime or optimization

time of the algorithm.

Standard Bit Mutation. Since we will also consider the

(1 + 1) EA>0, which requires that each offspring y differs from

its parent x in at least one bit, we use in lines 3 and 4 the equivalent

description of standard bit mutation, in which we first sample the

number k of bits to flip and then apply the mutation operatormutk ,

which flips exactly k uniformly chosen bits in x .
Success Ratio vs. Success Rule. We recall from the introduc-

tion that we call F the update strength of the self-adjustment and

s the success ratio. The success ratio s = 4 is particularly common

in evolutionary computation [2, 9, 22], and is referred to as the

one-fifth success rule: if one out of five iterations is successful, the

parameter ρ stays constant. This rule was developed in [22] as a

discrete analog of the one-fifth success rule known from evolu-

tion strategies [25]. Note that a success ratio of s corresponds to a

1/(s + 1)-th success rule. We choose to work with success ratios for

notational convenience.

Hyper-Parameters. Altogether, the self-adjusting (1 + 1) EA

has five hyper-parameters: the update strength F , the success rate s ,
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Algorithm 1: The self-adjusting (1 + 1) EA with update

strength F , success ratio s , initial mutation rate ρ0, mini-

mal mutation rate ρmin, and maximal mutation rate ρmax.

The formulation assumes maximization of the function

f : {0, 1}n → R as objective.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random

and compute f (x);

2 Set ρ = ρ0;

3 Optimization: for t = 1, 2, 3, . . . do

4 Sample k from Bin(n, ρ);

5 y ← mutk (x);

6 evaluate f (y);

7 if f (y) ≥ f (x) then
8 x ← y and ρ ← min{F sρ, ρmax}

9 else

10 ρ ← max{ρ/F , ρmin}

the initial mutation rate ρ0, and the minimal and maximal mutation

rates ρmin and ρmax, respectively. It is not difficult to verify that for

update strengths F = 1 + ε , ε = Ω(1), the mutation rate deviates,

in at least a constant fraction of all iterations, from the optimal

one by at least a constant factor, which results in a constant factor

overhead in the runtime. We therefore consider F = 1 + o(1) only.
Apart from this, we only require that ρmin = o(n) ∩ ω(n

−c ) for an

arbitrary constant c . In a practical application, ρmin = n
−2

appears

to be a good choice. In our analysis, there is no reason to cap the

values of ρ by using a ρmax value strictly less than 1, so we always

use ρmax = 1. A mutation rate of 1, clearly, does not make much

sense in almost all cases, but in our analysis the self-adjustment

automatically avoids such large ρ-values.
We easily see that Algorithm 1 generalizes the (1 + 1) EA with

static mutation rate ρ, which we obtain by setting F = 1 and ρ0 = ρ.
Improvement vs. Success Probability.We study in this work

the performance of the self-adjusting (1 + 1) EA on the Leadin-

gOnes function Lo : {0, 1}n → R, x 7→ max{j ∈ [0..n] | ∀i ≤ j :
x j = 1}, which counts the number of initial ones in a bit string.

We build our analysis on results presented in [3, 8], which reduce

the study of the overall runtime to analyzing the time spent on

each fitness level. More precisely, for a random solution x ∈ {0, 1}n

with f (x) =: ℓ we study the time Tℓ that it takes the self-adjusting
(1 + 1) EA to reach for the first time a solution y of fitness f (y) > ℓ.
We call the probability to create such a y the improvement probabil-

ity pimp(ρ, ℓ) of mutation rate ρ on level ℓ. For fixed mutation rate

ρ, this improvement probability is easily seen to equal (1 − ρ)ℓρ,
since the first ℓ bits should not flip, the (ℓ+ 1)-st should, and it does

not matter what happens in the tail of the string.

Another important probability is the success probability

psuc(ρ, ℓ) := (1 − ρ)ℓ of creating an offspring y that is at least

as good as x , since this is the probability of increasing the mutation

rate from ρ to min{F sρ, ρmax}.

We note that several other works studying self-adjusting param-

eter choices assume that the adjustment rule distinguishes whether

or not a strict improvement has been found. In the analysis of

the self-adjusting (1 + (λ, λ)) GA in [9], for example, it is assumed

that λ ← λ/F if and only if f (y) > f (x), while λ ← λF 1/4 other-
wise (whereas, as recommended in [11], it is suggested to update x
whenever f (y) ≥ f (x), so that a distinction between the parameter

update and the selection step has to be made). Analyzing the effects

of this choice goes beyond the scope of this present work, but it is

certainly desirable to develop general guidelines which update rule

to prefer for which type of problems.

2.1 Main Result

Theorem 2.1 summarizes the main result of this section. Before

providing the formal statement, we introduce a quantity that will

play an important role in all our computation, the target mutation

rate ρ∗(ℓ, s). We consider as target mutation rate the value of p
which leads to the success probability that is given by the success

rule. That is, for each fitness level 1 ≤ ℓ ≤ n − 1 and each success

ratio s > 0 the target mutation rate ρ∗(ℓ, s) is the unique value

p ∈ (0, 1) that satisfies psuc(p) = (1 − p)
ℓ = 1/(s + 1). For ℓ = 0 we

set ρ∗(ℓ, s) := 1. A key argument in the following proofs will be

that the mutation rate drifts towards this target rate.

Following the discussion in [8] we do not only analyze in Theo-

rem 2.1 the expected runtime, but rather show a stochastic domina-

tion result. To formulate our results, we introduce the shorthand

X ≼ Y to express that the random variable X is stochastically dom-

inated by the random variable Y , that is, that P[X ≥ λ] ≤ P[Y ≥ λ]
for all λ ∈ R. We also recall that a random variable X has a geomet-

ric distribution with success rate p, written as X ∼ Geom(p), when

P[X = k] = (1 − p)k−1p for all k = 1, 2, . . . .

Theorem 2.1. Let c > 1 be a constant. Consider a run of the

self-adjusting (1 + 1) EA with F = 1 + ε , ε ∈ ω(logn/n) ∩ o(1),
s > 0, ρmin ∈ o(n

−1) ∩ Ω(n−c ), ρmax = 1, and arbitrary initial rate

ρ0 ∈ [ρmin, ρmax] on the n-dimensional LeadingOnes function. Then

the numberT of iterations until the optimum is found is stochastically

dominated by

o(n2) +
n−1∑
ℓ=0

Xℓ Geom(min{ω( 1n ), (1 − o(1))(1 − ρ
∗(ℓ, s))ℓρ∗(ℓ, s)}),

where the Xℓ are uniformly distributed binary random variables and

all Xℓ and geometric random variables are mutually independent.

Further, all asymptotic notation solely is with respect to n and can be

chosen uniformly for all ℓ. In particular,

E[T ] ≤ (1 + o(1))
1

2

n−1∑
ℓ=0

(
(1 − ρ∗(ℓ, s))ℓρ∗(ℓ, s)

)−1
= (1 + o(1))

s + 1

4 ln(s + 1)
n2. (1)

2.2 Numerical Evaluation

Fig. 1 displays the by n2 normalized expected optimization time

s+1
4 ln(s+1) for success ratios 0 ≤ s ≤ 10. Minimizing this expression

for s shows that a success ratio of s = e − 1 is optimal. With this set-

ting, the self-adjusting (1 + 1) EA yields an expected optimization

time of (1±o(1))en2/4, which was shown in [3] to be optimal across

all possible adaptive (1 + 1) EA variants. In fact, with this success

ratio, it holds that ρ∗(ℓ, s) ≈ 1/(ℓ + 1), which is the mutation rate
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Figure 1: Normalized (by n2) expected optimization times of

the self-adjusting (1 + 1)EA for different success ratios s, and
assuming F = 1 + o(1).

that was shown in [3] to be the optimal rate for random solutions

with Lo(x) = ℓ.
Using Inequality (1) we also observe that for all success ra-

tios s ∈ [0.78, 3.92] the expected optimization time of the self-

adjusting (1 + 1) EA is better than the 0.77201n2 one of the best
static (1 + 1) EA computed in [3], which uses mutation rate p∗ =
1.5936.../n. Note also that the one-fifth success rule (i.e., s = 4)

performs slightly worse; its expected optimization time is around

0.7767n2. Note, however, that we will see in Section 4 (cf. also Fig. 3),
that its fixed-target performance is nevertheless better than the

static one with p∗ for a large range of sub-optimal target values.

Finally, we note that for success ratios s ∈ [0.59, 5.35] the ex-
pected optimization time of the self-adjusting (1 + 1) EA is better

than the 0.85914..,n2 one of the static (1 + 1) EA with default mu-

tation rate p = 1/n.

2.3 Occupation Probabilities

In our proofs, we will need the following result showing that a

random process with negative additive drift in the non-negative

numbers cannot often reach states that are mildly far in the positive

numbers. Results of a similar flavor have previously been obtained

in [16], but we do not see how to derive our result easily from this

work.

Lemma 2.2. Let D be a discrete random variable satisfying |D | ≤ s

and E[D] = −δ for some δ ≤
√
2 s . Let Xt be a random process on R

such that

• (Xt ) starts on a fixed value x0 ≤ s , that is, we have P[X0 =

x0] = 1,

• for all t ≥ 1 and for all r1, . . . , rt ∈ R with P[∀i ∈ [1..t] :
Xi = ri ] > 0 we have

– if rt ≥ 0, then conditioned on X1 = r1, . . . ,Xt = rt the

conditional distribution of Xt+1 is dominated by rt + D,
– if rt < 0, then Xt+1 − Xt has a discrete distribution with

absolute value at most s .

Then for all t ≥ 1 andU ≥ s , we have

P[Xt ≥ U ] ≤ exp

(
−
δ (U − s)

2s2

) (
U − s

δ
+ 1 +

4s2

δ2

)
.

In particular, for U = 6s2 ln(1/δ )/δ + s , we have P[Xt ≥ U ] ≤
6δs2 ln(1/δ ) + δ3 + 4δs2, an expression tending to zero for δ → 0.

2.4 Proof Overview

The main proof idea consists in showing that in a run of the self-

adjusting (1 + 1) EA we sufficiently often have a mutation rate that

is close to the target mutation rate (the unique rate which gives a

success rate of 1/(s+1)). We obtain this information from exhibiting

that the self-adjustment leads to a drift of the mutation rate towards

the target rate. This drift is strong when the rate is far from the

target, so we can use a multiplicative drift argument to show that

the rate quickly comes close to the target rate (Lemma 2.5). Once

close, we use our occupation probability lemma (Lemma 2.2) based

on additive drift to argue that the rate often is at least mildly close

to the target (Lemma 2.6). We need a careful definition of the lower

order expressions “often”, “close”, and “mildly close” to make this

work.

From the knowledge that the rate is often at least mildly close

to the target rate, we would like to derive that the optimization

process is similar to using the target rate in each iteration. This is

again not trivial and a main obstacle is that the rate is not chosen

independently in each iteration. Consequently, we cannot argue

that each iteration on one fitness level has the same, independent

probability for finding an improvement (which would give that

the waiting time on the level follows a geometric distribution). We

overcome this difficulty by splitting the time spent on one fitness

level in short independent phase each consisting of bringing the

rate into the desired region and then exploiting that the rate will

stay there most of the time (Lemma 2.8). This approach is feasible

because of our relatively good bounds for the time needed to reach

the desired rate range. The final argument is that the runtime of

the self-adjusting (1 + 1) EA on LeadingOnes is half the sum of

the times needed to leave each fitness level. Such a statement has

been previously observed for static and fitness-dependent mutation

rates [3, 8].

Asymptotic analysis:Our result is an asymptotic runtime anal-

ysis, that is, we are interested in the runtime behavior for large

problems sizes n. More formally, we view the runtime T as a func-

tion of the problem size n (even though we do not explicitly write

T (n)) and we aim at statements on its limiting behavior. As usual in

the analysis of algorithms, we use the Landau symbols O(·), Ω(·),
Θ(·), o(·), and ω(·) to conveniently describe such limits. When us-

ing such a notation, we shall always view the expression in the

argument as a function of n and use the notation to describe the be-

havior for n tending to infinity. We note that already the algorithm

parameters ε and ρmin are functions of n (which is very natural

since it just means that we use different parameter values for dif-

ferent problem sizes). Different from ε and ρmin, we take s as a
constant (that is, not depending on n). Success rates varying with
the problem size have been shown useful in [15], but generally it is

much more common to have constant success rates and we do not

see how non-constant success rates could be advantageous in our

setting.

Since we are interested in asymptotic results only, we can and

shall assume in the remainder that n is sufficiently large.
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2.5 Proof of Theorem 2.1

As a first step towards understanding how our EA adjusts the

mutation rate, we first determine and estimate the target mutation

rate ρ∗(ℓ, s) introduced in the beginning of Section 2.1.

Lemma 2.3 (estimates for ρ∗). Let ℓ ≥ 1 and ρ∗ = ρ∗(ℓ, s). Then

ρ∗ = 1 − (s + 1)−1/ℓ and

ln(s + 1)

ℓ

(
1 +

ln(s + 1)

ℓ

)−1
≤ ρ∗ ≤

ln(s + 1)

ℓ
.

Consequently, ρ∗ = Θ(1/ℓ) and ρ∗ ≤ ρ∗(1, s) < 1 is bounded away

from 1 by at least a constant. If ℓ = ω(1), then ρ∗ = (1 − o(1)) ln(s +
1)/ℓ.

We now show that the success probability psuc(ρ, ℓ), ℓ ≥ 1,

changes by a factor of (1 ∓ Ω(δ )) when we replace the target rate

ρ∗ by ρ∗(1± δ ). Note that for ℓ = 0, we have psuc(ρ, ℓ) = 1 for all ρ.

Lemma 2.4 (success probabilities around ρ∗). Let ℓ ≥ 1. Let

psuc(ρ) := psuc(ρ, ℓ) = (1 − ρ)
ℓ
for all ρ ∈ [0, 1].

• For all δ > 0 such that (1 + δ )ρ∗ ≤ 1, we have

psuc((1 + δ )ρ
∗) ≤ psuc(ρ

∗)(1 − 1

2
min{δ , 1

ln(s+1) }ρ
∗ℓ).

• For all 0 < δ ≤ 1, we have

psuc((1 − δ )ρ
∗) ≥ psuc(ρ

∗)(1 + δρ∗ℓ).

From the previous lemma we now derive that we have an at least

multiplicative drift [14] towards a small interval around the target

rate ρ∗(ℓ, s), which allows to prove upper bounds for the time to

enter such an interval. For convenience, we show a bound that

holds with probability 1− 1/n even though we shall later only need

a failure probability of o(1).

Lemma 2.5. Assume that the self-adjusting (1 + 1) EA is started

with a search point of fitness ℓ ≥ 1 and with initial mutation rate

ρ0 ∈ [ρmin, ρmax], with ρmin ∈ o(n
−1) ∩ Ω(n−c ). Let ρ∗ = ρ∗(ℓ, s).

Let δ = ω(ε) ∩ o(1). For

t := (1 + o(1))2
max{ρ0/ρ

∗, ρ∗/ρ0}) + ln(n)

δρ∗ℓε
= Θ

(
logn

δε

)
,

the timeT ∗ until a search point with higher fitness is generated or the

mutation rate ρT ∗ is in [(1−δ )ρ
∗, (1+δ )ρ∗] satisfies P [T ∗ ≥ t] ≤ 1

n .

For ℓ = 0, we have that within ⌈log
1+ε (1/ρ0)/s⌉ + 1 = O(logn/ε)

iterations with probability one an improvement is found.

To ease the analysis of the mutation rate adjustment, we shall

here and in a few further lemmas regard the variant of the self-

adjusting (1 + 1) EA which, in case it generates an improving solu-

tion, does not accept this solution, but instead continues with the

parent. It is clear that the mutation rate behaves identical in this

variant and in the original self-adjusting (1 + 1) EA until the point

when an improving solution is generated. We call this EA the self-

adjusting (1 + 1) EA ignoring improvements. This variant allows us

to study the fluctuations of the mutation rate in a clean way. While

the previous lemma showed that the mutation rate approaches ρ∗

rapidly, the next lemma shows that once the mutation rate is close

to ρ∗, with probability 1 − o(1) it will stay close for most of the

following T rounds.

Lemma 2.6. Let δ = o(1) be such that δ/ln(1/δ ) = ω(ε). There is a
γ = o(1) such that the following is true. Let ℓ ∈ [1..n], ρ∗ := ρ∗(ℓ, s),
and ρ0 ∈ [(1 − δ )ρ

∗, (1 + δ )ρ∗]. Consider a run of the self-adjusting

(1 + 1) EA ignoring improvements, started with a search point of

fitness ℓ and with the initial mutation rate ρ0. Denote the mutation

rate after the adjustment made in iteration t by ρt . Then for any

T = ω(1), with probability 1 − o(1) we have

|{t ∈ [1..T ] | ρt < [(1 − γ )ρ
∗, (1 + γ )ρ∗]}| = o(T ).

The last two lemmas show that the self-adjusting (1 + 1) EA

will likely spend most rounds with mutation rates close to ρ∗. In
the next lemma we prove that in such a range the improvement

probability pimp(ρ, ℓ) = (1 − ρ)
ℓρ does not substantially decrease

by the fluctuations of the mutation rate.

Lemma 2.7. Let ℓ ∈ [1..n − 1] and ρ∗ := ρ∗(ℓ, s). Let γ = o(1) and
ρ ∈ [(1 − γ )ρ∗, (1 + γ )ρ∗]. Then pimp(ρ, ℓ) ≥ pimp(ρ

∗, ℓ)(1 −O(γ )).

We now have the necessary prerequisites to show the main

ingredient of our runtime analysis, the statement that the time to

leave fitness level ℓ is (essentially) at least as good as if the EAwould

always use the target mutation rate ρ∗(ℓ, s), and this not only with

respect to the expectation, but also when regarding distributions.

Lemma 2.8. Let c be a constant and ρmin ∈ o(n
−1) ∩ Ω(n−c ). Let

ε = ω(logn/n) ∩ o(1). Let δ = o(1) be such that δ/ln(1/δ ) = ω(ε)
and δ = ω(logn/(nε)). Assume that the self-adjusting (1 + 1) EA is

started with a search point of fitness ℓ ∈ [0..n − 1] and an arbitrary

mutation rate ρ ≥ ρmin. Let ρ
∗ = ρ∗(ℓ, s). Then the number Tℓ of

iterations until a search point with fitness better than ℓ is found is

stochastically dominated by

Tℓ ≼ o(n) + Geom(min{ω( 1n ), (1 − o(1))(1 − ρ
∗)ℓρ∗}).

In particular, E[Tℓ] ≤ o(n) + 1

(1−ρ∗)ℓρ∗ .

Having shown this bound for the time needed to leave each

fitness level, we can now derive from it a bound for the whole

runtime. In principle, Wegener’s fitness level method [28] would

be an appropriate tool here as it, essentially, states that the runtime

is the sum of the times needed to leave each fitness level. For the

LeadingOnes function, however, it has been observed that many

algorithms visit each fitness level only with probability
1

2
, so by

simply using the fitness level method we would lose a factor of two

in the runtime guarantee. Since we believe that our runtime results

are tight up to lower order terms, we care about this factor of two.

The first result in this direction is the precise runtime analysis

of the (1 + 1) EA with static and fitness-dependent mutation rates

on LeadingOnes in [3]. The statement that the runtime is half

of the sum of the exit times of the fitness levels was stated (for

expected times) before Theorem 3 in [3], but a formal proof (which

could easily be obtained from Theorem 2 there) was not given.

We note that in parallel a second precise runtime analysis of the

(1 + 1) EA on LeadingOnes was given in [27] (with a conference

version appearing at the same venue as [3]). Since it in particular

determines the runtime precisely including the leading constant, it

also cannot rely on the basic fitness level method. That the runtime

is half the sum of the exit times, however, is only implicit in the

computation of the expected runtime.
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A more general result based on stochastic domination was pre-

sented and formally proven in [8, Theorem 3 of full version]. Un-

fortunately, this result was formulated only for algorithms using

the same mutation operator in all iterations spent on one fitness

level since this implies that the time to leave a fitness level follows

a geometric distribution. This result is thus not applicable to our

self-adjusting (1 + 1) EA. By a closer inspection of the proof, we

observe that the restriction to using the same mutation operator

in all iterations on one fitness level is not necessary when the re-

sult is formulated via geometric distributions. We thus obtain the

following result that serves our purposes.

Theorem 2.9. Consider a (1 + 1) EA which may use in each itera-

tion a different unbiased mutation operator. This choice may depend

on the whole history. Consider that we use this algorithm to opti-

mize the LeadingOnes function. For each ℓ ∈ [0..n − 1] let Tℓ be a
random variable that, regardless of how the algorithm reached this

fitness level, stochastically dominates the time the algorithm takes

to go from a random solution with fitness exactly ℓ to a better so-

lution. Then the runtime T of this (1 + 1) EA on the LeadingOnes

function is stochastically dominated by T ≼
∑n−1

ℓ=0
XℓTℓ , where the

Xℓ are uniformly distributed binary random variables and all Xℓ

and Tℓ are independent. In particular, the expected runtime satisfies

E[T ] ≤ 1

2

∑n−1
ℓ=0

E[Tℓ].

Proof of Theorem 2.1. Choose δ ∈ o(1) such that δ/ln(1/δ ) =
ω(ε) and δ = ω(logn/(nε)). Note that such a δ exists, e.g., δ =

max{
√
ε,

√
logn/(nε)}. Now Lemma 2.8 gives upper bounds for the

times Tℓ to leave the ℓ-th fitness level, which are independent of

the mutation rate present when entering the fitness level. Hence

by Theorem 2.9, the required stochastic dominance follows.

For the last claim (1) in Theorem 2.1, the first inequality is

an immediate consequence of the domination statement. For the

second one, we use the bound ρ∗ = (1 − o(1)) ln(s + 1)/ℓ from

Lemma 2.3. This implies in particular that for ℓ = ω(1) we have

(1 − ρ∗)ℓ = (1 − o(1))e−ρ
∗ℓ = (1 − o(1)) · 1/(s + 1). The second step

in (1) then follows by plugging in. �

3 THE SELF-ADJUSTING (1 + 1) EA>0

We now extend our findings for the (1 + 1) EA to the (1 + 1) EA>0,

which enforces that offspring are different from their parents by

ensuring that at least one bit is flipped by the standard bit mutation

operator. That is, the (1 + 1) EA>0 differs from the (1 + 1) EA only

in the choice of the mutation strength k , which in the (1 + 1) EA

follows the binomial distribution Bin(n,p), and in the (1 + 1) EA>0

follows the conditional binomial distribution Bin>0(n,p) which
assigns every positive integer 1 ≤ m ≤ n a probability of(n
m

)
pm (1 − p)n−m/(1 − (1 − p)m ). The self-adjusting version of

the (1 + 1) EA>0 implements the same change, and can thus be

obtained from Algorithm 1 by exchanging line 3 by “Sample k from

Bin>0(n,p)”. This is also the algorithm empirically studied in [17].

It is clear that for static mutation rates the (1 + 1) EA>0 is strictly

better than the plain (1 + 1) EA, since it simply avoids the useless

iterations in which duplicates of the parent are evaluated. For ex-

ample, it reduces the running of the (1 + 1) EA with static mutation

rate 1/n by a multiplicative factor of (e − 1)/e [5]. For the self-

adjusting (1 + 1) EA>0, however, it is a priori not evident how the

conditional sampling of the mutation strengths influences the run-

time. Note that after each iteration in which no bit is flipped by

the (1 + 1) EA (e.g., a 1/e fraction of iterations for mutation rate

1/n), the mutation rate is increased by the factor F s . Since these
steps are avoided by the self-adjusting (1 + 1) EA>0, it could, in

principle, happen that the actual mutation rates are smaller than

what they should be. We show in this section that this is not the

case. Put differently, we show that the self-adjusting (1 + 1) EA>0

also achieves very efficient optimization times. In contrast to the

results proven in Section 2.1, however, we will obtain a bound that

is difficult to evaluate in closed form. We therefore have to resort to

a numerical evaluation of the proven bound. A comparison with the

best possible (1 + 1) EA>0 variant using optimal fitness-dependent

mutation rates will show that the obtained runtimes are very similar,

cf. Section 3.1.

Before we can state the main theorem of this section, Theo-

rem 3.1, we first need to discuss how the conditional sampling of

the mutation strengths influences the improvement and the success

probabilities. It is not difficult to see that the improvement proba-

bility p̂imp(ρ, ℓ) of the (1 + 1) EA>0, started in an arbitrary search

point x with Lo(x) = ℓ and using mutation rate ρ, equals

p̂imp(ρ, ℓ) =
(1 − ρ)ℓρ

1 − (1 − ρ)n
, (2)

which is the improvement probability of the (1 + 1) EA divided by

the probability that the unconditional standard bit mutation creates

a copy of its input.

Likewise, the success probability p̂suc(ρ, ℓ) of the (1 + 1) EA>0 in

the same situation can be computed as

p̂suc(ρ, ℓ) =
(1 − ρ)ℓ(1 − (1 − ρ)n−ℓ)

1 − (1 − ρ)n
= 1 −

1 − (1 − ρ)ℓ

1 − (1 − ρ)n
, (3)

where the probability in the numerator is given by the probability

of not flipping one of the first ℓ bits times the probability to flip at

least one bit in the last n − ℓ positions.
As we did for the (1 + 1) EA, we would like to define for the

(1 + 1) EA>0 a target mutation rate ρ̂∗(ℓ, s) to be the one that guar-
antees that the success probability equals 1/(s + 1), i.e., as the value
of ρ̂∗ that solves the equation

p̂suc(ρ̂
∗, ℓ) = 1/(s + 1). (4)

However, while the corresponding equation for the (1 + 1) EA has

always a (unique) solution, Equation (4) has a solution only if

ℓ < sn/(s + 1) (proof omitted). For this range, our analysis follows

closely the one for (1 + 1) EA, except that the algebra gets consid-

erably more involved. I.e., Equation (4) defines a target mutation

rate ρ̂∗(ℓ, s), the real mutation rate ρ approaches ρ̂∗(ℓ, s) quickly,
and stays close to ρ̂∗(ℓ, s) until a new level is reached. For larger ℓ,

the mutation rate ρ has always a negative drift, and thus quickly

reaches values o(1/n). In this regime, the (1 + 1) EA>0 mimics RLS,

which flips exactly one bit in each round. For technical reasons, we

will set the threshold between the two regimes not at ℓ = sn/(s + 1),
but at a slightly smaller value ℓ0. This trick helps to avoid some

border cases. More precisely, throughout this section we fix η0 > 0

and ℓ0 ∈ [0,n] such that

ℓ0 := (1 − η0)
sn

s + 1
, where η0 = o(1) (5)
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Figure 2: By n2 normalized optimization times of the self-

adjusting (1 + 1) EA>0 on the 10 000-dimensional Leadin-

gOnes function for different success ratios s.

With these preparations, the main result can be stated as follows.

Theorem 3.1. Let c > 1 be a constant. Consider a run of the self-

adjusting (1 + 1) EA>0 with F = 1 + ε , where ε ∈ ω(logn/n) ∩ o(1),
and with ρmin ∈ o(n

−1) ∩ Ω(n−c ), ρmax = 1, and arbitrary initial

rate ρ0 ∈ [ρmin, ρmax], on the n-dimensional LeadingOnes function.

Let η0 := max{ε1/6, (εn/logn)−1/2}, and let ℓ0 := ⌊(1 − η0)sn/(s +
1)⌋. Then the number T of iterations until the optimum is found is

stochastically dominated by

ℓ0∑
ℓ=0

Xℓ Geom

(
min

{
ω( 1n ), (1 − o(1))

1 − (1 − ρ̂∗(ℓ, s))n

(1 − ρ̂∗(ℓ, s))ℓ ρ̂∗(ℓ, s)

})
+

n∑
ℓ=ℓ0+1

Xℓ Geom((1 − o(1))/n) + o(n
2),

where the Xℓ are uniformly distributed binary random variables and

all Xℓ and geometric random variables are mutually independent.

Further, all asymptotic notation solely is with respect to n and can be

chosen uniformly for all ℓ. In particular,

E[T ] ≤ (1 + o(1))
1

2

(
n2

s + 1
+

ℓ0∑
ℓ=0

1 − (1 − ρ̂∗(ℓ, s))n

(1 − ρ̂∗(ℓ, s))ℓ ρ̂∗(ℓ, s)

)
. (6)

3.1 Numerical Evaluation

As mentioned above, the evaluation of the runtime bound (6) is not

as straightforward as the corresponding one of the unconditional

(1 + 1) EA. For a proper evaluation, one would have to compute

bounds on ρ̂∗(ℓ, s), and then plug these into the runtime bound.

Since these computations are quite tedious, we will content our-

selves by numerically solving (4) for ρ̂∗(ℓ, s) with Mathematica™,

and obtaining a numerical approximation for the runtime.

Before estimating E[T ], we briefly discuss the (1 + 1) EA>0,opt,

the (1 + 1) EA>0 variant that uses in each round the mutation rate

p>0,opt(Lo(x)) which maximizes the improvement probability (2).

The performance of this algorithm is a lower bound for the perfor-

mance of any (1 + 1) EA>0 variant, and thus for our self-adjusting

(1 + 1) EA>0. We again do not compute p>0,opt(ℓ) exactly, but only
numerically. For n ∈ {100, 1 000, 10 000} and all 0 ≤ ℓ < n/2,
the numerically computed values are quite close, but not identical

to 1/(ℓ + 1), which was the optimal rate for the (1 + 1) EA. For

n = 10 000 the largest difference between p>0,opt(ℓ) and 1/(ℓ + 1)

is 0.0001741 and the smallest is −0.0000382. For ℓ ≥ n/2, it is not
difficult to see that p>0,opt(ℓ) is obtained by the limit at 0, in which

case the (1 + 1) EA>0 reduces to RLS. The expected runtime of

(1 + 1) EA>0,opt is

1 +
1

2

n−1∑
ℓ=0

min

{
n,

1 − (1 − p>0,opt(ℓ))
n

p>0,opt(ℓ)(1 − p>0,opt(ℓ))ℓ

}
For n = 100 (n = 1 000, n = 10 000) this expression evaluates

to approximately 0.4077 (0.4026, 0.4027) when normalized by n2.
As a side remark, we note that the expected runtime of the best

possible unary unbiased algorithm for these problem dimensions

has normalized runtime of around 0.3884. The (1 + 1) EA>0,opt

is thus only around 3.7% worse than this RLSopt heuristic. Put

differently, the cost of choosing the mutation rates from Bin>0(n,p)
instead of deterministically using the optimal fitness-dependent

mutation strength is only 3.7%. For comparison, we recall that the

(unconditional) (1 + 1) EA variant using optimal mutation rates has

an expected normalized runtime of e/4 ≈ 0.6796, which is about

75% worse than that of RLSopt.

We now estimate how close the performance of the self-adjusting

(1 + 1) EA>0 gets to this (1 + 1) EA>0,opt. To this end, we fix

n = 10 000 and compute ρ̂∗(ℓ, s) for different success ratios s .
The normalized expected runtimes are plotted in Fig. 2. The in-

teresting region of success ratios between 1.2 and 1.4 is plotted

in the zoom on the right. For this n, the best success ratio is

around 1.285, which gives a normalized expected runtime of around

0.403792. This value is only 0.26% larger than the expected runtime

of the (1 + 1) EA>0,opt for n = 10 000. A numerical evaluation for

n = 50 000 shows that the optimal success rate is again around 1.285,

giving a normalized expected runtime slightly less than 0.40375375.

3.2 Proof Overview

The proof of Theorem 3.1 relies on the same techniques as the proof

for the (1 + 1) EA, but it needs to reflect the different regimes ℓ ≤ ℓ0
and ℓ > ℓ0, where ℓ0 = (1 − η0)sn/(s + 1). We only give an outline.

For ℓ ≤ ℓ0, the strategy is very similar to the (1 + 1) EA, but the

asymptotic analysis becomes more involved. For example, when

ℓ < (1−Ω(1))sn/(s+1) then ρ̂∗ = Θ(1/ℓ), but if ℓ = (1−η)sn/(s+1)
for some η = o(1) then ρ̂∗ = Θ(η/ℓ) = o(1/ℓ). Thus the order of ρ̂∗

depends on whether ℓ is far from ℓ0, or close to ℓ0. For the latter

regime, if we want to use (3) to compute the success probability

p̂suc(ρ, ℓ) for slightly varying values of ρ then we need to be very

precise. Numerator and denominator of (3) vary by the same first-

order error terms, and it is the second-order error term which

actually dominates the fluctuation of p̂suc(ρ, ℓ). Nevertheless, we
can show that if ρ ≈ ρ̂∗ varies by a factor of (1 ± δ ) then p̂suc(ρ, ℓ)
varies by at least a factor of 1 ∓ Ω(δ ρ̂∗ℓ) respectively, just as in
Lemma 2.4 for the (1 + 1) EA. Thus we can use the same ideas as

for the (1 + 1) EA.

For ℓ ≥ ℓ0, the situation is a bit easier. We simply show that for

all mutation rates ρ ≥ Ω(η0/n), for a suitable hidden constant, the

success probability is bounded away from 1/(s + 1), and thus the

mutation rate has strong drift towards zero. Hence, the mutation

rate spends most of the time below O(η0/n) = o(1/n), and in this

regime the (1 + 1) EA>0 resembles RLS. Indeed, using the same

ideas as before it is not hard to show that the time to leave a fitness

level is dominated by o(n)+Geom((1−o(1))/n), as we would expect
for the RLS. We omit the details.
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Figure 3: Expected fixed target runtimes for LeadingOnes in dimension n = 10 000. The curve of (1 + 1) EA>0,opt is not plotted

since it is indistinguishable from that of the (1 + 1) EA>0 with success ratio s = 1.285 and the curve of the (1 + 1) EAopt is not

plotted since it is indistinguishable from that of the (1 + 1) EA with success ratio s = e − 1. The values shown in the legend are

the by n2 normalized expected optimization times.

4 FIXED TARGET RUNTIMES

Our main focus in the previous sections, and in particular in the

sections presenting numerical evaluations of the self-adjusting

(1 + 1) EA variants (i.e., Sections 2.2 and 3.1), was on computing the

expected optimization time. We now follow a suggestion previously

made in [4], and study the anytime performance of the algorithms,

by analyzing their expected fixed-target runtimes. That is, for an

algorithm A we regard for each target value 0 ≤ v ≤ n the ex-

pected number E[T (n,A,v)] of function evaluations until algorithm

A evaluates for the first time a solution x which satisfies Lo(x) ≥ v .
Fig. 3 plots these expected fixed target runtimes of selected al-

gorithms for n = 10 000. The legend also mentions the expected

overall optimization time, i.e., E[T (n,A, 10 000)]. We do not plot

the (1 + 1) EA>0,opt, since its runtime would be indistinguishable

in this plot from the self-adjusting (1 + 1) EA>0 with success ra-

tio s = 1.285. For the same reason we do not plot (1 + 1) EAopt,

the (1 + 1) EA with optimal fitness-dependent mutation rate p =
n/(ℓ+ 1), whose data is almost identical to that of the self-adjusting

(1 + 1) EA with the optimal success ratio s = e − 1.
We plot in Fig. 3 the (1 + 1) EA with one-fifth success rule (i.e.,

success ratio s = 4). While its overall runtime is the worst of

all algorithms plotted in this figure, we see that its fixed-target

runtime is better than that for RLS for all targets up to 6 436. Its

overall runtime is very close to that of the (1 + 1) EA with the best

static mutation rate p ≈ 1.59/n [3], and for all targets v ≤ 9 017 the

expected runtime is smaller.

We already discussed that the expected optimization time of

the two algorithms (1 + 1) EAopt and the self-adjusting (1 + 1) EA

with success ratio s = e − 1 is around 36% worse than that of

RLS. However, we also see that their fixed-target performances are

better for all targets up to v = 7 357. For example, for v = 5 000

their expected first hitting time is slightly less than 17 ∗ 106 and

thus about 36% smaller than that of RLS.

As we have seen already in Fig. 2, the self-adjusting (1 + 1) EA>0

with success ratio s = 4 (i.e., using a one-fifth success rule) has

an overall runtime similar, but slightly better than RLS. We recall

that its target mutation rate is 0 for values v ≥ 4n/5. In this regime

the slope of its fixed target runtime curve is thus identical to that

of RLS. For the self-adjusting (1 + 1) EA>0 this is the case for v
slightly larger than 5 600. The (1 + 1) EA>0,opt with optimal fitness-

dependent mutation rate uses mutation rate p = 0 for v ≥ 4 809.

We also observe that the best unary unbiased black-box algo-

rithm for LeadingOnes, which is an RLS-variant with fitness-

dependent mutation strength (cf. [8, 17] for more detailed discus-

sions), is also best possible for all intermediate targets v < 0. It is

not difficult to verify this formally, the main argument being that

the fitness landscape of LeadingOnes is non-deceptive.

5 CONCLUSIONS

We have proven upper bounds for the (1 + 1) EA and (1 + 1) EA>0

with success-based multiplicative update rules using constant suc-

cess ratio s and update strengths F = 1 + o(1). In particular, we

have shown that the (1 + 1) EA with 1/e-th success rule achieves

asymptotically optimal runtime (for update strengths F = 1 + o(1)).
For the (1 + 1) EA>0, numerical evaluations for n = 10 000 and

n = 50 000 suggest a success ratio of around 1.285; with this success

rate the self-adjusting (1 + 1) EA>0 achieves an expected runtime

around 0.40375n2 + o(n2). Our precise upper bounds are stochastic
domination bounds, which allow to derive other moments of the

runtime.

Our work continues a series of recent papers rigorously demon-

strating advantages of controlling the parameters of iterative heuris-

tics during the optimization process. Developing a solid understand-

ing of problems for which simple success-based update schemes

are efficient, and which problems require more complex control

mechanisms (e.g., based on reinforcement learning [13], or tech-

niques using statistics for the success rate within a window of

iterations [15, 24]) is the long-term goal of our research.
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