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Abstract  

Purpose of review: Cystic fibrosis (CF; OMIM 219700) is caused by variations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) gene. CF- related liver disease (CFLD) 

affects approximately one third of patients with CF, but the severity of CFLD is highly variable. 

This review provides the latest knowledge in the pathophysiology and CF genetic modifier 

research in CFLD. 

Recent findings: So far, the only modifier gene validated in CFLD is SERPINA1 (alpha-1-

antitrypsin) Z allele. Recent studies support the view that cholangiopathy arising in CF, is the 

result of an ill-adapted innate immune response to endotoxins coming from the intestine and 

triggering a pro-inflammatory response.   

Summary: The pathophysiology of liver disease remains uncertain and so far, no therapy has 

proven effective to prevent the progression of CFLD. A better understanding of the 

pathophysiology and the effect of environmental and non-CFTR genetic influences in the 

context of CFLD development would help improve management and develop new drug 

therapies.  
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Introduction 

Cystic fibrosis (CF; OMIM 219700) is the most common autosomal recessive disease among 

Caucasians. CF is caused by variations in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene. Estimates of incidence are of approximately 1 for every 3,000 live 

births worldwide 1. The secretory defect in CF, leads to a decrease in the luminal hydration of 

ducts, physicochemical abnormalities of secretions and duct obstruction. It is a multiorgan 

disease affecting mostly the lungs, pancreas, sweat glands, and the Wolffian ducts in males. 

Other clinically relevant manifestations include intestinal obstruction in the neonatal period 

(meconium ileus) or later in life (distal intestinal obstructive syndrome), and hepatobiliary 

disease. The median age of survival has increased overtime to exceed 40 years, as a result of 

neonatal screening and improved management, particularly of lung disease. With the recent 

development of CFTR-directed therapies that correct the function of the defective protein, life 

expectancy of individuals with CF should continue to increase 2. 

The clinical phenotype in CF shows considerable variability. Both the number of affected 

organs and the extent of damage within a specific organ vary substantially between patients 

with CF. This is particularly true as far as the lung and liver disorders are concerned 3, 4. 

Liver disease has emerged as a significant contributor to the morbidity and mortality of patients 

with CF. In 2014, CF-related liver disease (CFLD) was the third most common cause of 

mortality after cardiorespiratory and transplant-related causes, responsible for approximately 

2.8% of deaths 5. Focal biliary cirrhosis is the classical histological lesion of CFLD. It has been 

ascribed to CFTR defect in bile duct epithelial cells (i.e, cholangiocytes), which would result 

in biliary obstruction by inspissated secretions and progressive periportal fibrosis. Focal biliary 

cirrhosis has been reported in up to 70% in autopsy studies of CF patients 6. However, the 

progression from focal biliary fibrosis to multilobular cirrhosis, which most often manifests as 

complications of portal hypertension by the end of the second decade of life, occurs in a 
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minority of patients (5 to 10%) 4, 7-13. In the largest series of CF patients with cirrhosis and 

portal hypertension (561 in total), 90% were diagnosed by 18 years of age with a mean age at 

diagnosis of 10 years 8. The progression to cirrhosis and portal hypertension remains 

unpredictable in the absence of sensitive biomarkers 13. The other biliary manifestations of CF, 

including large-duct sclerosing cholangitis, microgallbadder, gallbladder dyskinesia, and 

symptomatic cholelithiasis have been reported with a wide range of prevalence 14. The factors 

responsible for this phenotypic variability are not known. Moreover, the pathophysiology of 

liver disease remains uncertain and so far, no therapy has proven effective to prevent the 

progression of CFLD 4, 13, 15. A full understanding of the pathophysiology and the effect of 

environmental and non-CFTR genetic influences in the context of CFLD development would 

help improve management and develop new drug therapies.  

This review provides the latest knowledge in the pathophysiology of CFLD and CF genetic 

modifier research in CFLD.  

 

Pathophysiology of CFLD: what is known? 

CFTR expression in the hepatobiliary system, is restricted to the apical membrane of 

cholangiocytes lining the intra- and extrahepatic bile ducts. CFTR drives fluid and bicarbonate 

secretion in cholangiocytes 16, 17. It has been assumed that the importance of CFTR in 

maintaining homeostasis in the biliary tree was related to the “bicarbonate umbrella” 

hypothesis, in which a proper alkaline balance is critical to prevent cholangiocyte injury by 

hydrophobic bile acids 18, 19. According to this hypothesis, the loss of CFTR function would 

contribute to pH dysregulation and thereby would promote cholangiocyte injury 13. Evidence 

has also been provided to indicate that the loss of CFTR affected innate immunity and promoted 

gut dysbiosis, which in turn would induce intestinal inflammation, endotoxinemia and CFLD 

20-24. New functions of CFTR in cholangiocytes were recently described, i.e., the regulation of 
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cell polarity, and of toll-like receptor 4 (TLR4) response via the activation of the tyrosine kinase 

Src 20. This latter study showed that in cholangiocytes, CFTR promoted the assembly of a 

protein complex that maintained Src in an inactive state 20. Thus, in the biliary epithelium 

exposed to endotoxins, when CFTR is defective, this complex does not assemble, resulting in 

the self-activation of Src, and subsequent activation of TLR4 and of nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB). This mechanism may contribute to an increase in 

the production of proinflammatory cytokines leading to peribiliary inflammation and fibrosis 

20. Moreover, the impairment in barrier function is expected to increase the back-diffusion of 

toxic bile acids, and thereby to further aggravate peribiliary inflammation and fibrogenesis. We 

alo recently showed in CF mouse models, that the development of CFLD features required the 

combination of CFTR defect with both genetic and environmental factors such as diet-induced 

dysbiosis 24, 25.  

 

Molecular mechanisms underlying phenotypic differences in CFLD 

As an approach to unravel the molecular mechanisms underlying phenotypic differences in 

CFLD, investigators sought to determine if the presence and/or severity of CFLD was 

associated with a transcriptomic signature. Pereira et al. provided evidence for a transcriptional 

basis of CFLD pathogenesis 26. The liver biopsies of children with CFLD compared with those 

of children with biliary atresia and normal controls displayed differences in the expression of 

multiple genes related to tissue remodeling and fibrogenesis including chemokines, collagens 

and matrix metalloproteases. In CFLD, regardless of fibrosis severity, compared with normal 

controls and biliary atresia, the expression of genes involved in tissue remodeling was 

decreased, notably the expression of plasminogen activator inhibitor-1 (PAI-1, up to 25-fold) 

and of tissue inhibitor of metalloproteinase-1 (TIMP-1). By contrast, the expression of genes 

encoding matrix metalloproteases or involved in the immue response such as interleukins and 
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their receptors were overexpressed in the liver of patients with CFLD 26. PAI-1 and TIMP-1 are 

two key regulators of matrix remodeling. PAI-1, encoded by the gene SERPINE1, belongs to a 

family of serine protease inhibitors. It acts as an inhibitor of the tissue-type and urokinase-type 

plasminogen activators, which convert plasminogen into plasmin 27, a protease required for the 

activation of matrix metalloproteases and soluble factors such as hepatocyte growth factor or 

transforming growth factor b. TIMP-1 is an inhibitor of matrix metalloproteases. Therefore, the 

decrease in the production of PAI-1 and TIMP-1 is expected to increase the activation of matrix 

metalloproteases and ultimately to increase matrix turnover. Of particular interest, another 

member of the same family of serine protease inhibitors, namely SERPINA1, has been identified 

as a modifier gene of CFLD 28. Because the genes encoding PAI-1 and CFTR are both located 

on the long arm of chromosome 7, future studies should also determine whether there is any 

genetic linkage between these two loci. Overall, transcriptomic analyses supported the role of 

cytokine and chemokine signaling pathways, hepatic stellate cell activation and matrix 

remodeling in the pathogenesis of CFLD, as suggested by several studies 29-31.  

We recently demonstrated that CFLD, i.e., cholangiopathy features, was markedly influenced 

by the genetic background in Cftr knockout mice 24. By comparing Cftr knockout mice in a 

congenic C57BL/6J or mixed C57BL/6J;129/Ola background, we found that cholangiopathy 

occurred only in mice of the congenic background. Transcriptomic analyses of the liver showed 

that mice in the congenic versus mixed background, overexpressed genes conveying an 

hyperinflammatory state whereas genes related to innate and adaptative immunity were 

underexpressed, including the absence of CD1d2 expression, in the C57BL/6J background. 

Protein-protein interactions predicted by the analysis of genes overexpressed in the liver of the 

congenic mice formed a large network, displaying links between inflammation, fibrosis and 

cell (presumably cholangiocyte) proliferation 24. This result supported the view that 
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cholangiopathy arising in CF, is the result of an ill-adapted innate immune response to 

endotoxins coming from the intestine and triggering a pro-inflammatory response 20.  

 

Phenotype-genotype correlations 

Despite all efforts provided by investigators to elucidate the pathophysiology of CFLD, the 

reason why only one-third of patients with CF develop liver disease, and why the severity of 

CFLD is so highly variable remains poorly known.  

There are currently more than 2,000 variations listed in the CFTR mutation databases 

(https://cftr2.org). Among all CFTR variations, the most prevalent one, accounting for 

approximately 70% of all CFTR alleles worldwide, results in the deletion of a phenylalanine at 

position 508 (F508del). CFTR variations are categorized into six classes based on their 

functional consequences and subsequent residual activity at the apical membrane of epithelial 

cells. Class I, II, and III mutations (i.e., severe mutations) result in a complete loss of the 

chloride-channel function; in contrast, class IV, V, and VI mutations (i.e., mild mutations) are 

associated with altered conductance properties, reduced synthesis or defective stability of 

normal CFTR, compatible with residual CFTR membrane activity 1.  

CFLD is largely limited to pancreatic insufficient patients with biallelic loss-of-function 

mutations in CFTR (i.e., class I, II, or III mutations on both allele) 4, 10, 12, 32, 33. Meconium ileus 

was also shown to be a risk factor for severe CF liver disease with portal hypertension 4, 7, 10, 12, 

34, 35. There is also an increased prevalence of severe CFLD in males (2:1) over females, in 

keeping with the fact that male gender is a factor of fibrosis progression in all chronic liver 

diseases 4, 8.  

Recently, we have confirmed in a large cohort of CF patients that the F508del homozygous 

CFTR genotype was a risk factor for the development of liver involvement and severe CFLD 4. 

However, the heterogeneous phenotype of liver involvement in CF patients bearing the same 
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CFTR genotype, including CF siblings, suggests that non-CFTR genetic variations, i.e., 

modifier genes contribute to the risk of severe CFLD 36, 37, and to the liver phenotypic 

heterogeneity, as shown for lung and intestinal phenotypes in CF 3, 38, 39. A poor concordance 

of liver disease in sibling pairs with CF has been reported, which argues against a major role of 

environmental factors 40.  

 

The CF genetic modifier research  

Initial searches for non-CFTR genetic variants that might influence liver phenotype in patients 

with CF, used a candidate gene approach, which is based on biological plausibility. However, 

this approach has not been conclusive so far, mainly because the understanding of the 

pathophysiology of CF liver disease was insufficient. Genes that have been studied as putative 

modifiers of CF liver disease include SERPINA1, encoding the alpha-1-antitrypsin protein, 

genes which variants cause hemochromatosis (HFE, TFR2 and FPN1), and genes encoding 

glutathione S-transferase P1 (GSTP1), mannose binding lectin 2 (MBL2), angiotensin I 

converting enzyme (ACE), transforming growth factor beta 1 (TGFB1), interleukin 8 (currently 

known as CXCL8), as well as ATP-binding cassette subfamily B member 4, which is defective 

in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy and 

drug-induced cholestasis 28, 41-44. However, only SERPINA1 has been confirmed as a modifier 

of liver disease severity in CF. Most studies have investigated cohorts of small size and 

phenotyping did not address the development of severe (biliary) cirrhosis associated with portal 

hypertension. The largest two-stage control study of CFLD (defined as advanced liver disease 

with portal hypertension) focused on 9 variations in 5 candidate genes (SERPINA1, ACE, 

GSTP1, MBL2, and TGFB1) that had previously been screened in patients with various degree 

of CFLD severity 28, 41, 42, 44. Genetic analyses of the initial cohort (124 patients with CFLD and 

843 control patients without CFLD) showed that a single copy of the SERPINA1 Z allele and 
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each additional copy of the TGFB1 codon 10 C allele were associated with significantly 

increased odds of CFLD 28. In the replication study including an additional 136 patients with 

CFLD and 1,088 without CFLD, the SERPINA1 Z allele was confirmed as a modifier of liver 

disease in CF, but not the TGFB1 codon 10 variant. Overall, this unique two-stage control study 

showed a strong association of the Z-allele of the a1-anti-protease (SERPINA1) gene with 

CFLD in a total of 260 patients with CFLD versus 1,931 patients with CF and no CFLD. Of 

particular interest with respect to pathophysiology, the alpha-1-antitrypsin variant protein 

accumulates not only in hepatocytes but also in cholangiocytes, in subjects bearing 

the SERPINA1 Z alleles45. One may speculate that the accumulation of alpha-1-antitrypsin 

variant induces an endoplasmic reticulum stress in cholangiocytes as it does in hepatocytes. 

This may aggravate endoplasmic reticulum stress induced by the accumulation of F508del 

CFTR and predispose cholangiocytes to injury of other causes, e.g. endotoxins or toxic bile. 

 

While genome-wide association data have not yet been reported in CFLD, a different 

methodology was used in a recent work using a system biology approach combining database 

and literature mining, gene expression study, network analysis, pathway enrichment analysis 

and protein-protein interactions to examine functional relationships between reported genes  46. 

This large study led to the identification of novel modifier genes potentially involved in CFLD:  

SLC33A1 (NCBI ID: 9197), GPNMB (NCBI ID: 10457), NCF2 (NCBI ID: 4688), RASGRP1 

(NCBI ID: 10125), LGALS3 (NCBI ID: 3958) and PTPN13 (NCBI ID: 5783) 46. Pathways 

associated with these genes highlighted the innate immune system and Ubiquitin C (UBC, 

OMIM: 191340) as the central node linking CF to liver disease 46, 47.  

 

In conclusion, CFLD is characterized by progressive damage of bile ducts with inflammation, 

and peribiliary fibrosis in portal tracts. There is increasing evidence to indicate that CFTR 
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deficiency in the biliary epithelium induces an increased vulnerability to injury of different 

causes including bacterial endotoxin and a hyperinflammatory response of cholangiocytes or in 

their vicinity. The reason why, among CF patients with the same CFTR genoytype, a minority 

progress to multilobular cirrhosis in the first decade of life still remains poorly understood but 

genes involved in the innate immune system are candidate modifiers. A multifaceted approach 

combining genome-wide association studies, and gene expression studies will hopefully reveal 

significant gene modifiers for CF liver disease. Challenges for the future are to develop novel 

therapies to prevent or halt the progression of this disease.  

 

Key points 

• Cystic fibrosis (CF)-related liver disease (CFLD) manifests as focal biliary fibrosis in 

approximately one third of patients, but fibrosis may progress to multilobular cirrhosis 

by the end of the second decade of life in a minority of patients (5 to 10%).  

• The heterogeneous severity of liver involvement in patients bearing the same CFTR 

genotype, including CF siblings, suggests that non-CFTR genetic variations contribute 

to the risk of severe liver disease 

• So far, the only modifier gene validated in CFLD is SERPINA1 (alpha-1-antitrypsin) Z 

allele 

• Evidence has recently been provided to indicate that cholangiopathy arising in CF, is 

the result of an ill-adapted innate immune response to endotoxins coming from the 

intestine and triggering a pro-inflammatory response 

• Using a system biology approach, novel modifier genes potentially involved in CFLD 

were identified and associated pathways highlighted the innate immune system and 

Ubiquitin C (UBC, OMIM: 191340), as the central node linking CF to liver disease. 
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• Genome-wide association data, not yet available, are urgently needed to identify 

potential targets for modulating liver disease severity in CF.  
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