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Abstract

The ‘micro-spall’ phenomenon is a variant of fragmentation process—or spall fracture—that is traditionally discussed in context of
solid materials (metals). However it concerns situations in which the medium is fully or partially melted—be it due to kinetic impact,
detonation or laser loading. The phenomenon takes place at sub-micrometer and sub-microsecond scales making it inaccessible to
direct experimental observation; so far, investigations have been restricted to observations of late time “post-mortem” fragments.

In this context, it becomes a viable approach to apply analysis using numerical description for fluids. This work presents such
an application for an idealized rapid uniaxial (one-dimensional) system expansion. Cavitation in the medium is represented by
including vacuous pores or cavities with surface tension whose growth and interaction are traced in time. The simulations reveal
two main regimes of pore growth regulated by a characteristic Weber number.

Keywords: micro spall, cavity, Volume of Fluid (VOF), free surface, pore competition

1. Introduction

Cavitation and micro-spall (see for instance Signor et al.,
2010, and references therein) appear when a weakly compress-
ible (or expansible) liquid is suddenly submitted to a large vol-
ume growth (expansion) resulting in negative pressures. This
process, which appears in many practical applications of inter-
est, occurs when an initially solid medium is subject to an un-
sustained impact or detonation and is entirely or partly melted
in the process. Once the system starts expanding, the pressure
drop causes the onset of cavitation and pores (or bubbles filled
with vapor) appear. After the initial phases of uniform expan-
sion and pore opening, a longer-lasting phase of pore growth
and competition appears, which is especially difficult to investi-
gate either experimentally or numerically (de Rességuier et al.,
2010; Signor et al., 2010).

We present here numerical simulations of this latter phase
for idealized conditions relevant to micro-spall. This paper
picks up on a previously published study of Malan et al. (2018)
which presented low-Weber number expansions of the system
(with constant expansion rates). Malan et al. (2018) focused
on a competition phenomenon in which expansion of some of
the pores caused their neighboring pores to collapse: in other
words, there was a volume transfer between the pores without
actual contact and merger between them. The pore competi-
tion effect is important as it is the main phenomenon driving
the evolution in time of the statistical distribution of pore sizes
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(Everitt et al., 2006). Small pores shrink and eventually disap-
pear as their volume is transferred to large pores. Pore statis-
tics and pressure evolution profiles can then be obtained for fu-
ture modeling purposes. Hypothetically, continued competition
accompanied by coalescence could lead to formation of larger
pores—or even of a single pore in the case of a spatially limited
system. In this work, we focus on the practically relevant case
of constant speed expansions whose rate decrease with time:
the corresponding Weber numbers typically start and end re-
spectively at ranges above and below the competition threshold.

Thus, our idealized assumptions are incompressible inviscid
fluid, vanishing vapor pressure in cavities, homogeneous uniax-
ial “ballistic” expansion, perturbed face-centered-cubic lattice
arrangement of pores. Under these assumptions, the system is
characterized by a single dimensionless group, the Weber num-
ber based on the number of pores per unit volume. The “ballis-
tic” expansion signifies evolution in which We rapidly decays:
in the initial stages of expansion the flow is entirely dominated
by inertia and the pores expand as if they were isolated (Ilinskii
et al., 2007). As We drops the system transitions into a regime
in which the bubbles interact and capillary pressure becomes
significant. We investigate this transition in more detail below.
Results indicate that both the uniform growth in the initial ex-
pansion phase, and the later “competition” (Everitt et al., 2006)
regime can be captured.

2. Elementary characterization of ideal micro-spall

2.1. Mean expansion field

We investigate a fluid element undergoing expansion follow-
ing a shock and release history. As sketched in the volume and
pressure profiles of Fig. 1, pressure drops due to the accelerated
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Figure 1: Sketched evolution of mean macroscopic volume and pressure of a
material element undergoing mico-spall. As qualitatively represented, the ini-
tial pressure produced by the shock and the final spall stress are here assumed
respectively large and small enough that the eventual expansion is nearly bal-
listic. This ballistic evolution can then be backward extrapolated to vanishing
volume which defines the (arbitrary) time origin. As indicated, the system evo-
lution is here simulated after pores have opened and local fluid density has
returned to a nearly uniform and constant value.

expansion and eventually becomes negative. At some point,
the cohesive limit of the fluid is reached and pores open: in
this micro-spall phase, surface tension around the pores pro-
duces a macroscopic negative stress. If this spall stress is weak
enough compared to the stored momentum the system even-
tually evolves in a quasi-ballistic way. The micro-spall phe-
nomenon can appear regardless of the structure of the strain
tensor—which in general displays three different eigenvalues—
but we shall focus here on the most common situation of uni-
axial expansion and more marginally on the theoretically useful
situation of isotropic expansion.

For a small enough material volume, the average strain can
be considered as uniform – which corresponds e.g. to uniform
laser energy distribution in laser shock-loading (Signor et al.,
2010, sect. 2.2) – and the backward-extrapolated positions of
all the fluid elements collapse to a single point: this is the virtual
“Big Bang” that provides the time and space origins in all the
following, t = 0 and x = 0. Depending on the strain dimension
and depending on the selected coordinate system, Lagrangian
X or Eulerian x, the mean velocity field in the material volume
can always be written as

Lagrangian Eulerian
Uniaxial u(X, t) = u(X, t0) = X/t0, u(x, t) = x/t, (1a)
Isotropic u(X, t) = u(X, t0) = X/t0, u(x, t) = x/t, (1b)

where the Lagrangian coordinate X is the actual position at ref-
erence time t0, while x and X represent the first coordinates of
the x and X position vectors. Equations (1) describe expansion,
as the “Hubble time” t0 is assumed positive. The uniform but
non-constant divergence of the mean velocity field is

∇ · u = d/t, (2)

where dimensionality d is 1 or 3 for respectively uniaxial or

Figure 2: Schematic representation of idealized micro-spall as a pore cluster
undergoing expansion along the x direction.

isotropic expansions, and is related to mean density through

d
d t

ln ρ = −∇ · u. (3)

Combining (2) and (3) yields

ρ = ρ0 (t0/t)d, (4)

where the reference state is conveniently taken here at time t =

t0 where cavitation nuclei appear (Batchelor, 1967) and where
the mean density coincides with the fluid density ρ0 = ρl.

Equations (1) are solutions of the Euler equation

∂tu + (u · ∇)u = −
1
ρ
∇p, (5)

with zero mean pressure gradient and uniform but non-constant
mean density ρ. The ultimate goal of modeling is to provide a
closure relationship between ρ, u, and p so as to simulate the
effect of micro-spall on large scale dynamics (possibly ellipti-
cally unstable).

2.2. Mean pore characteristics
At microscopic scales, micro-spall displays fluctuations on

all its smooth large-scale fields. As sketched in Fig. 2, a first ap-
proximation convenient to capture surface tension effects con-
sists in assuming all pores as spherical, with no internal mass
and pressure (vanishing vapor pressure), and furthermore with
identical radii R(t) and no translation velocity with respect to
their surroundings (Caflisch et al., 1985). Therefore, no coales-
cence effects can be present, and the number of pores is constant
and equal to the number of cavitation nuclei at t = t0. The mean
number density of pores N then scales as mass density (4)

N = N0 (ρ/ρl) = N0 (t0/t)d, (6)

where N0 is an initial number of cavitation nuclei. In a more
realistic situation where pores may collapse (depicted in this
work) or merge, this relationship does not hold.

Under the simplifying assumption of local spherical symme-
try the number density of pores provides their geometric charac-
teristics. Each pore influences a mean spherical volume defined
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by the Wigner–Seitz radius `(t) (Girifalco, 2000):

4π
3
`3N = 1. (7)

Seeing as the volume fraction of liquid is (ρ/ρl), identification
of volume fractions in the Wigner–Seitz sphere yields the mean
pore radius R(t) from the equivalent relationships

4π
3

R3N = 1 − (ρ/ρl) = 1 − (t0/t)d, (8a)

4π
3

R3N0 = (ρl/ρ) − 1 = (t/t0)d − 1. (8b)

Combining (8) and (7) yields the aspect ratio of the equivalent
mean spherical shell

(R/`)3 = 1 − (ρ/ρl) = 1 − (t0/t)d. (9)

Equations (8) to (9) hold even if, due to collapse and merger,
(6) may not.

2.3. Kinetic and surface energies, Weber number
Under expansion, the kinetic and surface energies evolve and

the overall behavior of the system is characterized by their ratio:
the Weber number. Because the fluid is assumed incompress-
ible and inviscid, these two energies fully control the system
and only two regimes are expected: all situations can be col-
lapsed according to the Weber number alone. The energies can
be estimated within the framework of the mean spherical pore
of Section 2.2.

The surface energy of a single mean pore is given by the
surface tension coefficient σ

Es = 4πR2σ. (10)

The kinetic energy is obtained by assuming the velocity field
to be radial and divergence free around the mean pore, with a
vanishing mass flux at the Wigner–Seitz boundary

Ek =

∫ `

R

1
2ρl ˚̀2

(
`

r

)4
4πr2 d r = 2πρl

(d/3
t

)2
`6

( 1
R
−

1
`

)
, (11)

where ˚̀ is the time derivative of `which according to (7) and (6)
verifies ˚̀/` = (d/3)/t. Using identities (6) to (9) we can now
represent both mean radius R and Wigner-Seitz radius ` only in
terms of t and state of the system at t0. Namely, from (6) we
have

N0

( t0
t

)d
=

3
4π`3 , (12)

thus ` can be expressed as:

l = 3

√√
3

4πN0

(
t0
t

)d . (13)

Using the aspect ratio (8) we find that

R = `
3

√
1 −

( t0
t

)d
. (14)
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Figure 3: Evolution of the reduced Weber number of the characteristic mean
pore during expansion We(t)/We0 in (15a) as a function of reduced time t/t0−1
(log scales); solid lines: uniaxial expansion; dashed lines: isotropic expansion;
thin lines: asymptotic limits with slopes −1 and −2. Points represent transitions
between asymptotic behaviors at small and large times where We/We0 = 1.

Subsequently, we substitute both (13) and (14) in (11), so the
Weber number We = Ek/Es is eventually obtained as

We(t) = We0
d2 (t0/t)2−d

3
(
1 − (t0/t)d) (

1 − 3
√

1 − (t0/t)d
)
, (15a)

We0 =
ρl

8πσN0t2
0

. (15b)

Notice here that the Weber scaling We0 built from quantities at
t = t0 is not equal to We(t0): it is actually found that We(t) =

We0 at t/t0 ≈ 1.16 and 1.38 for respectively d = 1 and 3—
with volume expansion ratios of ρl/ρ = (t/t0)d ≈ 1.16 and 2.60.
As illustrated in Fig. 3, the Weber number We(t) diverges as
(t − t0)−1 for t → t0 and vanishes as (t − t0)−2 for t → ∞.
The expressions in (15) were scaled in such a way that these
asymptotes actually intersect at We0 for either t/t0 = 4/3 or 2
for uniaxial and isotropic expansions as shown in Fig. 3.

The fact that the Weber number We(t) decreases from vir-
tually unbounded values down to zero shows that two regimes
should appear during expansion. Kinetic energy dominates at
early times and expansion is quasi-ballistic, whereas later, sur-
face tension dominates, thus slowing expansion and inducing
pore interactions through Laplace pressure. The transition will
appear more or less early depending on the initial conditions
defined by the Weber scaling We0 and possibly in either of the
t → t0 or (t − t0)−2 regimes represented in Fig. 3. According
to the N0 dependence in (15b), these two regimes correspond to
respectively dense or sparse distributions of cavitation nuclei.

2.4. Pressure Evolution
Mean macroscopic p evolution has been sketched in Figure

1, presenting its sharp drop after the shock and during accel-
erated expansion phase. At the moment of pore opening pres-
sure changes sign, while its growth is restored in the micro-spall
regime. We can trace this evolution in a more detailed manner
using velocity potential φ(t) and mean radii R. We first formu-
late the Bernoulli equation

φt +
u2

2
+

p − p∞
ρ

= 0, (16)
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where u = ṘR2/r2 and thus φ = −ṘR2/r. This leads to a
Rayleigh-Plesset type expression for pressure “at infinity”

p∞ = −ρl

(
R̈R +

3
2

Ṙ2
)
−

2σ
R
. (17)

Having discussed the mean spherical cell aspect ratio in the
previous subsection, we can now solve for R̈ using (8) leading
to

R̈ = −
2l0
9 3
√

t
(t − t0)−5/3 , (18)

which allows us to retrieve p∞ by substituting back to (17):

p∞(t) =
ρll20

18 3

√
t2
0(t − t0)4

−
2σ
ρl

3

√
t0

t − t0
. (19)

It is easy to verify that the above formula depicts a curve
whose shape corresponds closely to the pressure curve sketched
in Figure 1 as long as t0 � l0. The latter is normally the case
since mean Wigner-Seitz radii will be significant at the moment
of pore opening.

While the simulations described in this work are set up in
such a way that initial time value is t1 > t0, it is interesting to
study the effect of the propagating pressure pulse on the system.
This reasoning is not without substance, as in computational
practice the flow will respond to imposed expansion boundary
conditions used here with a negative pressure pulse (see e.g.
Figure 7 in (Malan et al., 2018) and results presented in Section
5). We assume incompressibility, however because of the neg-
ative pressure created by surface tension on the bubbles/pores,
the system could be seen as having negative compressibility, so
that the speed of sound c, given below:

c2 =
∂p
∂ρ

(20)

is imaginary. Taking this into account, and linearizing the Euler
equation (5) and the mass conservation equation (3) we obtain

|c|2∂2
xx p + ∂2

tt p = 0 (21)

A quick estimate based on Laplace’s law leads to

|c|2 =
σ

4πNρlR4 . (22)

A conclusion that may be drawn from the pressure equation
(21) is that as soon as the pressure has been affected by grow-
ing pores in a region, the pressure pulse will propagate to the
rest of the system at a speed |c|. Such a propagating solution, of
the form p = atan(x/|c|t), is possible even in the elliptic system
case. The speed |c| of the wave may be comparable to the ini-
tial speed L0/(2t1) of the expansion wave; comparison will be
dependent on surface tension and Weber number.

3. Computational Methods

3.1. The PARIS-Simulator
The simulations presented in this paper use the Parallel Ro-

bust Interface Simulator (PARIS-Simulator Ling et al., 2015;
Malan et al., 2018; Salvador et al., 2018), which is an in-home
CFD code developed jointly at Institute ∂’Alembert, University
of Notre-Dame and University of Bologna. PARIS-Simulator is
a classical, MAC-type solver using uniform, cuboidal meshes.
The strengths of the code lie in a very efficient MPI paralleli-
sation and broad variety of implemented computational meth-
ods, especially for interfacial, two-phase flows. These include
e.g. Front Tracking1 (Tryggvason et al., 2011), Volume of Fluid
(Hirth and Nichols, 1981) and tracking Lagrangian particles.
The code is GPL licensed2 and publicly available3.

A well known projection scheme (Tryggvason et al., 2011)
is used to solve momentum conservation equations. We will
explain it briefly by showing a way the algorithm progresses
from n-th to n + 1-st step. Knowing the values of all fields at
the end of n−th step, we are starting with the definition of the
temporary velocity field u∗

u∗ − un

∆t
= −un · ∇hun. (23)

It can be found easily since, at the end of n-th time-step it is
the only unknown in above formula. The symbol ∇h stands
for the discrete differential operator. This is a projection step,
since velocity is projected onto a space with zero pressure field.
We can now write a discrete version of (5), which involves u∗,
only this time changing the way the approximation of temporal
derivative is formulated

un+1 − u∗

∆t
= −
∇h pn+1 + σκnδs

ρn , (24)

where superscript n + 1 stands for the value at the end of n-
th time-step. Notice surface tension contribution has been in-
cluded in (24): σ stands for the surface tension coefficient, n is
the vector normal to the interface, while κ is scalar curvature—
also the restriction to the interfacial surface S is ensured by the
δS operator. If now we apply a divergence operator to both
sides of (24) and remember that we assume ∇ · un+1 to vanish,
we obtain the Poisson equation from which pressure pn+1 can
be found

∇h ·

[
∆t
ρn∇h pn+1

]
= ∇h · u∗ + ∇h ·

(
∆t
ρnσκnδs

)
. (25)

In most computational codes numerical solution of (25) is the
stage to which most computational cost (up to 90 percent) is as-
sociated; especially in multi-phase flows with variable density.
Once (25) is solved and pn+1 found, both it and u∗ are used to
find the divergence-free velocity at the end of the time-step

un+1 = u∗ −
∆t
ρn

(
∇h pn+1 + σκnδs

)
(26)

1Not used in this work.
2https://www.gnu.org/licenses/gpl.html
3Available at http://www.lmm.jussieu.fr/∼zaleski/paris/index.html
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thus ending the procedure. Many authors call (26) a “correc-
tion” step as solenoidal character of un+1 is ensured thereby.

3.2. Interface Tracking

As mentioned, the normal vectors n and the curvatures κ in
above equations4 are found from the color/fraction function C,
whose advection equation follows in discrete form

Cn+1 −Cn

∆t
+ ∇h · (Cun) = 0. (27)

Equation (27) cannot be solved directly, as C is a sharp jump
function: the jump would be diffused by numerical errors
(Youngs, 1984). Therefore, in most applications (27) is solved
using specially crafted geometrical reconstruction–advection
schemes such as CIAM (Li, 1995) or PLIC (Aniszewski et al.,
2014). Normal vectors and curvature are calculated using
Height Functions technique (Cummins et al., 2004; Popinet,
2003), which has multiple provisions for the cases of insuffi-
cient grid resolutions and/or specific interface configurations.
In the PLIC (Piecewise Linear Interface Calculation (Tryggva-
son et al., 2011)) scheme, the fluxes Cu are calculated geo-
metrically as intersection volumes between cubic grid-cells and
planes, the latter representing the interface. Interface is repre-
sented in planar form which is done by first retrieving the vector
n normal to the interface (oriented along the ∇C); allowing us
to the interface equation:

nx = α, (28)

where the α term (shift along the normal vector) has yet to be
found. Since, however, for each cell the fraction function value
Ci jk is known at the beginning of the timestep, we want the
interface representation to be consistent with it, in other words
the volume Vi jk of fluid contained on one side of the interface
has to be consistent with the fraction function value. However,

Vi jk = Vi jk(α) = Ci jk (29)

which is solved allowing α to be found. Equation (29) can be
solved analytically even in three dimensions (Scardovelli and
Zaleski, 2000; Aniszewski, 2011) however, approximate solu-
tions have been published as well (e.g. Newton-Rhapson used
in (Ménard et al., 2007)). Moreover, various ”simplified” ver-
sions of geometric Volume of Fluid method exist that either use
an “incomplete” interface representation (e.g. without the α
term (Marek et al., 2008)) or don’t employ planar representation
at all (Xiao et al., 2011). In our implementation of PLIC/CIAM,
once the full planar interface reconstruction is finished and (28)
is known, the cube-chopping algorithm (Scardovelli and Za-
leski, 2000; Tryggvason et al., 2011) is used to find fluxes Cu
and enable solution of (27). In our implementation, fluxes are
found in a ”split” manner, e.g. along each of the axes separately
– the order being permuted at each solver iteration (Pilliod and
Puckett, 2004).

4The same applies for the approximation of Dirac delta δs.

More details about the interface tracking and advection
methods used here can be found e.g. in comparative work
(Aniszewski et al., 2014), comprehensive textbook (Tryggva-
son et al., 2011) or, in context of PARIS-Simulator (Ling et al.,
2015; Salvador et al., 2018).

3.3. Free Surface Solver
To implement the boundary conditions on the interface, a

free surface method has been programmed in PARIS-Simulator
(Malan and Zaleski, 2015). The flow within the pores is not
explicitly solved for (except up to two interior cell layers as ex-
plained below), additionally in this paper we initially set the pp

pressure value to zero. With that assumption, the flow is in fact
a quasi-single phase flow, but surface tension is accounted for
on the pore surfaces. Still, in this case the pressure pp inside
the pores is defined, although it is assumed spatially constant
inside them and is calculated using the polytropic equation of
state (Malan et al., 2018).

1. The pressure field is extrapolated onto the interface which
is necessary for (25). The boundary value of the gradient
is computed as

p∗ = pp − σκ, (30)

where pp is constant pore pressure, and σκ is Laplace
pressure, thereby assuring that surface tension effect is ac-
counted for. The p∗ value is used for ∇h operators in cells
neighboring the interface;

2. The velocity field is extrapolated to within the pores; these
values are necessary for higher-order gradient operators
for cells neighboring the interface. Extrapolation is based
on liquid velocity, which is extended to two grid-cell lay-
ers (or ’levels’) within pore/bubble interior by geometrical
fitting and least-squares minimization;

3. Finally, the extrapolated velocities in level 1 and 2 cells
are corrected to ensure the new field is divergence free.

Computational tests have shown that the above procedure
amounts to approximately 10% of CPU cost in a massively par-
allel simulation compared with Poisson solver cost standing at
80%.

A limitation introduced by current implementation of the
above algorithm is—apart from aforementioned necessity of
pre-seeding the pores—that the voids cannot coalesce, as it is
not yet made compatible with the point 2 above (velocity ex-
trapolation to within the pores). of the above list, as topology
change of the pores cannot be accounted for. The model how-
ever allows for the pore collapse, to which the system responds
with a pressure pulse. It is also interesting to notice that the
pores can undergo displacement (i.e. move) for example due to
non-balanced surface tension force distributions. More details
on the Free Surface sub-solver implementation can be found in
Malan et al. (2018).

3.4. Implementation
In implementation, we apply the Hypre package’s (Falgout

and Yang, 2002) SMG (semi-coarsening multigrid solver with
3D plane smoothing) for numerical solution of the Poisson
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problems (25) on the structured, cubic meshes. Advection
terms in (23) are calculated using central differencing with
WENO (Shu, 1997) and Superbee-type (Sweby, 1984) slope
limiters. A cavity tagging and Lagrangian particle-tracking al-
gorithm (Ling et al., 2015) are used to retrieve statistics of cav-
ity sizes. Interface curvatures for (24) are calculated with a
combination of techniques providing for various stencil shapes
and built within the framework of Height Function method
(Cummins et al., 2004) and with the mixed-Youngs-central
(Youngs, 1984) scheme for normal vector n computation. Tem-
poral discretization is performed using the second-order Crank-
Nicholson scheme (Carnahan et al., 1969); the code can also be
switched to first order Euler scheme for testing purposes.

The method was validated comparing numerical solutions to
solutions of the Rayleigh–Plesset equation for oscillating bub-
bles (Malan and Zaleski, 2015; Malan et al., 2018, Fig. 5 in
the latter). In the test, a perfect match was found between
the Rayleigh-Plesset prediction for the cavity volume tempo-
ral evolution and a computed volume, proving that the chosen
combinations of computational methods neither adds nor looses
traced volume. Additional test is provided in section 3.5

3.5. Free Surface Advection Test: 2D Expanding Cavity
Here, we briefly present a simulation set up to test the ac-

curacy of the VOF-PLIC advection scheme coupled with the
Free Surface solver (as described in Sect. 3.3). Unlike syn-
thetic advection tests performed traditionally in context of VOF
using passive velocity fields – such as circle/sphere advections
(Aniszewski et al., 2014) – the “expanding cavity” test case in-
volves solution of the Euler equation (5) i.e. u and p are solved
for at each iteration. In this sense, it resembles the high-density
droplet advection presented by Vaudor et al. (Vaudor et al.,
2017) which also solves for all terms of Navier-Stokes equa-
tions in a flow with simple initial conditions and a trivial ana-
lytic solution . Here, too, any errors in the advection procedure
or Free Surface coupling would manifest itself.

The premise of the test is simple. A two-dimensional, square
domain of size 1 is defined as filled with ’liquid’ of density
ρl = 1, with a single circular pore (cavity) initialized in the
center. Isotropic expansion is imposed by setting a constant
normal outflow velocity un such that ∀t : un(t) = 0.05. This way
liquid flux through each of the walls is equal to q = 0.05×1, thus
the rate of cavity volume (surface) growth must be described
by:

Rc(t) = πr2
0 + 0.05 · 4t, (31)

where RC(t) is the cavity surface at time t, and r0 stands for
initial cavity radius. In the simulation, by convention the grid
cells with Ci j = 1 signify the cavity interior, while those with
Ci j = 0 are in the liquid (intermediary values 0 < Ci j < 1
represent interface cells). Thus, total sum of fraction function
may be used to represent the computed cavity surface Vc(t) at
any time:

Vc(t) =

N∑
i, j

Ci j(t) · (∆x)2 , (32)

where N is the number of grid points in each direction, and
∆x is grid-cell size. Combining (31) and (32) yields a definition
of the L1 advection error as a function of time:

L1(t) = |πr2
0 + 0.05 · 4t −

N∑
i, j

Ci j(t) · (∆x)2 |. (33)

For the test, a relatively large value of initial cavity radius
was chosen at r0 = 0.2, to ensure that the pore is properly re-
solved at 162 grid (3 grid-cells in radius). Cavity was expanded
over 2.5 · 104 time-steps fixed at dt = 1 · 10−4 resulting in
tend = 2.5, and final radius of rend = 0.45. Surface tension was
set to zero.

Table 1: Reconstruction error of the circular pore Er at varying grid levels.

Grid points Er Ratio Order
162 2.97 · 10−5 – –
322 8.29 · 10−6 3.59 1.79
642 1.99 · 10−6 4.16 2.08

1282 4.93 · 10−7 4.03 2.01

We have investigated the error inherent in initial PLIC rep-
resentation of the circle at each grid resolution – caused by the
fact that the interface is represented by linear segments. This
reconstruction error (noted Er) is easily calculated as difference
between πr2

0 and Vc(0). It is summarized in Table 1. We can
see that second order convergence of the interface reconstruc-
tion scheme is obtained, as expected for PLIC type method (see
for instance López et al., 2005, Table 1). Representation errors
have been accounted for in the final test result.

Table 2: Final L1 error values for expanding cavity test at varying grid levels.

Grid points L1(tend)(×10−5) Ratio Order
162 7.59 – –
322 4.721 1.608 0.8
642 2.801 1.685 0.84

1282 0.669 4.18 2.09

Final L1(tend) values are presented in Table 2. Proper conver-
gence is observed at order roughly one, which only improves
when the finest grid is used. This is consistent with order of the
procedure we have chosen in this test to perform extrapolation
of u to within the pores (see also Malan et al., 2018, Sect 3.3
therein) and with first order Euler discretization in time used in
this test5. Although not shown here, we have repeated the test in
three dimensions finding a similar convergence. We thus con-
clude the method properly conserves tracked cavity volume, as
the latter remains in good agreement with analytic prediction.
Having confirmed the volume tracking capability of our cou-
pled Free Surface-VOF code, we now focus our attention on its
application in context of micro-spallation.

5Other results presented in the paper employ the Crank-Nicholson scheme.
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4. Micro-spall simulation setup

4.1. Initial Conditions
To simulate the idealized micro-spall phenomena specified in

Section 2, we have set up the simulations as follows. Cubical
computational domain is used (see Fig. 2), containing a given
number of pre-seeded pores in a FCC (Face-Centered Cubic)
lattice. It is ”expanded” in x direction as assumed in Section 2.
More specifically, the proper temporal evolution of the velocity
field described by (1) is ensured by initializing:

• the x-velocity component to u = x with proper translation
and scaling, so that for t = t1 we have u(0, t1) = −un,
u(L/2, t1) = 0 and u(L, t1) = un where un is the outflow
velocity;

• the outflow boundary condition for the velocity field u =

(u, v,w) in such manner, that

un = 1/t1, (34)

where t1 > 0; for subsequent moments of simulated time t
(34) is held so that |un(t)| = 1/t at all times;

• the v and w components equal to zero.

This implies usage of Dirichlet boundary condition for u in the
x direction, which is time-dependent as was said above. Neu-
mann boundary condition for p is thus applied on the x+ and
x− walls. Imposing Dirichlet boundary conditions for pressure
– instead of for velocity – could be a valid choice for this type
of flow, however – unlike the cases in which pores are wholly
contained in the domain (Malan et al., 2018) – uni-axial ex-
pansions discussed here involve pores crossing outer domains
along x axis. This in turn would make Dirichlet condition for
pressure inconsistent.

Periodic boundary conditions are imposed on YZ walls. For
the condition to be compatible with the pore cluster geometry,
it is re-shaped by adjusting the pore-free buffer surrounding it.
More precisely, due to periodic condition in YZ directions, the
buffer is present only in the x direction (visible as empty region
in Fig. 2), i.e. for x < 0.12 and x > 0.88 the domain contains
no pores at t = t1. Cubic domain of size L = 1 is assumed with
365 pores. Thus, we arrive at ` ≈ 0.14.

4.2. Physical parameters and computational grids
We describe simulation results concerning the uniaxial ex-

pansion using example simulations whose parameters are given
in Table 3.

Consider now the simulation domain (−L0/2, L0/2)3 within
which spherical pores are initialized with non-zero radii (which
is necessary due to limitations of PARIS-Simulator code) i.e.
numerical simulations are started at t1 > t0. With this in mind,
the mean radii distribution right after pore opening is

R(t1) = L0

[
3

4πN0

(
t1
t0
− 1

)]1/3

, (35)

which is how pores are defined in the initial simulation condi-
tion. In this computational configuration, it is desirable for R(t1)

to be possibly small, in order to offer a large range of scales -
in other words, headroom for V(t) growth before the pores coa-
lesce. A favourable relation would be

∆x � R(t1) � ` � L0, (36)

where ∆x is the grid size. The leftmost and rightmost inequali-
ties of (36) are however slightly relaxed for the results presented
in this paper due to grid resolutions used, as will be detailed be-
low.

Example simulations have been performed using 2563 grid
points. For the first simulation (“I”), value of Weber number
(15a) at t1 is 512.83. The pore lattice is configured as speci-
fied above, with liquid characteristics found in Table 3. In the
Table, “I” and “C” are labels designating the “Isolation” and
“Competition” regimes; We and Ma are dimensionless Weber
and Mach numbers, ρ and σ are respectively liquid density and
surface tension applied at the pore surfaces, while var(r) stands
for the variation in pore radii applied to the initial condition.
Mach number values presented in Table 3, are calculated using
the speed of sound c as defined by (22).

As mentioned above (see (35)), due to the applied spatial res-
olution, certain restrictions on the initial pore radii R(t1) are im-
posed since the pores must be properly represented by the in-
terface tracking method at t1 . This representation requires e.g.
that gradients of the fraction function C can be resolved near the
interface (to calculate interface normals) with finite difference
operators. Having the size of domain L0 and initial pore num-
ber N0 fixed, and imposing additional restriction R > 3∆x we
e.g. choose t1 = 0.08 for the presented simulation of isolation
regime (see Table 3). This amounts to R(t1)/∆x ≈ 3.44 which
is considered resolved (Tryggvason et al., 2011) in that proper
values of curvature can be computed for pores of that radius6.
Due to the dependence (8) between simulation initial time t1
and bubble/pore radii, any decrease of t0, and t1/t0 would re-
duce R, which in turn would imply an increased grid resolution.

5. Results

5.1. Isolation regime

Figure 4a presents cluster geometry at t′ = t1 + 1.929 · 10−2.
Uniform expansion of the bubbles/pores is clearly visible with
pore layers closest to the walls along the x axis visibly elon-
gated due to the fact that convection is strongest there. At
t ≥ t1 + 1.92 · 10−2 one observes pore radii of order `. Nearly
all pores are ellipsoidal in shape, and have expanded beyond
the region of the simulated volume, including periodic yz walls.
Moreover, the outer layer of pores has now completely disap-
peared (have been convected out) from the simulation domain,
and only remnant interfacial cells are visible.

Temporal evolution of the pore volume fraction Vg for “I”
regime flow is seen in Fig. 5. Seeing as all volume change in
the liquid results from growth of the pores, we can supplement
(4) by a following expression for pore volumes:

6Not accounting for about 5 percent variance in R in initialization.
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Table 3: Parameters for two examples of simulations of the uniaxial expansion, as explained in text.

Label ρ σ t1 t0 var (r) We(t1) Ma(t1)
I 1000 0.1 8 · 10−2 7.797 · 10−2 50% 512.83 15

C 444 1 2.1 2.092 50% 3.3 · 10−2 0.12

Vg = L3
0(1 −

t0
t

). (37)

The initial pore volume fraction at t1, i.e. Vg(t1 = 0.08)
should amount to 3.59 · 10−3, however it is slightly higher at
simulation init, due to the initial variance in pore radii (Table 3).
Proper scaling has thus been used for the analytic formula (37)
to make up for that in Fig. 5.

Generally, one observes a difference between analytic pre-
diction and simulated pore value in Figure 5. In our opinion,
there are two main reasons for that. One is –as mentioned in
context of Fig. 4a – that the pores leave the computational do-
main while it is expanded, which in the “I” simulation takes
place at t + t1 > 0.05 so very near to the beginning of the x
range (this moment is marked in Fig. 5 as tex). Naturally, this
means that vacuum volume (areas with C = 1) associated with
these pores is no longer represented in the sum shown in Fig.
5. Moreover, once the pores are sufficiently large the case is no
longer dilute, thus departing from the model assumptions as the
R(t) � ` requirement of (36) doesn’t hold, also the pores are no
longer spherical.

For the isolation regime simulation, we additionally present
in Fig. 6 the profiles for 〈p〉 (Fig. 6a) and 〈ux〉 (Fig. 6b) mea-
sured along the x axis. These are taken from the early simula-
tion stage (t = t0 + 6.732 · 10−3) and confirm that the evolution
of the system is indeed in the ballistic regime, while the veloc-
ity profile conforms to linear as predicted in (1). The ’wavy’
character of the plot in Fig. 6b, is caused by inclusion of zero
velocities (inside the pores) to the average. Similarly, we ob-
serve no variance in 〈p〉 (Fig. 6a) when focusing our attention
on the lattice-occupied part: for x < 0.12 and x > 0.88 there is
an empty “buffer zone” in the x direction, as mentioned above.

5.2. Competition regime
We continue the description of the results with the second

simulation (“C”) which, as seen in Table 3 is characterized by
a much lower Weber number. As a result of this, the evolution
of the pore lattice is no more dominated by expansion and the
pores are not isolated, and the elongated shapes of the pores
visible in Fig. 4a give way to a “pore competition” phenomenon
(Everitt et al., 2006). Figure 4b, shows that number of pores has
either shrunk or is at the verge of imploding, their volume being
overtaken by a group of large pores. Distribution of radii in the
latter group is rather isotropic, with all pores roughly spherical,
while ellipsoidal forms are absent. For situation presented in
Fig. 4b average pressure 〈p〉 has a negative value. This is due to
the fact that positive pressure field is associated with expanding
liquid, while for low Weber number negative Laplace pressures
(capillary force) dominate the pressure distribution. We will
revisit this subject in Fig. 10.

A comparison between (37) and calculated pore volume
(analogous to Figure 5) is presented for the “competition”
regime in Figure 7. For this low Weber number case, we note
a virtually perfect fit of calculated total pore volume (obtained
using a sum of fraction function C) up until tex = 0.133 which
is the moment at which first pores exit the calculation domain.
The overall better fit might be due to the fact that in the absence
of dominating uni-axial expansion, the pores remain generally
spherical, as assumed in Sect. 2. It is interesting to note that in
this case Vg(t) minimally surpasses predicted values just after
tex, before visibly dropping below it for t − t1 > 0.25. Initial
slight increase in Vg(t) might be due e.g. to interaction with
periodic walls, which the pore cluster contacts first. The subse-
quent decrease in Vg(t) is coincident with first pore implosions
and should be associated with them.

It is worth noting both Figures 5 and 7 may serve as an ad-
ditional, indirect evidence of traced mass/volume conservation
by our method. This is due to the fact that pore expansion de-
scribed by (37) is the only source of the increase of the total
C function, and a good agreement with it is reached at least as
long as pores remain spherical and don’t leave the domain.

Increased radii variation and implosion events that charac-
terize the competition regime, are visible in Fig. 8a which dis-
plays individual pore volume histories for the larger (maroon
lines) and smaller (turquoise lines) Weber numbers. To the ac-
curacy allowed by post-processing software, each line displays
volume of an individual pore, with up to 100 of the randomly
chosen pores tracked for each simulation. Time is normalized
by capillary timescale (Malan et al., 2018)

τR =

(
ρR3

σ

)1/2

, (38)

which results (due to parameters presented in Table 3) in fac-
tor of 5 between the two simulations presented in Fig. 8a, ac-
counted for in the figure. Unlike the high-We regime, in which
expansion is rapid and nearly uniform, the low-We competition
regime exhibits higher variance in pore volumes, with a number
of implosion events visible towards the end of recorded time.
This proves that the presented numerical method is capable of
capturing the transition between the two regimes, provided that
simulation covers a sufficient temporal range7. Additionally in
Fig. 8a we observe a sub-population of bubbles exiting the do-
main through the side-walls towards τD = 0.05.

This flow stage is visualized again in Figure 8b which con-
tains a magnification for τD ∈ [0.02, 0.05]. Even at this time

7Which in turns depends directly on numerical grid resolution. The smaller
R(t1) the more timespan will be included in the simulation before the pores
coalesce.
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Figure 4: (a) Simulation of the flow characterized by We = 512. (isolation
regime) at t = t1+1.92·10−2. (b) Simulation of the pore lattice at We = 3.3·10−2

(“competition” regime) for t = t1 + 0.237.

scale we observe that a distinct group of pores loses volume at
identical rate: those lines represent the group of approximately
50 pores that are carried out of the simulation domain. It is
a visibly different evolution than that presented by the maroon
lines in Fig. 8a. The latter is characterized by individual col-
lapses/implosions taking place for τD > 5.5, and absence of
distinct pore sub-groups. The same character of volume evo-
lution in the competition regime has previously been reported
in (Malan et al., 2018) (see Figure 7 therein, note their plots
show all individual pores while Figure 8 presents only popula-

Figure 5: Volume fraction temporal evolution (isolation regime). Continuous
line: simulation; dashed line: using (37). The moment at which first pores
touch domain boundary is marked with vertical line and the tex label.

Figure 6: Isolation regime: Averaged (in YZ) profiles of p (a) and u (b) for
t − t0 ≈ 6 · 10−3. (The x range applies to both sub-plots.)

tion subset). Most importantly, their result – even if obtained
for isometric expansions –shows a trend of pore population to
create discrete groups characterized by specific growth rates,
which is more visible the higher We is. Our result visible in
Fig. 8a and 8b presents an extreme case of that trend: for “bal-
listic” expansion only one group exists at We = 512.
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Figure 7: Volume fraction temporal evolution (competition regime). Continu-
ous line: simulation; dashed line: using (37). The moment at which first pores
touch domain boundary is marked with vertical line and the tex label.

Both pore populations visible in Figure 8a reach the coa-
lescence region: for the We = 512 population (maroon) the
volumes recorded reach 2 · 10−3, while for competition regime
(turquoise) they are slightly higher at 3.5 · 10−3. This translates
to final equivalent sphere radii of r ≈ 8 ·10−2 and r ≈ 9.42 ·10−2

for isolation and competition regimes respectively. Since these
radii are in both cases larger than `/2, coalescence will appear.
The probability of pore contact occurring is of course higher in
the isolation regime with all pores present. Ultimately, coales-
cence is the reason why simulation of either regime cannot be
continued beyond the τD values presented in Figure 8a due to
implementation limitations mentioned in Section 3.3.

5.3. Evolution of the pressure field

We continue our comparison of the presented uniaxial ex-
pansion regimes with Figs 9a and 9b, first of which displays the
evolution of averaged pressure field

〈p〉 =
1
V

∫
V

pdV (39)

for both analyzed flow regimes. As the high-We regime is char-
acterized by a more violent decrease in the average pressure in
the initial parts of expansion, it was necessary to plot 〈p〉 in
logarithmic scale in Fig. 9a. However due to the function being
negative, we instead plot in Fig. 9a the

log(|〈p〉|) · sgn(〈p〉). (40)

It is clearly visible that the rapid decrease from e10 ≈ 2.2 · 105

to zero is followed by a period for which 〈p〉 < 0.

Figure 8: (a): Pores volume history for We = 512 (maroon), and We = 0.03
(turquoise) flows. (b) Enlargement for τR ∈ [0.02, 0.05], We = 512.

Figure 9b presents a plot comparable to Fig. 9a, but obtained
by discarding Laplace pressures (i.e. capillary contributions).
Here, we are using only input from grid cells that do not co-
incide with pore surfaces (this can be found from values of C
function)—in other words, grid-cells positioned away from the
pores and the interface. This can be roughly approximated by

〈p〉 =
1
V

∫
V

p(1 −C)dV (41)

where C stands for the fraction function (C is associated with
pore volume, meaning that a grid cell with C = 1 is inside a
pore, C = 0 corresponds to the liquid, while 0 < C < 1 signifies
an interface cell). Accuracy provided by (41) is moderate, as it
will still include contributions from direct neighbours of the in-
terface grid-cells; those neighbouring cells are generally still
influenced by Laplace pressures. While better accuracy could
be provided by a distance function-based methods (Aniszewski
et al., 2014), the above formula is enough to yield a much dif-
ferent result than depicted in Fig. 9a. Indeed, while a similar
pressure evolution as in Fig. 9a is observed in Fig. 9b, we notice
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Figure 9: Isolation regime: (a) Evolution of the domain-averaged pressure for
the flow at We = 512; (b) The same quantity prepared by including only grid
cells in the liquid.

that

∀t :
{
〈p〉(t) > 0 ∧

∂〈p〉
∂t

< 0
}
. (42)

This is to say average pressure is always positive and decreas-
ing. Additionally, slight oscillations visible in Fig. 9a for
0.025 < t < 0.035, are not found in Fig. 9b, thereby reassuring
us that they were attributed to the capillary forces.

A different 〈p〉 evolution is observed for the “competition”
regime. In Fig. 10 for low We, which (as we mentioned in
context of Fig. 4) is dominated by capillary pressures nearly
from the onset, we notice 〈p〉 ∈ [−50,−20] within the computed
time interval. For t > 0.15 the individual peaks are visible
(as triangles above other curves in Fig. 10) which should be
associated with implosion (collapse) events that result in shocks

Figure 10: Evolution of the mean pressure field for the competition regime. Nu-
merical simulation (black triangles) and analytical p∞(t) using (19) (red line).

to the liquid.
Pore implosions, encountered only in competition regime

(low We), are difficult to treat numerically in codes that use
uniform grid size cells. Once a pore decreases in size head-
ing into collapse, so does the number of grid-cells coinciding
with its surface (i.e. the interface). It eventually becomes so
small that interfacial curvature term σκnδs of (24) can not be
reliably calculated. In our implementation (Malan et al., 2018)
when encountering this situation PARIS-Simulator removes the
vapor cells from the solution, replacing them with liquid cells,
supplying a volume sink in form of a source term added to the
r-h-s of (25). A consequence of that is a shock wave propa-
gating to the system as described in Section 2.4. This explains
pressure peaks visible in Figure 10.

It is easy to note that unlike in the isolation regime, in the
competition regime we find for t > 0.02

∂〈p〉
∂t

> 0, (43)

i.e. average pressure is steadily growing, which in fact is pre-
dicted by (19). We would associate this with the initially rapid
expansion slowing down, and competition process taking over.

The first expansion phase (or the isolation regime) corre-
sponded to rapid expansion when the pores are still small com-
pared to `, while the latter is due to Laplace (capillary) pres-
sures which—in spite of being inversely proportional to pore
radii—become dominant, and competition phenomenon ap-
pears (Malan et al., 2018). Note that measured in absolute time
values, evolution presented in Fig. 10 involves a temporal inter-
val nearly ten times longer than that of Fig. 9.

To further validate the predictions of the numerical simula-
tion result presented in Figure 10 we have included a curve dis-
playing temporal evolution of p∞(t) calculated using (19). The
sharp pressure drop resulting from initial shock, as well as the
beginning of pressure growth after minimum is reached (men-
tioned in Section 2), are well visible in Fig. 10 for both curves,
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Figure 11: The bubble cluster at We ≈ 0.1, corresponding to a transition from
isolation to competition regime.

and there is overall agreement in their shape. Obviously, mean
pressure 〈p〉 is not equal to p∞ and is strongly influenced by
the capillary pressures originating from surface tension on pore
surfaces. For this reason, minimum p value is predicted too
low. Interestingly, if instead of using σ = 1 in (19) we cal-
culated p∞ using σ = 1.3, we get mint(p∞(t)) = mint(〈p〉(t))
and a better agreement of the p∞ curve to 〈p〉 overall which
strongly suggests that indeed the contributions of Laplace pres-
sures substitute the difference between the analytic prediction
and the simulation result.

Figure 11 presents an example of an additional simulation8

with We(t) = 9.56 · 10−2 at t = t0 + 0.157. This third pre-
sented simulation corresponds to a transition from isolation to
competition regimes predicted by (15a). We can illustrate this
by directing our attention to values of pressure inside the pore
cluster. In Fig. 11, three isosurfaces are presented. First, a gray
(semi-transparent) isosurface of fraction function C is visible.
This marks the position of individual pores, although at first
glance it is hard to conclude if the competition phenomenon
is present. Similarly, regions with p ≈ −42 (green, semi-
transparent isosurface in Fig. 11) exhibit little spatial variabil-
ity: all pores are surrounded by them. However, once an iso-
surface for p ≈ −63 is drawn (solid blue surface in Fig. 11)
we notice that homogeneity is gone close to certain pores’ sur-
face. Upon closer inspection it is evident that these pores have
smaller radii (hence larger mean curvatures); they are being
acted upon by other, growing pores to eventually succumb to
the competition (Malan et al., 2018).

8The simulation uses the same boundary conditions as those mentioned
above, resolution is 5123 grid points.

6. Conclusions

We have presented a numerical simulation setup that per-
mits prediction of the behavior of a pore lattice within rapidly
expanding medium. The expansion corresponds to a uniax-
ial (one-dimensional) ballistic phenomenon characterized by
large initial outward velocity magnitudes which then imme-
diately diminish. On one hand, this setup facilitates recogni-
tion of momentum-dominated phenomena such as rapid pore
elongation in “isolation” regime. On the other, the decline in
expansion rate promotes the onset of pore “competition” and
more anisotropic radii distribution in surviving pores. More-
over, simulations allow us to observe transition between these
two regimes. We have presented that instantaneous velocity and
pressure profiles match analytic predictions, and so does the
temporal pressure evolution in the simulated pore systems.

It is relatively easy to point out numerous simplifications of
the presented model. One example is the uni-axial mean ex-
pansion assumption, another: lack of solution inside pore in-
teriors, yet another is using an incompressible medium. Still,
the work presented herein provides us with a rare insight into
the micro-spall process at the FCC lattice scale which is oth-
erwise inaccessible experimentally, forcing the researchers to
apply modelling and/or indirect analysis. In this context, the
present study—especially with its choice of (partly periodic)
boundary conditions—may easily be used as a departure point
for larger-scale modeling e.g. in the context of metals undergo-
ing spallation under load.

Results presented here can be employed to improve predic-
tions of micro-spallation type damage in an indirect manner.
Published computations of micro-spall utilize larger domains
i.e. simulate larger material samples – up to 180nm nickel sam-
ple in (Qiu et al., 2017) – over which stress is imposed in similar
one-dimensional fashion i.e. [1 0 0] direction of the FCC lattice
(consistent with the X axis direction in this work). Individual Ni
atoms are presented as Lagrangian particles using the NEMD
(NonEquilibrium Molecular Dynamics) approach (Wang et al.,
2014), and cavities are created by randomly removing atoms.
Meanwhile our simulations include domains orders of magni-
tude smaller – only a few dozen basic 12-atom FCC clusters
versus e.g. 5 ·106 atoms in NEMD (Wang et al., 2014) – but ac-
count for some phenomena forcibly neglected at larger scales,
such as non-spherical pore shapes and competition.

Thus, assumptions we have taken allow re-using our flow do-
main as a control volume in a finite volume approach for mod-
elling bigger systems. Slices (of thickness L0 or L0/2) can be
created by repeating the domain in periodic YZ directions. In X,
either by using entire domain (x ∈ [−L0/2, L0/2], u ∈ [−un, un])
or only half (x ∈ [0, L0/2], u ∈ [0, un])) one could construct
neighbouring slices by using un at the right-hand-side of one
volume as a condition on the left-hand-side of the neighbouring
volume - in this scenario expansion would be uni-directional
along X with increasing un. Pressure could be treated as locally
constant in each control volume (see Fig. 6a). Having thus
constructed and analysed the larger system, predictions could
be either compared with NEMD-type simulations or used as an
initial condition for the latter concerning, for example, initial
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vacancy concentration calculated from the Vg(t) evolution pre-
sented in this work. This concentration is a critical parameter
in spall strength prediction (see e.g. Table 1 in Qiu et al., 2017,
and references therein), and, as evident from our results, depen-
dent strongly on the expansion regime.
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