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Abstract

We give a simple example of an n-tuple of orthonormal elements in L2 (actually martingale
differences) bounded by a fixed constant, and hence subgaussian with a fixed constant but that
are Sidon only with constant ≈ √

n. This is optimal. The first example of this kind was given by
Bourgain and Lewko, but with constant ≈

√
logn. We also include the analogous n× n-matrix

valued example, for which the optimal constant is ≈ n. We deduce from our example that
there are two n-tuples each Sidon with constant 1, lying in orthogonal linear subspaces and such
that their union is Sidon only with constant ≈ √

n. This is again asymptotically optimal. We
show that any martingale difference sequence with values in [−1, 1] is “dominated” in a natural
sense (related to our results) by any sequence of independent, identically distributed, symmetric
{−1, 1}-valued variables (e.g. the Rademacher functions). We include a self-contained proof
that any sequence (ϕn) that is the union of two Sidon sequences lying in orthogonal subspaces
is such that (ϕn ⊗ ϕn ⊗ ϕn ⊗ ϕn) is Sidon.

MSC: 43A46,42C05 (primary). 60642, 60646 (secondary).
One of the most celebrated results in the theory of Sidon sets in the trigonometric system on

the circle (or on a compact Abelian group) is Drury’s union theorem that says that the union of two
(disjoint) Sidon sets is still a Sidon set. In a recent paper Bourgain and Lewko [2] considered Sidon
sets for a general uniformly bounded orthonormal system (ϕn) in L2 over an arbitrary probability
space (T,m). They extended some of the classical results known for systems of characters on
compact Abelian groups. We continued on the same theme in [6]. Let us recall the basic definitions.
We say that (ϕn) is Sidon if there is a constant C such that for any finitely supported scalar sequence
n 7→ xn

(1)
∑

|xn| ≤ C‖
∑

xnϕn‖∞.

The smallest such C is called the Sidon constant of (ϕn). The system (ϕn) is called ⊗k-Sidon if the
system (ϕn(t1)ϕn(t2) · · ·ϕn(tk)) is Sidon in L2(T

k,m× · · · ×m). We say that (ϕn) is subgaussian
if there is a constant β such that for any finite scalar sequence (xn) such that

∑ |xn|2 ≤ 1 we have
∫
e|

∑
xnϕn|2/β2

dm ≤ e.

When this holds we say that (ϕn) is β-subgaussian.
Bourgain and Lewko [2] proved that subgaussian does not imply Sidon but does imply ⊗5-Sidon,
and the author [6] improved this to ⊗2-Sidon.
Let (gn) be an i.i.d. sequence of standard Gaussian random variables. We say that (ϕn) is randomly
Sidon if there is a constant C such that for any finite scalar sequence (xn) we have

∑
|xn| ≤ CE‖

∑
gnxnϕn‖∞.
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In [6], we proved that randomly Sidon implies ⊗4-Sidon. It follows as an immediate corollary
that the union of two mutually orthogonal Sidon systems is ⊗4-Sidon (see Theorem 15 for a quick
outline of a direct proof). This generalizes Drury’s celebrated union theorem for sets of characters.
Naturally, this last result raises the question whether ⊗4-Sidon can be replaced by ⊗k-Sidon for
k < 4. While we cannot decide this for k = 2 or k = 3, the goal of the present note is to settle the
question at least for k = 1.

We first improve Bourgain and Lewko’s example from [2] showing that subgaussian does not
imply Sidon for uniformly bounded orthonormal systems. Our example is a (very simple) martingale
difference sequence and the constant is asymptotically sharp. As a corollary we show that, not
surprisingly, Drury’s union theorem does not extend to two mutually orthogonal uniformly bounded
orthonormal systems.

Theorem 1. Fix ε > 0. There is a uniformly bounded real valued orthonormal system (ϕn) with
‖ϕn‖∞ ≤ 1 + ε for all n that is subgaussian and actually satisfies

(2) Ee
∑

xnϕn ≤ e(1+ε)2
∑

x2
n/2

for any finite sequence of real numbers (xn), but (ϕn) is not a Sidon system.
More precisely, the smallest constant Cn such that for any scalar coefficients (xk) we have

∑n

1
|xk| ≤ Cn‖

∑n

1
xkϕk‖∞

satisfies

(3) ∀n ≥ 1 Cn ≥ δε
√
n,

where δε > 0 depends only on ε. In addition, (ϕn) is a martingale difference sequence.

Proof. Let (εn) be a sequence of independent choices of signs, i.e. independent ±-valued random
variables on a probability space (Ω,P) taking the values ±1 with probabilility 1/2. Let An be the
σ-algebra generated by {εk | 0 ≤ k ≤ n}. Let 0 = a0 ≤ · · · ≤ an−1 ≤ an ≤ · · · be a fixed non-
decreasing sequence for the moment. Consider A0 = Ω, S0 = 0, and define inductively An ∈ An

and Sn as follows:
Sn = Sn−1 + εn1An−1

and An = {|Sn| ≤ an}.
Assume that P(An) ≥ δ for some fixed δ > 0. Then let

(4) fn = εn1An−1
.

This is a martingale difference sequence with ‖fn‖∞ ≤ 1, therefore an orthogonal system such that

Sn = f1 + · · · + fn

and moreover
‖fn‖22 ≥ δ.

We claim that the Sidon constant of {f1, · · · , fn} is ≥ n/(1 + an−1). This follows from the obser-
vation that

(5) ∀n ‖Sn‖∞ ≤ 1 + an−1.

Indeed, this is immediate by induction on n (since either ‖Sn‖∞ ≤ an−1 + 1 or ‖Sn‖∞ ≤ ‖Sn−1‖∞
depending whether ‖Sn‖∞ is attained on An−1 or on its complement).
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Now by Azuma’s inequality (see e.g. [5, p. 501]) we know that (fn) is subgaussian with a good
constant. In fact for any real numbers t and xn with (xn) in ℓ2

(6) Eet
∑

xnfn ≤ et
2
∑

|xn|2/2.

In particular

(7) P({|Sn| > t}) ≤ 2e−t2/2n.

Fix ε > 0. Taking an = c
√
n, this gives us

P({|Sn| > an}) ≤ 2e−c2/2,

so we can choose a numerical value of c, namely c = cε, large enough so that

P({|Sn| > an}) ≤ 1 − (1 + ε)−2.

Then we have by what precedes ‖Sn‖∞ ≤ an−1 + 1 = cε
√
n− 1 + 1 and

‖fn‖2 = P({|Sn−1| ≤ an−1})1/2 ≥ (1 + ε)−1

for all n. Therefore the Sidon constant of {f1, · · · , fn} is ≥ n/(1 + an−1). Letting

ϕn = fn‖fn‖−1
2

we find ‖ϕn‖∞ ≤ 1 + ε for all n, (ϕn) is orthonormal and (3) holds. By Azuma’s inequality (6) we
also have (2).

Remark 2. I am grateful to B. Maurey for suggesting the following neater example (S′
k). Let us

first fix n ≥ 1, and hence an > 0 is fixed. Let Mk = ε1 + · · · + εk for all k ≥ 1. Define the stopping
time Tn by Tn = inf{k ≥ 0 | |Mk| > an} and Tn = ∞ if |Mk| ≤ an for all k ≥ 0. Recall the classical
inequalities

∀t > 0 P({ sup
1≤k≤n

|Mk| > t}) ≤ 2P({|Mn| > t}) ≤ 4e−t2/2n.

The first one goes back to Paul Lévy (see e.g. [5, p. 28]), it is closely related to Désiré André’s
reflection principle for Brownian motion (see e.g. [4, p. 558]) and the second one follows from (7).
We then set for k ≥ 1 S′

k = Mk∧Tn
and

f ′k = S′
k − S′

k−1 = εk1{Tn≥k}.

In the previous example this corresponds to sets A′
k−1 = {Tn ≥ k} = {Tn ≤ k − 1}c ∈ Ak−1. We

have clearly ‖S′
k‖∞ ≤ an + 1 for all k, and it is easy to check, since A′

k−1 = {supj<k |Mj | ≤ an},
that we again can choose an = cε

√
n so that for any 1 ≤ k ≤ n we have

P(A′
k−1) ≥ P(A′

n) = P({ sup
1≤k≤n

|Mk| ≤ an}) = 1 − P({ sup
1≤k≤n

|Mk| > an}) ≥ (1 + ε)−2.

Remark 3. Since (ϕn) is formed of mean zero variables (2) holds iff there is β′ such that

(8) ∀p ≥ 2 ∀(xn) ∈ ℓ2 ‖
∑

xnϕn‖p ≤ β′
√
p(
∑

|xn|2)1/2
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Remark 4. Let (ϕn) be any orthonormal system. Then for any scalar coefficients (xk) we have
obviously ∑n

1
|xk| ≤

√
n(
∑n

1
|xk|2)1/2 ≤

√
n‖

∑n

1
xkϕk‖∞.

Thus the order of growth of the Sidon constant in (3) and the next statement are both sharp.

Corollary 5. There are two orthonormal martingale difference sequences (ϕ+
n ) and (ϕ−

n ) with
orthogonal linear spans such that each has the same distribution as the Rademacher functions (i.e.
each is formed of independent ±-valued random variables with mean zero) but their union is not a
Sidon system. More precisely the union of {ϕ+

k | k ≤ n} and {ϕ−
k | k ≤ n} has a Sidon constant

Cn growing like
√
n.

Proof. Let will modify slightly the preceding proof and construct by induction a sequence S′
n.

We wish to choose by induction a set Bn ⊂ Ω in An (just like An was) and we again set S′
n =

S′
n−1 + εn1Bn−1

. but we choose Bn satisfying

(9) Bn ⊂ {|S′
n| ≤ an} and P(Bn) = 1/2.

To be able to make this choice all we need to know is that P({|S′
n| ≤ an}) ≥ 1/2. Then the preceding

argument, associated to ε =
√

2−1 still guarantees that P({|S′
n−1| ≤ an−1}) ≥ 1/2. Thus we clearly

can select Bn for which (9) holds and we again obtain ‖S′
n‖∞ ≤ 1 +

√
n− 1 for all n.

Then let
ϕ±
n = εn(1Bn−1

± 1Ω\Bn−1
).

Note that since P(Bn−1) = 1/2 we have ϕ+
n ⊥ ϕ−

n for any n and hence ϕ+
n ⊥ ϕ−

k for any n, k. Then
each of the sequences {ϕ±

k | k ≤ n} is a martingale difference sequence with values in {±1}. It is a
well known fact (proved by induction as a simple exercise) that this forces each to be distributed
uniformly over all choices of signs. Now let {ψk | k ≤ 2n} denote the union of the two systems
{ϕ+

k | k ≤ n} and {ϕ−
k | k ≤ n}. Clearly the Sidon constant of {ψk | k ≤ 2n} dominates that of

{(ϕ+
k +ϕ−

k )/2 | k ≤ n}. But the latter is the system {εk1Bk−1
| k ≤ n} as in the preceding proof but

with Bk replacing Ak. Since ‖S′
n‖∞ ≤ 1 +

√
n− 1, (3) still holds for this system, so the corollary

follows.

Remark 6. We may clearly replace (εn) by an i.i.d. sequence of complex valued variables (zn)
uniformly distributed over the unit circle of C. For those it is still true that for any unimodular
sequence (wn) that is adapted (i.e. wn is An-measurable for each n) the sequence (znwn−1) is
independent and uniformly distributed over the unit circle. Then the corresponding two sequences
(ϕ±

n ) are Sidon with constant 1, and their union is not Sidon for the same reason as in the preceding
corollary.

Problem : In [2] Bourgain and Lewko show that any n-tuple forming a β-subgaussian orthonormal
system uniformly bounded by a constant C contains a subset of cardinality ≥ θn with θ = θ(β,C) >
0 that is Sidon with Sidon constant at most f(β,C). They ask whether any such system is actually
the union of k(β,C) Sidon sequences with Sidon constant at most f(β,C).
Is this true for uniformly bounded martingale difference sequences normalized in L2 ?

Although for the example appearing in the proof of Theorem 1 the answer is affirmative (consider
e.g. a partition into odd and even k’s), we believe that a more involved one with values in {−1, 0, 1}
as in (4) but with a more subtle choice of the predictable sets An−1, should yield a counterexample.

Let Mn be the space of n× n-matrices with complex entries, equipped with the usual operator
norm on the n-dimensional Hilbert space. In [6] we consider a non-commutative analogue involving
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a n× n-matrix valued function ϕ(t) = [ϕ(t)ij ] on a probability space (T,m) for which the uniform
boundedness condition is replaced by

‖ϕ(t)‖Mn ≤ C

and we assume that {√nϕ(t)ij | 1 ≤ i, j ≤ n} is β-subgaussian and orthonormal. The prototypical
example is when ϕ is uniformly distributed over the unitary group.
In this situation we prove in [6, Prop. 5.4] that there is a constant α = α(C, β) such that

∀a ∈Mn tr|a| ≤ α sup
t1,t2∈T

|tr(aϕ(t1)ϕ(t2))|.

In analogy with Theorem 1 it is natural to wonder what is the best constant C ′
n such that in the

same situation
∀a ∈Mn tr|a| ≤ C ′

n sup
t∈T

|tr(aϕ(t))|.

Clearly the orthonormality assumption yields

∀a ∈Mn n−1tr|a| ≤ (n−1tr|a|2)1/2 = ‖tr(aϕ(t)‖2 ≤ ‖tr(aϕ(t)‖∞ = sup
t∈T

|tr(aϕ(t)|.

and hence C ′
n ≤ n.

It is easy to see that this is asymptotically optimal. Indeed, consider the following example.
Let x 7→ D(x) be the mapping taking an n × n matrix to its diagonal part. Let u denote a
random n × n unitary matrix uniformly distributed over the unitary group. Let (ϕ1, · · · , ϕn) be
the orthonormal n-tuple constructed in the proof of Theorem 1, of which we keep the notation,
namely ϕk = fk‖fk‖−1

2 . Assuming (T,m) large enough, we define ϕ : T →Mn so that ϕ−D(ϕ) and
D(ϕ) are independent random variables; we make sure that ϕ−D(ϕ) and u−D(u) have the same
distribution and we adjust the diagonal entries of D(ϕ) so that they have the same distribution
as (ϕ1/

√
n, · · · , ϕn/

√
n). Then for a suitable β (independent of n) {√nϕ(t)ij | 1 ≤ i, j ≤ n} is β-

subgaussian and orthonormal. However, if a is the diagonal matrix with entries (‖f1‖2, · · · , ‖fn‖2)
we have on one hand by (5) ‖tr(aϕ)‖∞ = ‖(f1 + · · · + fn)/

√
n‖∞ ≤ cε, and on the other hand

tr|a| ≥ n(1 + ε)−1. Therefore
C ′
n ≥ n(1 + ε)−1c−1

ε .

Definition 7. Let I be an index set. Let L1(m′), L1(m′′) be arbitrary L1-spaces. We say that a
family (fn)n∈I in L1(m

′′) is c-dominated by another one (ψn)n∈I in L1(m′) if there is a linear map
u : L1(m

′) → L1(m
′′) with ‖u‖ ≤ c such that u(ψn) = fn for all n ∈ I.

The following criterion due to M. Lévy (see [3] and [6, Prop.1.5]) is very useful: a linear map
v : E → L1(m

′′) on a subspace E ⊂ L1(m
′) admits an extension u : L1(m

′) → L1(m
′′) with ‖u‖ ≤ 1

iff for any finite sequence (ηn) in E we have

(10) ‖ sup |v(ηn)|‖L1(m′′) ≤ ‖ sup |ηn|‖L1(m′).

If we apply this to E = span[ψn] with v defined by v(ψn) = fn, this gives us the following criterion:
a sequence (fn)n∈I in L1(m

′′) is c-dominated by a sequence (ψn)n∈I in L1(m
′) iff for any Banach

space B and any finite sequence (xn) in B we have

(11) ‖
∑

fnxn‖L1(B) ≤ c‖
∑

ψnxn‖L1(B).

Indeed, it is easy to see that we may restrict consideration to the single space B = ℓ∞, in which
case (10) and (11) are identical.
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Remark 8. The key fact used in [6] is that, for some numerical constant K, any β-subgaussian
sequence (ϕn)n∈N in X = L1(T,m) is Kβ-dominated by a standard i.i.d. sequence of Gaussian
normal variables (on a probability space (Ω′,P′)), denoted by (gn)n∈N. This is essentially due to
Talagrand; see [6] for detailed references and comments. It would be interesting to have a direct
simple proof of this fact.

If we assume moreover that the β-subgaussian sequence (ϕn)n∈N is uniformly bounded, i.e. that
‖ϕn‖∞ ≤ α for all n, then, for some numerical constant K ′, the sequence (ϕn)n∈N is K ′(β + α)-
dominated by (εn). This follows from the solution by Bednorz and Lata la [1] of Talagrand’s
Bernoulli conjecture.

We would like to observe that if (fn) is a martingale difference sequence then a very simple
proof is available (with an optimal constant). We start with a special case of the form fn = εnϕn−1

with ϕn−1 depending only on ε1, · · · , εn−1 satisfying ‖ϕn−1‖∞ ≤ 1 (which is subgaussian by (6)).
This is particularly easy. Indeed, for any y ∈ [−1, 1] let

F (t, y) = (−1)1[0,(1−y)/2](t) + (1)1((1−y)/2,1](t),

so that
∫ 1
0 F (t, y)dt = y and F (t, y) = ±1. Let us consider the sequence of random variables Fn

defined on [0, 1]N × {−1, 1}N by setting

Fn((tj), (εj)) = εnF (tn−1, ϕn−1).

Let u be the conditional expectation onto the algebra of functions depending on the second variable
on [0, 1]N × {−1, 1}N. Then u(Fn) = fn. Moreover since (Fn) is a martingale with values in ±1
it has the same distribution as (εn) itself. In other words, there is an isometry v : L1(Ω,P) →
L1([0, 1]N × {−1, 1}N) such that v(εn) = Fn for all n. Considering the composition uv, this shows
that (fn) is 1-dominated by (εn), and the latter is easily shown to be c-dominated by (gn) (the
latter being, say, in L1(Ω

′,P′)) for some numerical constant c.
More generally, let (Ω′,A′,P′) be an arbitrary probability space. We have

Lemma 9. Let ϕ ∈ L1(Ω
′,A′,P′) be with values in [−1, 1] and such that Eϕ = 0. Then for any

Banach space B and any x0, x1 ∈ B

(12) E
′‖x0 + ϕx1‖ ≤ E‖x0 + ε1x1‖.

More generally, if B ⊂ A′ is any σ-subalgebra such that EBϕ = 0 we have for any x0 ∈ L1(Ω
′,B,P′;B)

(13) E
′‖x0 + ϕx1‖ ≤ E

′
E‖x0 + ε1x1‖.

Proof. We have

x0 + ϕx1 =

∫
x0 + F (t, ϕ)x1dt.

and hence by Jensen

‖x0 + ϕx1‖ ≤
∫

‖x0 + F (t, ϕ)x1‖dt = ‖x0 − x1‖(1 − ϕ)/2 + ‖x0 + x1‖(1 + ϕ)/2.

After integration, we obtain (12). To prove (13) it suffices to show that

(14) E
B‖x0 + ϕx1‖ ≤ E

B(‖x0 + x1‖ + ‖x0 − x1‖)/2,

6



or equivalently that for any A ∈ B with P
′(A) > 0 we have

(15) P
′(A)−1

∫

A
‖x0 + ϕx1‖dP′ ≤ P

′(A)−1

∫

A
(‖x0 + x1‖ + ‖x0 − x1‖)/2dP′,

Assume that A ∈ B is an atom of B. Then x0 is constant on A and E
B when restricted to A

coincides with the average over A. Thus (15) reduces to (13) with P
′ replaced by P

′(A)−1
P
′
|A. The

case of a general A ∈ B can be proved by a routine approximation argument left to the reader.

We now show that any real valued martingale difference sequence with values in [−1, 1] is
1-dominated by (εn).

Lemma 10. Let (dn) be a sequence of real valued martingale differences on (Ω′,A′,P′), i.e. there
are σ-subalgebras An ⊂ A (n ≥ 0) forming an increasing filtration such that dn is An-measurable
for all n ≥ 0 and E

An−1dn = 0 for all n ≥ 1. We assume that A0 is trivial (so that d0 is constant).
If |dn| ≤ 1 a.s. for any n, then there is an operator u : L1(Ω,A,P) → L1(Ω

′,A′,P′) with ‖u‖ = 1
such that u(1) = 1 and u(εn) = dn for all n ≥ 1.

Proof. By the above criterion (11) it suffices to show that for any Banach space B and any finite
sequence (xn) in B we have for any k

(16) ‖d0x0 +
∑k

1
dnxn‖L1(B) ≤ ‖d0x0 +

∑k

1
εnxn‖L1(B).

By (13) with B = Ak−1 and ϕ = dk we have

‖d0x0 +
∑k

1
dnxn‖L1(B) ≤ ‖d0x0 +

∑k−1

1
dnxn + εkxk‖L1(P′×P;B).

Now working on the product space (Ω,A,P) × (Ω′,A′,P′) with B equal to σ(Ak−2 ∪ εk) we find

‖d0x0 +
∑k−1

1
dnxn + εkxk‖L1(P′×P;B) ≤ ‖d0x0 +

∑k−2

1
dnxn + εk−1xk−1 + εkxk‖L1(P′×P;B).

Continuing in this way we obtain (16).

Remark 11 (On the complex valued case in Lemma 10). Let T = R/2πZ be the (one dimensional)
torus. Consider the sequence (zn)n∈N formed of the coordinate functions on T

N equipped with
its normalized Haar measure µ. A priori the complex analogue of the preceding proof, with (zn)
replacing (εn), requires to assume that the martingale under consideration is a Hardy martingale
in the sense described e.g. in [5, p. 133]. Indeed, the Poisson kernel is the natural analogue of
the barycentric argument we use for Lemma 9. Using this, Lemma 10 remains valid, with (zn)
replacing (εn), for a martingale difference sequence (dn) adapted to the usual filtration on T

N such
that for any n the variable z 7→ dn(z0, · · · , zn−1, z) is either analytic or anti-analytic.
Note that without any additional assumption the complex valued case of Lemma 10 fails, simply
because the system (1, ε1) is not 1-dominated by (1, z1). Indeed, by (10) this would imply the
inequality 2 =

∫
max{|1 + ε1|, |1 − ε1|}dP ≤

∫
max{|1 + z1|, |1 − z1|}dµ, which clearly fails.

The next two remarks will be used at the very end of this paper.

Remark 12. Let (zn)n∈N and µ on T
N be as in Remark 11. Consider two sequences (f1n) and

(f2n) in an L1-space X. We form their “disjoint union” (fn) by setting f2k = f2k and f2k+1 = f1k .
We claim that if (f1n) (resp. (f2n)) is c1-dominated (resp. c2-dominated) by (zn), then (fn) is
(c1 + c2)-dominated by (zn). Actually, the same claim is valid for the disjoint union of arbitrary
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families indexed by sets I1 and I2 (using (zn)n∈I1∪̇I2 on T
I1∪̇I2 instead), but the idea is easier to

describe with I = N. Indeed, since (zn), (z2n) and (z2n+1) all have the same distribution, there is
uj : L1(TN, µ) → X (j = 1, 2) with ‖uj‖ ≤ cj such that u2(z2n) = f2n and u1(z2n+1) = f1n. Let
E1 and E2 be the conditional expectations on L1(T

N, µ) with respect to the σ-algebras generated
respectively by (z2n+1) and (z2n). Then let u = u1E1 + u2E2. We have u(zn) = fn for all n and
‖u‖ ≤ ‖u1E1‖ + ‖u2E2‖ ≤ c1 + c2. This proves our claim.

Remark 13. Let (zn) be as in Remark 12 on (TN, µ). Let (ϕn) be in L∞(T,m). We claim that
if ‖ϕn‖∞ ≤ 1 for all n, then (ϕn ⊗ zn) is dominated by (zn). Assume first |ϕn| = 1 a.e. for all
n. Then the translation invariance of the distribution of (zn) shows that (ϕn ⊗ zn) has the same
distribution as (zn), so the claim is obvious in this case. Note that any number ϕ ∈ C with |ϕ| ≤ 1
is an average of two points on the unit circle. Using this it is easy to verify the claim. It can also
be checked easily using the criterion in (11).

We end this paper by an outline of a proof that the union of two Sidon sequences is ⊗4-Sidon,
more direct than the one in [6]. The route we use avoids the consideration of randomly Sidon
sequences, it is essentially the commutative analogue of the proof in [7], with the free Abelian
group replacing the free group. The key fact for the latter route is still the following:

Lemma 14. Let (zn) be in L∞(TN, µ) as in Remark 12. Let (T,m) be a probability space. Let (fn)
be a sequence in L1(T,m) that is dominated by (zn). Then any sequence (ψn) in L∞(T,m) that is
both uniformly bounded and biorthogonal to (fn) is ⊗2-Sidon. Here biorthogonal means

∀n,m
∫
ψnfm = δnm.

Proof. Let u : L1(TN, µ) → L1(T,m) such that u(zn) = fn. Elementary considerations show that it
suffices to show that the sequence (u∗(ψn)) is ⊗2-Sidon. By another elementary argument (u∗(ψn))
is biorthogonal to (zn). Therefore, it suffices to prove this Lemma for the case (T,m) = (TN, µ)
and (ψn) = (zn). This is proved in [6] with (zn) replaced by an i.i.d. gaussian sequence, using the
Ornstein-Uhlenbeck (or Mehler) semigroup. Here we may use Riesz products instead.

We claim that for any N and any z0 ∈ T
N the function F =

∑N
1 z0nzn ⊗ zn admits for any

0 < ε ≤ 1 a decomposition F = tε + rε in the algebraic tensor product L1(T
N) ⊗ L1(T

N) with

‖tε‖∧ =

∫
|tε(x, y)|dµ(x)dµ(y) ≤ w(ε) and ‖rε‖∨ ≤ ε,

where we have set

‖rε‖∨ = supa,b∈BL∞

∣∣∣∣
∫
rε(x, y)a(x)b(y)dµ(x)dµ(y)

∣∣∣∣ ,

and where w(ε) is a function depending only on 0 < ε ≤ 1 (and not on N or z0). To verify this we
fix z0 and consider in L1(T

N × T
N, µ × µ) the Riesz product

νε(z, z
′) =

∏N

1
(1 + εℜ(z0nznz

′
n)) =

∑
α⊂[1...N ]

(ε/2)|α|
∏

n∈α

(z0nznz
′
n + z0nznz

′
n).

We will view the tensors in L1(T
N) ⊗ L1(T

N) as functions of (z, z′) ∈ T
N × T

N. Note

(17) νε(z, z
′) =

∑
α⊂[1...N ]

(ε/2)|α|
∑

β⊂α

∏

n∈β

z0nznz
′
n

∏

n∈[1...N ]\β

z0nznz
′
n.
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Observe that the terms of the latter sum are orthogonal. Without trying to optimize (see [6] for a
discussion of the optimal logarithmic growth for w) we set

t′ε = (νε − ν0)/ε.

Note that (since νε ≥ 0 and hence ‖νε‖1 = 1) we have ‖t′ε‖∧ ≤ 2/ε. Let r′ε =
∑N

1 ℜ(z0nznz
′
n)) − t′ε.

By the orthogonality in the sum (17) one checks that ‖r′ε‖∨ ≤ ε/2. This gives us the desired
decomposition but, instead of

∑N
1 z

0
nznz

′
n, we are decomposing the sum

∑N

1
ℜ(z0nznz

′
n)) = (1/2)

∑N

1
z0nznz

′
n + (1/2)

∑N

1
z0nznz

′
n.

To remove the second term we introduce an extra variable ω ∈ T that acts on T
N by multiplication

( i.e. ω(zn) = (ωzn)) and we define (here mT is normalized Haar measure on T)

tε(z, z
′) = 2

∫
ω̄t′ε(ωz, z

′)dmT(ω) and rε(z, z
′) = 2

∫
ω̄r′ε(ωz, z

′)dmT(ω).

This gives us ‖tε‖∧ ≤ 4/ε and ‖rε‖∨ ≤ ε. Moreover we have

(1/2)
∑N

1
z0nznz

′
n = (1/2)tε + (1/2)rε

which proves the claim with w(ε) ≤ 4/ε.
We can now complete the proof. Let (an) be a scalar sequence. Let Ψ =

∑N
1 anψn ⊗ ψn.

Choosing z0n so that z0nan = |an| we have

〈Ψ, F 〉 =
∑

z0nan =
∑

|an|,

and hence
∑ |an| = 〈Ψ, tε〉 + 〈Ψ, rε〉 which leads to

∑
|an| ≤ ‖Ψ‖∞w(ε) +

∑
|an|ε(sup1≤n≤N ‖ψn‖2∞).

To conclude, we set C ′ = supn≥1 ‖ψn‖∞ and we choose, say, ε = 1/2C ′2. We have then

∑
|an| ≤ 2w(ε)‖Ψ‖∞.

Let us say that a bounded set S in L∞(T,m) is Sidon with constant C if for any finitely
supported function x : S → C we have

∑
ϕ∈S |x(ϕ)| ≤ C‖∑ x(ϕ)ϕ‖. If (ϕn) is an enumeration of

S, this is the same as
∑

n∈N |x(n)| ≤ C‖∑n∈N x(n)ϕn‖. Similarly we extend the term ⊗4-Sidon to
sets in L∞(T,m).

For the convenience of the reader we give a slightly more direct proof of the following result
from [6], which generalizes Drury’s theorem.

Theorem 15. Let Λ1 = {ϕ1
n | n ∈ I(2)} and Λ2 = {ϕ2

n | n ∈ I(1)} be two Sidon sets (indexed by
sets I(1), I(2)) in L∞(T,m), with constants C1, C2. Assume that Λ1 ⊥ Λ2 in L2(m) and there are
C ′
1, C

′
2, δ > 0 such that

∀n δ ≤ ‖ϕ1
n‖2 ≤ ‖ϕ1

n‖∞ ≤ C ′
1 and δ ≤ ‖ϕ2

n‖2 ≤ ‖ϕ2
n‖∞ ≤ C ′

2.

Then the union Λ1 ∪ Λ2 is ⊗4-Sidon with a constant C depending only on C1, C2, C
′
1, C

′
2, δ.
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Proof. We assume for simplicity that the sets are sequences indexed by N. By homogeneity (chang-
ing C ′

1, C
′
2 accordingly) we may assume that ‖ϕ1

n‖2 = ‖ϕ2
n‖2 = 1 for all n. Let Ej ⊂ L∞(T,m)

be the norm closed span of (ϕj
n) (j = 1, 2). Consider the linear mapping Tj : Ej → L∞(TN) such

that Tj(ϕ
j
n) = zn. By assumption ‖Tj‖ ≤ Cj . By the injectivity of L∞-spaces Tj has an extension

T̃j : L∞(T,m) → L∞(TN) such that T̃j |Ej
= Tj and ‖T̃j‖ = ‖Tj‖ ≤ Cj . We introduce the operator

T : L∞(T,m) → L∞(TN × T
N) defined by

T (f)(z, z′) = T̃1(f)(z) + T̃2(f)(z′).

Then ‖T ‖ ≤ C1 + C2. The operator T ⊗ idL∞(T,m) clearly extends to an bounded operator

W : L∞(T × T ) → L∞(TN × T
N × T ),

satisfying ‖W‖ ≤ ‖T ‖ ≤ C1 + C2.
We claim that the collection

U = {W (ϕ1
n ⊗ ϕ1

n)} ∪ {W (ϕ2
n ⊗ ϕ2

n)}

is biorthogonal to
V = {zn ⊗ 1 ⊗ ϕ1

n} ∪ {1 ⊗ zn ⊗ ϕ2
n}.

Indeed, note W (ϕ1
n ⊗ϕ1

n) ⊂ L∞(TN ×TN)⊗ϕ1
n and W (ϕ2

n ⊗ϕ2
n) ⊂ L∞(TN ×TN)⊗ϕ2

n. Therefore,
by our L2(m)-orthogonality assumption

∀n,m W (ϕ1
n ⊗ ϕ1

n) ⊥ 1 ⊗ zm ⊗ ϕ2
m and W (ϕ2

n ⊗ ϕ2
n) ⊥ zm ⊗ 1 ⊗ ϕ2

m.

Moreover, if we set ξ1n = T̃2(ϕ
1
n) we have

W (ϕ1
n ⊗ ϕ1

n) = T (ϕ1
n) ⊗ ϕ1

n = zn ⊗ 1 ⊗ ϕ1
n + 1 ⊗ ξ1n ⊗ ϕ1

n,

which shows that (W (ϕ1
n ⊗ ϕ1

n)) is biorthogonal to {zn ⊗ 1 ⊗ ϕ1
n}. Similarly (W (ϕ2

n ⊗ ϕ2
n)) is

biorthogonal to {1 ⊗ zn ⊗ ϕ2
n}. This proves the claim.

By Remarks 13 and 12, the family V = {zn ⊗ 1 ⊗ ϕ1
n}∪{1 ⊗ zn ⊗ ϕ2

n} is dominated in L1(T
N×T

N×
T ) by the sequence (zn). By Lemma 14 we conclude that U is ⊗2-Sidon in L∞(TN×T

N×T ). Since
W is bounded this implies that {ϕ1

n⊗ϕ1
n}∪{ϕ2

n⊗ϕ2
n} is also ⊗2-Sidon in L∞(T×T ). Consequently

Λ1 ∪ Λ2 is ⊗4-Sidon in L∞(T,m). The assertion about the constant C is easy to check by going
over the various steps.

Acknowledgement. Thanks to Bernard Maurey for useful communications, and to the referee for
his/her careful reading.
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