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Abstract

The “micro-spall' phenomenon is a variant of fragmentation process—or spall fracture—that is traditionally discussed in context
solid materials (metals). However it concerns situations in which the medium is fully or pantialigd—be it due to kinetic impact,
detonation or laser loading. The phenomenon takes place at sub-micrometer and sub-microsecond scales making it inaccessibl
direct experimental observation; so far, investigations have been restricted to observations of late time “post-mortem” fragments.

In this context, it becomes a viable approach to apply analysis using numerical description for uids. This work presents sucl
an application for an idealized rapid uniaxial (one-dimensional) system expansion. Cavitation in the medium is represented |
including vacuous pores or cavities with surface tension whose growth and interaction are traced in time. The simulations reve
two main regimes of pore growth regulated by a characteristic Weber number.

Keywords: micro spall, cavity, Volume of Fluid (VOF), free surface, pore competition

1. Introduction (Everitt et al., 2006). Small pores shrink and eventually disap-
pear as their volume is transferred to large pores. Pore statis-
Cavitation and micro-spall (see for instance Signor et al.tics and pressure evolution pro les can then be obtained for fu-
2010, and references therein) appear when a weakly compresgre modeling purposes. Hypothetically, continued competition
ible (or expansible) liquid is suddenly submitted to a large vol-accompanied by coalescence could lead to formation of larger
ume growth (expansion) resulting in negative pressures. Thigores—or even of a single pore in the case of a spatially limited
process, which appears in many practical applications of intefsystem. In this work, we focus on the practically relevant case
est, occurs when an initially solid medium is subject to an unof constant speed expansions whose rate decrease with time:
sustained impact or detonation and is entirely or partly melteghe corresponding Weber numbers typically start and end re-
in the process. Once the system starts expanding, the pressujgectively at ranges above and below the competition threshold.
drop causes the onset of cavitation and pores (or bubbles lled Thus, our idealized assumptions are incompressible inviscid
with vapor) appear. After the initial phases of uniform expan- uid, vanishing vapor pressure in cavities, homogeneous uniax-
sion and pore opening, a longer-lasting phase of pore growtty| “pallistic” expansion, perturbed face-centered-cubic lattice
and competition appears, which is especially dilt to investi-  arrangement of pores. Under these assumptions, the system is
gate either experimentally or numerically (de Regsier etal.,  characterized by a single dimensionless group, the Weber num-
2010; Signor et al., 2010). ber based on the number of pores per unit volume. The “ballis-
We present here numerical simulations of this latter phas€ic” expansion signi es evolution in which We rapidly decays:
for idealized conditions relevant to micro-spall. This paperin the initial stages of expansion the ow is entirely dominated
picks up on a previously published study of Malan et al. (2018)y inertia and the pores expand as if they were isolated (llinskii
which presented low-Weber number expansions of the systeg al., 2007). As We drops the system transitions into a regime
(with constant expansion rates). Malan et al. (2018) focuseth which the bubbles interact and capillary pressure becomes
on acompetitionphenomenon in which expansion of some of signj cant. We investigate this transition in more detail below.
the pores caused their neighboring pores to collapse: in oth¥esults indicate that both the uniform growth in the initial ex-

words, there was a volume transfer between the pores witho@ansion phase, and the later “competition” (Everitt et al., 2006)
actual contact and merger between them. The pore competfiegime can be captured.

tion e ect is important as it is the main phenomenon driving

the evolution in time of the statistical distribution of pore sizes o ) )
2. Elementary characterization of ideal micro-spall

Corresponding author. Tet33 1 44 27 87 14, 2.1. Mean expansion eld

_ Email addressesaniszewski@dalembert.upme.fr - (Wojciech We investigate a uid element undergoing expansion follow-
Aniszewski),antoine.llor@cea.fr (Antoine Llor) . . .
URL: http://www.Imm.jussieu.fr/~zaleski/index.htm| ing a shock and release history. As sketched in the volume and

(Stephane Zaleski) pressure pro les of Fig. 1, pressure drops due to the accelerated
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Figure 2: Schematic representation of idealized micro-spall as a pore cluster
Figure 1: Sketched evolution of mean macroscopic volume and pressure of éndergoing expansion along tialirection.
material element undergoing mico-spall. As qualitatively represented, the ini-
tial pressure produced by the shock and the nal spall stress are here assumed
respectively large and small enough that the eventual expansion is nearly bdsotropic expansions, and is related to mean density through
listic. This ballistic evolution can then be backward extrapolated to vanishing
volume which de nes the (arbitrary) time origin. As indicated, the system evo- d
lution is here simulated after pores have opened and local uid density has &

returned to a nearly uniform and constant value.
Combining (2) and (3) yields

In~= r w 3)

expansion and eventually becomes negative. At some point, =7 (tot)"; (4)

the cohesive limit of the uid is reached and pores open: in

this micro-spall phase, surface tension around the pores pravhere the reference state is conveniently taken here atttime
duces a macroscopic negative stress. If this spall stress is wetikwhere cavitation nuclei appear (Batchelor, 1967) and where
enough compared to the stored momentum the system evetiie mean density coincides with the uid density= .

tually evolves in a quasi-ballistic way. The micro-spall phe- Equations (1) are solutions of the Euler equation

nomenon can appear regardless of the structure of the strain

tensor—which in general displays three éient eigenvalues— @+(@U r)u= ér o (5)

but we shall focus here on the most common situation of uni-

axial expansion and more marginally on the theoretically usefulyii, zero mean pressure gradient and uniform but non-constant
situation of isotropic expansion. ~mean density. The ultimate goal of modeling is to provide a
For a small enough material volume, the average strain cagosyre relationship betweén T, andp so as to simulate the

be considered as uniform — which corresponds e.g. to uniforna gct of micro-spall on large scale dynamics (possibly ellipti-
laser energy distribution in laser shock-loading (Signor et a'-cally unstable).

2010, sect. 2.2) — and the backward-extrapolated positions of
allthe uid elements collapse to a single point: thisisthe virtual 2 - Mean pore characteristics

Big Bang” that provides the time and space origins in all the At microscopic scales, micro-spall displays uctuations on

following, t - 0 andx = 0. Depending on the strain dlmen3|on_a” its smooth large-scale elds. As sketched in Fig. 2, a rstap-
and depending on the selected coordinate system, Lagrangian

X X X : proximation convenient to capture surface tensiorats con-
X or Eulerianx, the mean velocity eld in the material volume . . . : . .
. sists in assuming all pores as spherical, with no internal mass
can always be written as

and pressure (vanishing vapor pressure), and furthermore with
; ; identical radiiR(t) and no translation velocity with respect to

Lagrangian Eulerian iaer . .

o B g _g_ o o their surroundings (Ca isch et al., 1985). Therefore, no coales-

Uniaxial - T(X;t) = U(X to) = X=to;  UXY) = X% (18)  cence eects can be present, and the number of pores is constant

Isotropic  T(X;t) = U(X;to) = X=tp; U(X;t) =x=; (1b) and equal to the number of cavitation nuclei atty. The mean

number density of pored then scales as mass density (4)
where the Lagrangian coordinaXeis the actual position at ref-

erence timdg, while x and X represent the rst coordinates of N=No(= )= No(tot)% (6)
thex andX position vectors. Equations (1) describgansion . o o )
as the “Hubble time't, is assumed positive. The uniform but ~ WhereNo is an initial number of cavitation nuclei. In a more

non-constant divergence of the mean velocity eld is realistic situation where pores may collapse (depicted in this
work) or merge, this relationship does not hold.
r U=d=; (2 Under the simplifying assumption of local spherical symme-

try the number density of pores provides their geometric charac-
where dimensionalityd is 1 or 3 for respectively uniaxial or teristics. Each pore in uences a mean spherical volume de ned

2



by the Wigner-Seitz radiugt) (Girifalco, 2000):

1?51 N | T
4 “3N = 1- QQ N S N
3 N=1 @) \\\\\\\\
| ST g 10} o ]
Seeing as the volume fraction of liquid is (), identi cation = N~
of volume fractions in the Wigner—Seitz sphere yields the mean f , SO -
pore radiusR(t) from the equivalent relationships =z 107 \\\ )
4 N
SRN=1 (= )=1 @ (8a) 104} ‘ ‘ N
4 . 10° 10" 10° 10
?RSNO = ( 1= ) 1= (t:to) 1 (8b) t/'[o -1
Combining (8) and (7) yields the aspect ratio of the eqUivalenF:igure 3: Evolution of the reduced Weber number of the characteristic mean
mean spherical shell pore during expansion We€Wey in (15a) as a function of reduced tirtrtg 1
(log scales); solid lines: uniaxial expansion; dashed lines: isotropic expansion;
RYY=1 (= =1 (to=)°: 9 thin lines: asymptotic limits with slopesl and 2. Points represent transitions
(R=)° (=) (to=)° )

between asymptotic behaviors at small and large times wherg\éje= 1.
Equations (8) to (9) hold even if, due to collapse and merger,

(6) may not. Subsequently, we substitute both (13) and (14) in (11), so the
o ) Weber number We Ey=E; is eventually obtained as
2.3. Kinetic and surface energies, Weber number , )4
Under expansion, the kinetic and surface energies evolve and  we(t) = Wey, ()" 1 Qm ; (15a)
the overall behavior of the system is characterized by their ratio: 31 (tot)
the Weber number. Because the uid is assumed incompress- Wep= — (15b)
ible and inviscid, these two energies fully control the system 8 NotS

and only two regimes are expected: all situations can be colstice here that the Weber scaling Mailt from quantities at
lapsed according to the Weber number alone. The energies carn. to is not equal to Welp): it is actually found that We =
be estimated within the framework of the mean spherical POrGve, att=t, 1:16 and 138 for respectivelyd = 1 and 3—

of Section 2.2. , . with volume expansion ratios of=" = (t=t)¢ 1:16 and 260.
The surface energy of a single mean pore is given by theq jjjstrated in Fig. 3, the Weber number Wegliverges as
surface tension coecient (t to) Lfort! toand vanishes ag ( to) 2fort ! 1
E.=4 R: (10) The expressions in (15) were scaled in such a way that these
asymptotes actually intersect at yer eithert=ty = 4=3 or 2

The kinetic energy is obtained by assuming the velocity eldfor uniaxial and isotropic expansions as shown in Fig. 3.
to be radial and divergence free around the mean pore, with a The fact that the Weber number We@ecreases from vir-

vanishing mass ux at the Wigner—Seitz boundary tually unbounded values down to zero shows that two regimes
7. should appear during expansion. Kinetic energy dominates at

E, = 1 2 _ 44 2dr = 2 di3 26 11, (11) early times and expansion is quasi-ballistic, whereas later, sur-

K R 2 b ' R face tension dominates, thus slowing expansion and inducing

pore interactions through Laplace pressure. The transition will
where’ is the time derivative of which according to (7) and (6) appear more or less early depending on the initial conditions
veries '=" = (d=3). Using identities (6) to (9) we can now de ned by the Weber scaling Wend possibly in either of the
represent both mean radiBsand Wigner-Seitz radiusonlyin -~ t ! tyor (t ty) ? regimes represented in Fig. 3. According

terms oft and state of the system &t Namely, from (6) we  to theN, dependence in (15b), these two regimes correspond to

have respectively dense or sparse distributions of cavitation nuclei.
No bd_ 3 (12) 24 Pressure Evolution
t 4" 3% Mean macroscopip evolution has been sketched in Figure
thus™ can be expressed as: 1, presenting its sharp drop after the shock and during accel-
v erated expansion phase. At the moment of pore opening pres-
= . 3 : (13) sure changes sign, While_its groth is_ restored in the_ micro-spall
4N, & d regime. We can trace this evolution in a more detailed manner
t using velocity potential (t) and mean radiR: We rst formu-
Using the aspect ratio (8) we nd that late the Bernoulli equation
r - 2
R=""1 ITO : (14) t+§+p Py (16)



whereu = RR=r? and thus RR=r: This leads to a
Rayleigh-Plesset type expression for pressure “at in nity”

pL = |F"3R+2R2 2

= 17)

3. Computational Methods

3.1. The PARIS-Simulator

The simulations presented in this paper use the Parallel Ro-
bust Interface Simulator (PARIS-Simulator Ling et al., 2015;
Malan et al., 2018; Salvador et al., 2018), which is an in-home

Having discussed the mean spherical cell aspect ratio in thFD code developed jointly at Institu@\lembert, University

previous subsection, we can now solve fousing (8) leading
to

= gé% t 1) 52 (18)

which allows us to retriev@; by substituting back to (17):

2 r
||0 2 ., 1
18°2(t to)*

pa(t) = (19)

t to

It is easy to verify that the above formula depicts a curve

of Notre-Dame and University of Bologna. PARIS-Simulator is
a classical, MAC-type solver using uniform, cuboidal meshes.
The strengths of the code lie in a very eient MPI paralleli-
sation and broad variety of implemented computational meth-
ods, especially for interfacial, two-phase ows. These include
e.g. Front Trackiny(Tryggvason et al., 2011), Volume of Fluid
(Hirth and Nichols, 1981) and tracking Lagrangian patrticles.
The code is GPL licensédnd publicly availabl&

A well known projection scheme (Tryggvason et al., 2011)
is used to solve momentum conservation equations. We will
explain it brie y by showing a way the algorithm progresses
from n-th ton + 1-st step. Knowing the values of all elds at
the end ofn th step, we are starting with the de nition of the

whose shape corresponds closely to the pressure curve sketctf8fPorary velocity eldu

in Figure 1 as long a  lo: The latter is normally the case

since mean Wigner-Seitz radii will be signi cant at the moment

of pore opening.

such a way that initial time value ts > t; it is interesting to

rhu™ (23)

. . _ . L ._It can be found easily since, at the endreth time-step it is
While the simulations described in this work are set up in y P

the only unknown in above formula. The symbo} stands
for the discrete dierential operator. This is projectionstep,

study the eect of the propagating pressure pulse on the systeny;, .o ye|acity is projected onto a space with zero pressure eld.

This reasoning is not without substance, as in computationg,

'e can now write a discrete version of (5), which involves

practice the ow will respond to |mposed expansion boundaryonly this time changing the way the approximation of temporal
conditions used here with a negative pressure pulse (see €L i ative is formulated

Figure 7 in (Malan et al., 2018) and results presented in Section

5). We assume incompressibility, however because of the neg-

ative pressure created by surface tension on the bupbles,
the system could be seen as having negative compressibility,
that the speed of sourg] given below:

(20)

is imaginary. Taking this into account, and linearizing the Euler
equation (5) and the mass conservation equation (3) we obta

i’ @p+ @p=0 (21)
A quick estimate based on Laplace's law leads to
jcf? = (22)

AN R

A conclusion that may be drawn from the pressure equatio

(21) is that as soon as the pressure has beentad by grow-

ing pores in a region, the pressure pulse will propagate to the

rest of the system at a spejef] Such a propagating solution, of
the formp = atan4cjt), is possible even in the elliptic system

case. The spegdj of the wave may be comparable to the ini-

tial speedLo=(2t;) of the expansion wave; comparison will be
dependent on surface tension and Weber number.

un+l

u rpp™t+

t n

ns

; (24)

Ythere superscriph + 1 stands for the value at the end rof

th time-step. Notice surface tension contribution has been in-
cluded in (24): stands for the surface tension codent,n is

the vector normal to the interface, whilés scalar curvature—
also the restriction to the interfacial surfagés ensured by the

s operator. If now we apply a divergence operator to both

irs]ides of (24) and remember that we assumeai™* to vanish,

we obtain the Poisson equation from which presqui¥é can
be found " |

t
—rap™ =rh U+ ns:

ln (25)

In most computational codes numerical solution of (25) is the
stage to which most computational cost (up to 90 percent) is as-
sociated; especially in multi-phase ows with variable density.
l{IDnce (25) is solved angd™? found, both it andu are used to

nd the divergence-free velocity at the end of the time-step

t
— hpn+l +
n

u™l=uy n (26)

S

INot used in this work.
2httpsi/www.gnu.ordlicenseggpl.html
SAvailable at httpwww.Imm.jussieu.ft zaleskiparigindex.html
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thus ending the procedure. Many authors call (26) a “correc- More details about the interface tracking and advection

tion” step as solenoidal characterd¥?! is ensured thereby. methods used here can be found e.g. in comparative work
(Aniszewski et al., 2014), comprehensive textbook (Tryggva-
3.2. Interface Tracking son et al., 2011) or, in context of PARIS-Simulator (Ling et al.,

As mentioned, the normal vectonsand the curvaturesin 2015; Salvador et al., 2018).

above equatiorisare found from the coldiraction functionC,

whose advection equation follows in discrete form 3.3. Free Surface Solver

To implement the boundary conditions on the interface, a
free surface method has been programmed in PARIS-Simulator
(Malan and Zaleski, 2015). The ow within the pores is not
) ) ) ) explicitly solved for (except up to two interior cell layers as ex-
Equation (27) cannot be solved directly, @ss a sharp jump  pjained below), additionally in this paper we initially set e
function: the jump would be dused by numerical errors ,ressure value to zero. With that assumption, the ow is in fact
(Youngs, 1984). Therefore, in most applications (27) is solvecg quasi-single phase ow, but surface tension is accounted for
using specially crafted ge_ometrical reconstru_ction—advectiogn the pore surfaces. Still, in this case the presgyrside
schemes such as CIAM (Li, 1995) or PLIC (Aniszewski et al..ihe pores is de ned, although it is assumed spatially constant

2014). Normal vectors and curvature are calculated usingside them and is calculated using the polytropic equation of
Height Functions technique (Cummins et al., 2004; Popinetg;ate (Malan et al., 2018).

2003), which has multiple provisions for the cases of insu _ _ _
cient grid resolutions aridr speci ¢ interface con gurations. 1. The pressure eld is extrapolated onto the interface which

Cn+1 Cn

: +ry (CuM)=0: 27)

In the PLIC (Piecewise Linear Interface Calculation (Tryggva- 1S necessary for (25). The boundary value of the gradient
son et al., 2011)) scheme, the ux&u are calculated geo- is computed as
metrically as intersection volumes between cubic grid-cells and P=P (30)

planes, the latter representing the interface. Interface is repre- \here pp is constant pore pressure, and is Laplace
sented in planar form which is done by rst retrieving the vector pressure, thereby assuring that surface tensiectds ac-

n normal to the interface (oriented along th€); allowing us counted for. Thep value is used for , operators in cells
to the interface equation: neighboring the interface;
2. The velocity eld is extrapolated to within the pores; these
nx=, (28) values are necessary for higher-order gradient operators

where the term (shift along the normal vector) has yetto be ~ for cells neighboring the interface. Extrapolation is based
found. Since, however, for each cell the fraction function value ~ ©n liquid velocity, which is extended to two grid-cell lay-
Cijx is known at the beginning of the timestep, we want the ~ ©rs (or levels) within poréoubble interior by geometrical
interface representation to be consistent with it, in other words  {ting and least-squares minimization;
the volumeVi of uid contained on one side of the interface 3. Finally, the extrapolated velocities in level 1 and 2 cells
has to be consistent with the fraction function value. However, ~ are corrected to ensure the new eld is divergence free.

Computational tests have shown that the above procedure
amounts to approximately 10% of CPU cost in a massively par-
allel simulation compared with Poisson solver cost standing at

Viik = Vik( ) = Cik (29)

which is solved allowing to be found. Equation (29) can be
- . . . . (?0%.

solved analytically even in three dimensions (Scardovelli an A limitation introduced b timol tati f th

Zaleski, 2000; Aniszewski, 2011) however, approximate solu- imitation introduced by current implementation ot the

tions have been published as well (e.g. Newton-Rhapson usea&;ove algorithm is—apart from afc_)rementioned necessity .Of.
in (Ménard et al., 2007)). Moreover, various "simpli ed” ver- pre-seeding the pores—that the voids cannot coalesce, as it is

sions of geometric Volume of Fluid method exist that either us%Zt g?;gg?g C(')trr?mtrzzle ;:gg)thgf Ft)r?(len;tz)oazol\'/si (ggl?:'tglsx'
an “incomplete” interface representation (e.g. without the polal withi P ’ ve fist, pology

term (Marek et al., 2008)) or don't employ planar representr:ltionCh"’mge of the pores cannot be accounted for. The model how-

atall (Xiao etal., 2011). In our implementation of PLEIAM, ever allows for the pore collapse, to which the system responds

once the full planar interface reconstruction is nished and (28)W'th a pressure puls_e. Itis also |_nterest|ng fo notice that the
is known, the cube-chopping algorithm (Scardovelli and zaPOres can undergo dlspIaC(-_:-ment (ie. _mo_ve) _for example due_ to
leski, 2000; Tryggvason et al., 2011) is used to nd uxes non-balanced surface tension fgrce dlstrlbut.|ons. More deta|l.s
and enable solution of (27). In our implementation, uxes are®" the Free Surface sub-solver implementation can be found in

found in a "split” manner, e.g. along each of the axes separatel'yIalan etal. (2018).

— the order being permuted at each solver iteration (Pilliod ang} 4

Puckett, 2004). Implementation

In implementation, we apply theyre package's (Falgout
and Yang, 2002) SMG (semi-coarsening multigrid solver with
4The same applies for the approximation of Dirac delta 3D plane smoothing) for numerical solution of the Poisson




problems (25) on the structured, cubic meshes. Advection whereN is the number of grid points in each direction, and
terms in (23) are calculated using central eliencing with xis grid-cell size. Combining (31) and (32) yields a de nition
WENO (Shu, 1997) and Superbee-type (Sweby, 1984) slopef thelL, advection error as a function of time:
limiters. A cavity tagging and Lagrangian particle-tracking al- "
gorithm (Ling et al., 2015) are used to retrieve statistics of cav- . ) -
ity sizes. Interface curvatures for (24) are calculated with a La(t) =] r(Z’ +005 4t - G ( X’ (33)
combination of techniques providing for various stencil shapes _ " o _ _
and built within the framework of Height Function method For the test, a relatively large value of |n|t|a_l cavity radius
(Cummins et al., 2004) and with the mixed-Youngs-centralV@s chosen af, = 0:2; to ensure that the pore is properly re-
(Youngs, 1984) scheme for normal vectotomputation. Tem- solved at 16 gnq (3 grid-cells in radius). Cavity was e>.<par.1ded
poral discretization is performed using the second-order CraniQver 25 10" time-steps xed at = 1 10 ! resulting in
Nicholson scheme (Carnahan et al., 1969); the code can also ed = 2:5; and nal radius ofrens = 0:45: Surface tension was
switched to rst order Euler scheme for testing purposes. set to zero.

The method was validated comparing numerical solutions to
solutions of the Rayleigh—Plesset equation for oscillating bub- Table 1: Reconstruction error of the circular p&ieat varying grid levels.
bles (Malan and Zaleski, 2015; Malan et al., 2018, Fig. 5 in

the latter). In the test, a perfect match was found between Grid points E Ratio Order
the Rayleigh-Plesset prediction for the cavity volume tempo- 16” 297 10° - -
ral evolution and a computed volume, proving that the chosen 32 829 10° 359 179
combinations of computational methods neither adds nor looses 64 1:99 10° 416 208
traced volume. Additional test is provided in section 3.5 128 493 107 403 201

3.5. Free Surface Advection Test: 2D Expanding Cavity ) ) ) o
Here, we brie y present a simulation set up to test the ac- We have investigated the error inherent in initial PLIC rep-

curacy of the VOF-PLIC advection scheme coupled with theresentatmn of the circle at each grid resolution — caused by the

Free Surface solver (as described in Sect. 3.3). Unlike Syn];f’j1 ct tnh?: tht? I: terrrfarc enlsterg(priesentitlad b3|/ IlTia;segdrgfnrtls. This
thetic advection tests performed traditionally in context of VOFbee(";\c/)vesenU(r:Z anvo O( ] ?t o )susrrfr?lz\r?/zce:?j ?ﬁ ?I'aeblji V\e/e (E:E;n
using passive velocity elds — such as cirtdphere advections 0 <(0) '

(Aniszewski et al., 2014) — the “expanding cavity” test case in.See that second order convergence of the interface reconstruc-

volves solution of the Euler equation (5) iieand p are solved ]Elon. scheme IS obtameld, as expectclad for PLIC type m_ethod (see
for at each iteration. In this sense, it resembles the high-densiﬁ)?r instance lopez et al., 2.005’ Table 1). Representation errors
droplet advection presented by Vaudor et al. (Vaudor et al., ave been accounted for in the nal test result.

2017) which also solves for all terms of Navier-Stokes equa-

tions in a ow with simple initial conditions and a trivial ana- Table 2: FinalL; error values for expanding cavity test at varying grid levels.
Iytic solution . Here, too, any errors in the advection procedure . : .

or Free Surface coupling would manifest itself. Grldlgzomts Ll(te”;’)_é 910 °) Ratio Order

4:721 1608 08

The premise of the test is simple. A two-dimensional, square 32
d|or:allr? v?/:tﬁlzesilnlgsiedgiPci?a?sp)cjlzd(c\,‘,:\tri]tyl)l?;I:Salti)zfe?jeir:lsItt%/e 64 2:801 1es8s5 084
' 128 0:669 418 209

center. Isotropic expansion is imposed by setting a constant
normal out ow velocityu, such thaBt: u,(t) = 0:05: This way
liquid uxthrough each of the walls is equal tp= 0:05 1;thus

the rate of cavity volume (surface) growth must be described Final Ly (tenq) values are presented in Table 2. Proper conver-
by: gence is observed at order roughly one, which only improves

when the nest grid is used. This is consistent with order of the
- 2.0 . procedure we have chosen in this test to perform extrapolation
Re() = 1o+ 0:05 4t (31) of u to within the pores (see also Malan et al., 2018, Sect 3.3
whereRc(t) is the cavity surface at timg andro stands for  therein) and with rst order Euler discretization in time used in
initial cavity radius. In the simulation, by convention the grid this test. Although not shown here, we have repeated the testin
cells withCj; = 1 signify the cavity interior, while those with three dimensions nding a similar convergence. We thus con-
Cij = 0 are in the liquid (intermediary values ® Cjj < 1  clude the method properly conserves tracked cavity volume, as
represent interface cells). Thus, total sum of fraction functiorthe latter remains in good agreement with analytic prediction.
may be used to represent the computed cavity suNa@®at  Having con rmed the volume tracking capability of our cou-
any time: pled Free Surface-VOF code, we now focus our attention on its

X\l application in context of micro-spallation.

Ve®) = Cijt) ( %?; (32)
ihj

50ther results presented in the paper employ the Crank-Nicholson scheme.



4. Micro-spall simulation setup to be possibly small, in order to er a large range of scales -
in other words, headroom f&f(t) growth before the pores coa-

4.1. Initial Conditions lesce. A favourable relation would be
To simulate the idealized micro-spall phenomena speci ed in

Section 2, we have set up the simulations as follows. Cubical X R1) L (36)
computational domain is used (see Fig. 2), containing a given

number of pre-seeded pores in a FCC (Face-Centered Cubiwel’e x is the grid size. The leftmost and rightmost inequali-
lattice. It is "expanded” inx direction as assumed in Section 2. ties of (36) are however slightly relaxed for the results presented
More speci cally, the proper temporal evolution of the velocity in this paper due to grid resolutions used, as will be detailed be-

eld described by (1) is ensured by initializing: low.
Example simulations have been performed using® 2561

" thex-velocity component tai = x with proper translation  hgints. For the rst simulation (“I"), value of Weber number

and §caling, so that Tdr =ty we haveu(Oiti)) = Un,  (15a) att; is 512.83. The pore lattice is con gured as speci-
u(L=2; tl_) = Oandu(L;t1) = un whereu, is the outow  gq apove, with liquid characteristics found in Table 3. In the
velocity; Table, “I” and “C” are labels designating the “Isolation” and

“Competition” regimes; We and Ma are dimensionless Weber
and Mach numbers,and are respectively liquid density and
surface tension applied at the pore surfaces, while vaténds

U = 1=t3; (34) for the variation in pore radii applied to the initial condition.

Mach number values presented in Table 3, are calculated using
wheret; > 0; for subsequent moments of simulated time ¢ speed of soundas de ned by (22).
(34) is held so than(t)] = 1=t at all times; As mentioned above (see (35)), due to the applied spatial res-
olution, certain restrictions on the initial pore raB(t,) are im-
posed since the pores must be properly represented by the in-
This implies usage of Dirichlet boundary condition foin the  terface tracking method &t . This representation requires e.g.
x direction, which is time-dependent as was said above. Neuhat gradients of the fraction functi@can be resolved near the
mann boundary condition fop is thus applied on the+ and  interface (to calculate interface normals) with nite éirence
x walls. Imposing Dirichlet boundary conditions for pressureoperators. Having the size of domdig and initial pore num-
— instead of for velocity — could be a valid choice for this typeper N, xed, and imposing additional restrictioR > 3 x we
of ow, however — unlike the cases in which pores are wholly e.g. choosé; = 0:08 for the presented simulation of isolation
contained in the domain (Malan et al., 2018) — uni-axial ex-regime (see Table 3). This amountsR(i;)= x  3:44 which
pansions discussed here involve pores crossing outer domaiRsconsidered resolved (Tryggvason et al., 2011) in that proper
alongx axis. This in turn would make Dirichlet condition for values of curvature can be computed for pores of that rédius
pressure inconsistent. Due to the dependence (8) between simulation initial ttjme
Periodic boundary conditions are imposedYaawalls. For  and bubblépore radii, any decrease tf, andt;=t, would re-

the condition to be compatible with the pore cluster geometryduceR, which in turn would imply an increased grid resolution.
it is re-shaped by adjusting the pore-free busurrounding it.
More precisely, due to periodic condition Y directions, the
bu eris present only in thg direction (visible as empty region
in Fig. 2), i.e. forx < 0:12 andx > 0:88 the domain contains 5 ¢
no pores at = t;. Cubic domain of sizé = 1 is assumed with
365 pores. Thus, we arrive at 0:14.

the out ow boundary condition for the velocity eldi =
(u; v; W) in such manner, that

" thev andw components equal to zero.

5. Results

Isolation regime

Figure 4a presents cluster geometryPat t; + 1:929 10 2.
Uniform expansion of the bubblgmres is clearly visible with

4.2. Physical parameters and computational grids pore layers closest to the walls alopg u!oaxis visibly elon-
We describe simulation results concerning the uniaxial exgated due to the fact that convection is strongest there. At

) > . N
pansion using example simulations whose parameters are givéq t+ 192 10_ one ok_)serves pore radii of order Nearly
in Table 3. all pores are ellipsoidal in shape, and have expanded beyond

Consider now the simulation domainl(y=2; Lo=2)? within the region of the simulated volume, including periogiavalls.

which spherical pores are initialized with nhon-zero radii (WhiChMoreover, the outer layer of pores has now completely disap-

is necessary due to limitations of PARIS-Simulator code) i.e.peared (have been convected out) from the simulation domain,

numerical simulations are startedtat- to. With this in mind, an_? only relmnarllt ;pterfa;c;sl cells are |V'S'b|$' 8k for “I”
the mean radii distribution right after pore opening is emporal evoiution of Ih€ pore volume frac Ify for .
regime ow is seen in Fig. 5. Seeing as all volume change in

! 3 oy the liquid results from growth of the pores, we can supplement

R(t1) = Lo N L ; (35)  (4) by a following expression for pore volumes:
b to
which is how pores are de ned in the initial simulation condi-
tion. In this computational con guration, itis desirable f(t;) 6Not accounting for about 5 percent variancdRim initialization.



Table 3: Parameters for two examples of simulations of the uniaxial expansion, as explained in text.

Label ta to var ) Wet:)) Maf(ty)
I 1000 Q1 8 102 7797 102 50% 51283 15
C 444 1 21 2092 50% 33 102 012

A comparison between (37) and calculated pore volume

Y ! to Figure 5) i ted for the * tition”
Vg = Lg(d ): (37) (analogous to Figure 5) is presented for the “competition

t regime in Figure 7. For this low Weber number case, we note

The initial pore vqumesfraction ay;ie. Vo(ti = 008) 4 yiyally perfect t of calculated total pore volume (obtained
should amount t0:39 10 °, however it is slightly higher at using a sum of fraction functio) up until tex = 0:133 which

simulation init, due to the initial variance in pore radii (Table 3). ;s the moment at which rst pores exit the calculation domain.
Proper scaling has thus been used for the analytic formula (34)¢ overall better t might be due to the fact that in the absence

to make up for that in Fig. 5. of dominating uni-axial expansion, the pores remain generally

_Generally, one observes a @rence between analylic pre- gnparical, as assumed in Sect. 2. It is interesting to note that in
diction and S|mulgted pore value in Flgure_5. In our opinion, his caseV,(t) minimally surpasses predicted values just after
there are two main reasons for that. One is —as mentioned i) . pefore visibly dropping below it fot t; > 0:25: Initial
context of Fig. 4a — that the pores leave the computational doy;
main while it is expanded, which in the “I” simulation takes

place att + t; > 0:05 so very near to the beginning of the
range (this moment is marked in Fig. 5tag. Naturally, this 514 should be associated with them.
means that vacuum volume (areas wWitks 1) associated with It is worth noting both Figures 5 and 7 may serve as an ad-

these pores is no longer represented in the sum shown in Figjsiona), indirect evidence of traced massume conservation

5. Moreover, once the pores are stiently large the case iSno ., o method. This is due to the fact that pore expansion de-
longer dilute, thus departing from the model assumptions as the.ipeq by (37) is the only source of the increase of the total
R(t) " requirement of (36) doesn't hold, also the pores are Q- fnction, and a good agreement with it is reached at least as

longer spherical. _ _ , N long as pores remain spherical and don't leave the domain.
For the isolation regime simulation, we additionally present |creased radii variation and implosion events that charac-

in Fig. 6 the pro les forhpi (Fig. 6a) andwi (Fig. 6b) mea-  (ayize the competition regime, are visible in Fig. 8a which dis-
sured along the axis. These are taken from the early simula- |5y s individual pore volume histories for the larger (maroon

. 2 _ . .
tion stage (= to + 6:732 10 °) and con rm that the evolution  ineq) and smaller (turquoise lines) Weber numbers. To the ac-

of the system is indeed in the ballistic regime, while the veloc-CuraCy allowed by post-processing software, each line displays

ity pro le conforms to linear as predicted in (1). The ‘wavy' q\yme of an individual pore, with up to 100 of the randomly
character of the plot in Fig. 6b, is caused by inclusion of zerqosen pores tracked for each simulation. Time is normalized
velocities (inside the pores) to the average. Similarly, we Obby capillary timescale (Malan et al., 2018)

serve no variance ihpi (Fig. 6a) when focusing our attention '

ght increase invy(t) might be due e.g. to interaction with
periodic walls, which the pore cluster contacts rst. The subse-
guent decrease y(t) is coincident with rst pore implosions

|
on the lattice-occupied part: for< 0:12 andx > 0:88 there is R3' =
an empty “bu er zone” in thex direction, as mentioned above. RE — (38)
5.2. Competition regime which results (due to parameters presented in Table 3) in fac-

We continue the description of the results with the secondor of 5 between the two simulations presented in Fig. 8a, ac-
simulation (“C") which, as seen in Table 3 is characterized bycounted for in the gure. Unlike the high-We regime, in which
a much lower Weber number. As a result of this, the evolutiorexpansion is rapid and nearly uniform, the low-We competition
of the pore lattice is no more dominated by expansion and theegime exhibits higher variance in pore volumes, with a number
pores are not isolated, and the elongated shapes of the poresimplosion events visible towards the end of recorded time.
visible in Fig. 4a give way to a “pore competition” phenomenonThis proves that the presented numerical method is capable of
(Everitt et al., 2006). Figure 4b, shows that number of pores hasapturing the transition between the two regimes, provided that
either shrunk or is at the verge of imploding, their volume beingsimulation covers a sucient temporal rande Additionally in
overtaken by a group of large pores. Distribution of radii in theFig. 8a we observe a sub-population of bubbles exiting the do-
latter group is rather isotropic, with all pores roughly spherical,main through the side-walls towardgs = 0:05:
while ellipsoidal forms are absent. For situation presented in This ow stage is visualized again in Figure 8b which con-
Fig. 4b average pressungi has a negative value. This is due to tains a magni cation for p 2 [0:02 0:05]: Even at this time
the fact that positive pressure eld is associated with expanding
liquid, while for low Weber number negative Laplace pressures "Which in turns depends directly on numerical grid resolution. The smaller

(ca_pi_llary forcg) dc_)mir_late the pressure distribution. We Will gy, the more timespan will be included in the simulation before the pores
revisit this subject in Fig. 10. coalesce.




Figure 5: Volume fraction temporal evolution (isolation regime). Continuous
line: simulation; dashed line: using (37). The moment at which rst pores
touch domain boundary is marked with vertical line andteelabel.

4 t-£;=0.236982 b

Figure 4: (a) Simulation of the ow characterized by We 512. (isolation
regime) at = t;+1:92 10 2. (b) Simulation of the pore lattice at We3:3 10 2
(“competition” regime) foit = t; + 0:237.

_Scale_ we observe tha_t a distinct group of pores loses Vo_lume f—lltgure 6: Isolation regime: Averaged (in YZ) pro les @f (a) andu (b) for
identical rate: those lines represent the group of approximately “t; 6 10 3. (Thex range applies to both sub-plots.)

50 pores that are carried out of the simulation domain. It is

a visibly di erent evolution than that presented by the maroon

lines in Fig. 8a. The latter is characterized by individual col-tion subset). Most importantly, their result — even if obtained
lapsedimplosions taking place forp > 5:5; and absence of for isometric expansions —shows a trend of pore population to
distinct pore sub-groups. The same character of volume eva@reate discrete groups characterized by speci c growth rates,
lution in the competition regime has previously been reportedvhich is more visible the higher We is. Our result visible in
in (Malan et al., 2018) (see Figure 7 therein, note their plotdig. 8a and 8b presents an extreme case of that trend: for “bal-
show all individual pores while Figure 8 presents only populadistic” expansion only one group exists at We512
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Figure 7: Volume fraction temporal evolution (competition regime). Continu-
ous line: simulation; dashed line: using (37). The moment at which rst pores
touch domain boundary is marked with vertical line andtyelabel.

Both pore populations visible in Figure 8a reach the coa-
lescence region: for the We 512 population (maroon) the
volumes recorded reach 20 3; while for competition regime
(turquoise) they are slightly higher a3 10 3: This translates
to nal equivalent sphereradiiaf 8 10 2andr 9:42 10 2
for isolation and competition regimes respectively. Since these
radii are in both cases larger tha®; coalescence will appear.
The probability of pore contact occurring is of course higher in
the isolation regime with all pores present. Ultimately, coales+igure 8: (a): Pores volume history for We 512 (maroon), and We 0:03
cence is the reason why simulation of either regime cannot burquoise) ows. (b) Enlargement for 2 [0:02 0:05], We= 512.
continued beyond thep values presented in Figure 8a due to

implementation limitations mentioned in Section 3.3. Figure 9b presents a plot comparable to Fig. 9a, but obtained
by discarding Laplace pressures (i.e. capillary contributions).
5.3. Evolution of the pressure eld Here, we are using only input from grid cells that do not co-

incide with pore surfaces (this can be found from value€ of

We continue our comparison of the presented uniaxial exfunction)—in other words, grid-cells positioned away from the

pansion regimes with Figs 9a and 9b, rst of which displays thepores and the interface. This can be roughly approximated by

evolution of averaged pressure eld 7
.1 z hpi = % p(1 C)dVv (41)
ml = v pdV (39) Y
\%

whereC stands for the fraction functiorC(is associated with
for both analyzed ow regimes. As the high-We regime is char-Pore volume, meaning that a grid cell wi@ = 1 is inside a
acterized by a more violent decrease in the average pressurefre,C = 0 corresponds to the liquid, while0C < 1 signi es

the initial parts of expansion, it was necessary to pjwtin ~ an interface cell). Accuracy provided by (41) is moderate, as it
|ogarithmic scale in F|g 9a. However due to the function bemg\NI” still include contributions from direct neighbours of the in-

negative, we instead plot in Fig. 9a the terface grid-cells; those neighbouring cells are generally still
in uenced by Laplace pressures. While better accuracy could
log(jhpij) sgnfpi): (40)  be provided by a distance function-based methods (Aniszewski

et al., 2014), the above formula is enough to yield a much dif-
It is clearly visible that the rapid decrease frefl 2:2 10° ferent result than depicted in Fig. 9a. Indeed, while a similar
to zero is followed by a period for whidhpi < O. pressure evolution as in Fig. 9a is observed in Fig. 9b, we notice
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Figure 10: Evolution of the mean pressure eld for the competition regime. Nu-
merical simulation (black triangles) and analytigal(t) using (19) (red line).

to the liquid.

Pore implosions, encountered only in competition regime
(low We), are di cult to treat numerically in codes that use
uniform grid size cells. Once a pore decreases in size head-
ing into collapse, so does the number of grid-cells coinciding
with its surface (i.e. the interface). It eventually becomes so
small that interfacial curvature term n s of (24) can not be
reliably calculated. In our implementation (Malan et al., 2018)
when encountering this situation PARIS-Simulator removes the
vapor cells from the solution, replacing them with liquid cells,
supplying a volume sink in form of a source term added to the
r-h-s of (25). A consequence of that is a shock wave propa-
gating to the system as described in Section 2.4. This explains
pressure peaks visible in Figure 10.

It is easy to note that unlike in the isolation regime, in the
competition regime we nd fot > 0:02

@pi

Figure 9: Isolation regime: (a) Evolution of the domain-averaged pressure for — >0 (43)
the ow at We = 512; (b) The same quantity prepared by including only grid

cells in the liquid. i.e. average pressure is steadily growing, which in fact is pre-

dicted by (19). We would associate this with the initially rapid
that expansion slowing down, and competition process taking over.
( . @pi ) The rst expansion phase (or the isolation regime) corre-
8t: hpi(t)>0" —— <0 : (42)  sponded to rapid expansion when the pores are still small com-
pared to’, while the latter is due to Laplace (capillary) pres-
This is to say average pressure is always positive and decreasiires which—in spite of being inversely proportional to pore
ing. Additionally, slight oscillations visible in Fig. 9a for radi—become dominant, and competition phenomenon ap-
0:025< t < 0:035, are not found in Fig. 9b, thereby reassuringpears (Malan et al., 2018). Note that measured in absolute time
us that they were attributed to the capillary forces. values, evolution presented in Fig. 10 involves a temporal inter-
A di erenthpi evolution is observed for the “competition” val nearly ten times longer than that of Fig. 9.
regime. In Fig. 10 for low We, which (as we mentioned in  To further validate the predictions of the numerical simula-
context of Fig. 4) is dominated by capillary pressures nearlytion result presented in Figure 10 we have included a curve dis-
from the onset, we notidgpi 2 [ 50; 20] withinthe computed playing temporal evolution gp; (t) calculated using (19). The
time interval. Fort > 0:15 the individual peaks are visible sharp pressure drop resulting from initial shock, as well as the
(as triangles above other curves in Fig. 10) which should béeginning of pressure growth after minimum is reached (men-
associated with implosion (collapse) events that result in shocksoned in Section 2), are well visible in Fig. 10 for both curves,
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6. Conclusions

We have presented a numerical simulation setup that per-
mits prediction of the behavior of a pore lattice within rapidly
expanding medium. The expansion corresponds to a uniax-
ial (one-dimensional) ballistic phenomenon characterized by
large initial outward velocity magnitudes which then imme-
diately diminish. On one hand, this setup facilitates recogni-
tion of momentum-dominated phenomena such as rapid pore
elongation in “isolation” regime. On the other, the decline in
expansion rate promotes the onset of pore “competition” and
more anisotropic radii distribution in surviving pores. More-
over, simulations allow us to observe transition between these
two regimes. We have presented that instantaneous velocity and
pressure pro les match analytic predictions, and so does the
temporal pressure evolution in the simulated pore systems.

It is relatively easy to point out numerous simpli cations of
the presented model. One example is the uni-axial mean ex-
pansion assumption, another: lack of solution inside pore in-
teriors, yet another is using an incompressible medium. Still,
the work presented herein provides us with a rare insight into
the micro-spall process at the FCC lattice scale which is oth-

Figure 11: The bubble cluster at We0:1, corresponding to a transition from erwise inaccessible experimentally, forcing the researchers to
isolation to competition regime. apply modelling anébr indirect analysis. In this context, the
present study—especially with its choice of (partly periodic)

boundary conditions—may easily be used as a departure point

and there IS _overaII agreement in thelr shape. .ObVIOUSIy’ meai%r larger-scale modeling e.g. in the context of metals undergo-
pressurepi is not equal top; and is strongly in uenced by ing spallation under load

the capillary pressures originating from surface tension on pore . .
priary p 9 9 P Results presented here can be employed to improve predic-

surfaces. For this reason, minimupvalue is predicted too i t mi llation t d in ardirect
low. Interestingly, if instead of using = 1 in (19) we cal- I;?J%Tls%eglg[)omzzetla%ﬁg épgiC%ngjl 'St"izérf;rgr:raggﬁ{éms
culatedp, using = 1:3; we get min(py (1)) = mir(hpi (1)) i.e. simulate larger material samples — up tordi®®ickel sam-

and a better agreement of tipe curve tohpi overall which ] . : L T
. - lein (Qiuetal., 2017) — over which stress is imposed in similar

t I hat h f Lapl - ) X ;o o X
strongly suggests that indeed the contributions of Laplace pre%ne—dmensmnal fashioni.e. [1 0 0] direction of the FCC lattice

sures substitute the dérence between the analytic prediction ) . L L . .
yep (consistent with the axis direction in this work). Individual Ni

and the simulation resutt toms are presented as Lagrangian particl ing the NEMD
Figure 11 presents an example of an additional simulétion2'0™MS aré presented as Lagrangian particies using the
(NonEquilibrium Molecular Dynamics) approach (Wang et al.,

with Wef) = 956 102 att = to + 0:157. This third pre- 014), and cavities are created by randomly removing atoms
sented simulation corresponds to a transition from isolation t C : i i y my 9 S
eanwhile our simulations include domains orders of magni-

competition regimes predicted by (15a). We can illustrate thi ude smaller — only a few dozen basic 12-atom FCC clusters

irectin r ntion to val f pr re inside th r .
by directing our attention to values of pressure inside the po \Clgrsus e.g. 510° atoms in NEMD (Wang et al., 2014) — but ac-

cluster. In Fig. 11, three isosurfaces are presented. First, a gra .
. . . L unt for some phenomena forcibly neglected at larger scales,
(semi-transparent) isosurface of fraction functtons visible. ) "
such as non-spherical pore shapes and competition.

This marks the position of individual pores, although at rst ; .
Thus, assumptions we have taken allow re-using our ow do-

glance it is hard to conclude if the competition phenomenon_ . _ .
is present. Similarly, regions witip 42 (green, semi- main as a control volume in a nite volume approach for mod-

transparent isosurface in Fig. 11) exhibit little spatial variabil-e”Ing bigger systems. Slices (of thickndsgor Lo=2) can be

ity: all pores are surrounded by them. However, once an isoc_:reated by repeating the domain in periodicdirections. InX;

surface forp 63 is drawn (solid blue surface in Fig. 11) either by using entire domaix @ [ Lo=2Lo=2];u 2 [ Un; Unl)

we notice that homogeneity is gone close to certain pores' suf’ only half x 2 [0;Lo=2]; u 2 [0; Un])) one could construct

face. Upon closer inspection it is evident that these pores ha\}?eeighbouring slices by using, at the night-hand-side of one

smaller radii (hence larger mean curvatures); they are bein?o:ume as atchqndltlon on the Ieft—h_and—3|d(|ado£the qe(;ghbgunng
acted upon by other, growing pores to eventually succumb t ?um; i 't?‘ s scgnarp;xpansmn Wl?jub te l:md |re|c |0?|a
the competition (Malan et al., 2018). alongX with increasingu,: Pressure could be treated as locally

constant in each control volume (see Fig. 6a). Having thus

constructed and analysed the larger system, predictions could

8The simulation uses the same boundary conditions as those mentione.,tb‘? _either cqmpared with NEMD-type gimulations or Useq asan
above, resolution is 582yrid points. initial condition for the latter concerning, for example, initial
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vacancy concentration calculated from Wgt) evolution pre-  Malan, L., Ling, Y., Scardovelli, R., Llor, A., Zaleski, S., 2018. Direct numeri-
sented in this work. This concentration is a critical parameter cal simulations of pore competition in idealized micro-spall using the VOF

- e - - method. Comput. Fluids (submitted) also available as arXiv:1711.04561
in spall strength prediction (see e.g. Table 1 in Qiu et al., 2017, [physics. u-dyn].

and references therein), and, as evident from our results, depefalan, L., zaleski, S., 2015. Numerical simulation of bubble competition dur-
dent strongly on the expansion regime. ing micro-spalling. Tech. Rep. 13-39-C-DSRAJ, Institut Jean le Rond
d'Alembert.
Marek, M., Aniszewski, W., Boguslawski, A., 2008. Simpli ed volume of uid
method (SVOF) for two-phase ows. TASK quaterly 12, 255-265.
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