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Abstract. The two main methodologies of computational Statistical
Mechanics, namely the stochastic Monte Carlo and the deterministic
Molecular Dynamics methods, were developed in the USA in the mid
nineteen fifties. In the present paper we show how these "computer ex-
periments" migrated to Europe in the sixties, and first bloomed at the
Orsay Science Faculty, before spreading throughout Europe. Collabo-
rations between the Orsay group, led by Loup Verlet, and pioneering
groups in the USA and Europe are pointed out. Finally it is shown how
the celebrated Verlet algorithm for the integration of classical equations
of motion can be traced back to Isaac Newton.

1 Introduction

The basic principles of Statistical Mechanics were established during the second half
of the nineteenth and the beginning of the 20th century by Maxwell, Boltzmann and
Gibbs. Exact results for the thermodynamic properties of many-particle systems could
be derived analytically for some simple models, culminating in the solution of the two-
dimensional Ising model by Onsager [Onsager 1944]. However very few models have
analytic solutions, so that approximations, like mean-field, must be made to predict
thermodynamic, structural or transport properties of physically relevant models.
This situation changed radically with the appearance, during and after World-
War II, of the first electronic computers which were mostly based, for de-
fence reasons, at the US National Laboratories at Los Alamos and at Liver-
more. This led to the development of numerical simulation methods for clas-
sical many-particle systems, namely the Metropolis Monte-Carlo (MC) method
[Metropolis 1953, Rosenbluth 1955, Wood 1957a] and the Molecular Dynamics (MD)
method [Alder 1957, Alder 1959]. The initial MD code of Berni Alder and Tom Wain-
wright, assisted by Mary Ann Mansigh, was designed for hard disks (in 2d) or hard
spheres undergoing elastic binary collisions. The extension to systems interacting via
"soft", continuous pair potentials was later put forward by Anees Rahman at the
Argonne National Laboratory [Rahman 1964]. The early MC and MD simulations
led immediately to a major, unexpected discovery, namely the purely entropy-driven
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freezing of hard disks and spheres at sufficiently high packing fractions [Alder 1957,
Wood 1957b].

The pioneering period of computational Statistical Mechanics is well described in
a recent paper by Michel Mareschal [Mareschal 2018]. In the present paper we report
how computational Statistical Mechanics was imported to Europe, and more specif-
ically to France, where the first group developing "computer experiments" worked
at the Orsay Faculty of Science. In Section 2 we follow the emergence of a compu-
tational Statistical Mechanics group within the newly founded Laboratory of The-
oretical Physics and High Energies at Orsay in the late 1950’s. Section 3 describes
the context of the development of MD and MC at Orsay throughout the sixties and
beyond. Prolongations and the diversification of these computational activities are
analysed in Section 4, while in the Conclusion we report the link between the most
commonly used MD algorithm for the integration of the equations of motion and a
Theorem due to Isaac Newton!

2 The Orsay Statistical Physics group

In 1960, the Orsay Science Campus (located 20 km south of Paris), still part of the
Faculty of Science of the University of Paris (Sorbonne), is in a phase of rapid devel-
opment. Several buildings are under construction, to host new laboratories, in partic-
ular the "Laboratoire de Physique Théorique et Hautes Energies" (LPTHE). From
the onset, its founder and director, Professor Maurice Lévy, wished the LPTHE to
be multi-disciplinary, bringing together theoreticians of elementary particles physics,
nuclear physics, statistical physics and mathematical physics. In these early days,
LPTHE numbered about 20-30 scientists, including PhD students, and occupied half
a floor of the freshly built "211" building, which also hosted solid-state and plasma
physics laboratories.

The statistical physics group was led by Loup Verlet, a "transfuge" from elemen-
tary particle and nuclear physics [Drell 1955]. In 1959, he derived the hyper-netted-
chain (HNC) equation [Verlet 1960|, simultaneously and independently of other au-
thors, using a diagrammatic re-summation method, a highly "fashionable" exercise
at that time. The HNC equation, as well as the Percus-Yevick (PY) equation de-
rived around the same time [Percus 1958| are approximate closure relations which
supplement the Ornstein-Zernike relation between total and direct pair correlation
functions [Ornstein 1914]. These integral equations were at the basis of theoretical
developments in statistical physics of dense fluids and liquids throughout the sixties
and beyond.

While the PY equation admits an analytic solution for the case of a hard sphere
fluid [Thiele 1963, Wertheim 1963, Baxter 1968|, no such solutions exist for the HNC
equation, nor for more "realistic" models, like the Lennard-Jones (LJ) pair potential,
of real fluids, within either PY or HNC. It is hence clear that one had to resort
to numerical solutions of these integral equations in order to allow a quantitative
comparison of the predictions of these approximate theories with experimental data.

In that perspective, the statistical physics group at LPTHE was to benefit from
the creation by Maurice Lévy and Loup Verlet, with the support of other laboratories,
of the computing centre of the Orsay Faculty. The computer which was installed in
building 211, was one of the first commercially available machines in the world, namely
the IBM 650. The central processor unit still used vacuum tubes, like radio sets of
that period! The central memory of 2000 words of ten decimal digits was located on
a magnetic drum which rotated at the frequency of several thousand revolutions per
minute and contained both instructions and data. The execution time of instructions



and arithmetic operations was of the order of a millisecond. Programming was pref-
erentially in machine language, each elementary operation being coded on punched
cards. Shortly thereafter a second machine was installed at Orsay Faculty, namely a
CAB 500 computer built by SEA (Société d’Electronique et d’Automatisme) com-
pany. This machine had a magnetic drum memory of 16000 words of 10 digits; the
typical execution time of arithmetic operations was of the order of 40 milliseconds.

Loup Verlet and his PhD student Dominique Levesque used mainly the IBM 650
to get acquainted with calculations on a computer. They developed programs to
solve the HNC and PY equations by an iterative method carried out in real space
since the Fourier transformation did not provide any advantage within the IBM 650
architecture and its Fast Fourier version [Cooley 1965] clearly not adapted to decimal
arithmetics.

Meanwhile the seminal papers of the MC and MD methods by Metropolis et al.,
Rosenbluth and Rosenbluth, Wood and Parker and Alder and Wainwright already
quoted, had not escaped the attention of the statistical physics group of LPTHE and
were studied in detail by the Verlet group. The results of these papers, in particular
those of Alder and Wainwright for hard spheres, allowed an appreciation of the quan-
titative validity of the PY and HNC equations for that system. A similar comparison
with experimental data for rare gases also provided such an appreciation, which is
however less reliable because of the uncertainty of the interatomic interaction modeled
by the LJ pair potential. In view of these comparisons, improvements of the PY and
HNC equations were put forward by the Verlet group. Functional expansions were
used to derive corrections to the PY equation, while an attempt was made to improve
the HNC closure by including some so called "bridge" diagrams neglected within HNC
[Verlet 1964, Verlet 1965]. It is for computing the simplest bridge diagram that the
Verlet group used for the first time the MC method [Verlet 1962].

In 1965-1966, Loup Verlet was invited by Joél Lebowitz to spend one year at
the Belfer Graduate School in New-York. This was the year after the publication of
the seminal paper by Anees Rahman on the MD simulation of a system of particles
interacting via the LJ pair potential [Rahman 1964]. Loup Verlet who had noticed
this article before his departure for the US, decided to extend Rahman’s pioneering
work along several lines. First, Lebowitz, Percus and Verlet established that, since
a time average taken within the course of a MD simulation, at constant total en-
ergy and momentum, is equivalent to a micro-canonical average, all thermodynamics
quantities can be computed from the time evolution of the dynamical variables them-
selves or their fluctuations [Lebowitz 1967]. For instance, the time average of the
kinetic energy fluctuations allows the calculation of the system’s specific heat. Next,
on an up-to-date CDC computer newly accessible at the Courant Institute of New-
York University, Loup Verlet implemented a MD code innovating along two lines,
namely an algorithm for the integration of the Newtonian equations of motion and
the awareness of the range of the molecular and atomic interactions [Verlet 1967].
These fundamental innovations are now universally acknowledged and used.

Concerning the second point, the work on the HNC and PY equation had shown
that the asymptotic decay of the LJ potential could be accounted for by assuming
that at large distances the pair distribution function is equal to its asymptotic value
g(r — o0) = 1. Verlet exploited this observation in his MD code by using appropriate
near neighbour tables around each particle, optimally up-dated to account for the
relative motion of the N particles. This procedure is easily validated by comparing
the results obtained with these tables to simulations taking into account all N(N —
1)/2 pairs of particles. The tables allow the simulation of much larger systems, since
the computation time becomes of the order NIn N rather N2. In Verlet’s initial
implementation [Verlet 1967] for a system of 864 particles, the simulation time, for
comparable statistical errors, was reduced by more than a factor of 4.



Concerning the integration algorithm, Verlet replaced the somewhat cumbersome
Runge-Kutta algorithm used by Anees Rahman by the appealingly simple algorithm:

Tt +dt) =2 () — T (t—dt) + di® £ (t)/m (1)

where 7 (t) is the position of a particle with mass m at time ¢ and 7(1&) is the total
force acting on the particle at time ¢. The algorithm is obviously reversible and valid
to order dt?.

The original MD program was written by Verlet in Fortran II CDC. On his return
from New-York, it was immediately transcribed on the new computer installed in
Orsay: the Univac 1107, followed by the Univac 1108. The latter was, during the
period 1967-1970, one of the most powerful commercially available computers. The
execution times of arithmetic operations were of the order of few microseconds, while
the operating system was among the first multi-tasking. Engineers from IBM-France
came to Orsay to observe de visu this functionality which is now standard!

The early MD runs sparked a number of questions concerning the size of the sim-
ulated systems and the rigour with which the conservation laws had to be satisfied.
The non-conservation of the momentum was the simplest case, since it results ex-
clusively from the choice of initial conditions and the round-off errors affecting the
calculation of the forces. Regarding the latter, the Univac 1108 had the advantage of
coding floating point numbers with 36 bits (rather 32 on IBM). Moreover the Verlet
algorithm Eq. (1) is independent of particle velocities, the latter being only required
for the calculation of the total energy and the temperature via:

() = T(t+ dt)Q—dt?(t — dt) @)

The integration time step was chosen empirically to ensure energy conservation within
a relative error 1072 — 10™* over runs of several thousand time-steps after equilibra-
tion. Simulations were generally run at night or during week-ends by members of
the Verlet team so as to benefit from favourable financial conditions, and to avoid
delaying the calculations of other users.

While the team had full confidence in the validity of the calculated thermodynamic
and structural quantities due to the equivalence between time average, computed by
MD simulation at constant energy, and micro-canonical average, questions arose on
the precision to be achieved on the particle trajectories for a realistic estimate of
the time-dependent correlation functions, like the velocity autocorrelation functions.
In the late sixties, the importance of accounting for the conservation of the phase
space volume had not yet been clearly recognized. In particular the fact that Anees
Rahman’s algorithm is not symplectic, while the Verlet algorithm Eq. (1) is, had not
yet been noted.

It was hence on the basis of the equivalence, anticipated by Boltzmann, between
MD and the micro-canonical ensemble, combined with a heuristic implementation
of practical details that the use of MD flourished at the LPTHE in Orsay. It was,
of course, recognized both at Orsay and elsewhere, that a MD program is readily
transformed into a MC program at the cost of a few minor modification and the
inclusion of a subroutine providing a truly reliable random number generator.

In particular, independently of the seminal Quantum Monte Carlo (QMC) paper
by W.E. McMillan [McMillan 1965], Verlet and his students used the formal analogy
between a Jastrow trial wavefunction [Jastrow 1955] and the Boltzmann factor for
a system of N classical pair-wise interacting particles, to calculate the ground-state
energy of liquid Hey [Levesque 1965]; the preprint remained unpublished because
McMillan’s paper appeared in print just as the Orsay preprint was completed. The



preprint was later supplemented by a paper on the ground state of He, and Hes,
using a Jastrow-Slater wave-function for the fermion case, written by D. Schiff and
L. Verlet while both were in New-York [Schiff 1967]. At about the same time, back
in Orsay, J.P. Hansen and D. Levesque used a Jastrow wave function, multiplied
by a product of Gaussians centered on the crystal lattice positions, within a varia-
tional QMC calculation, to determine the ground-state energies of solid Hey and Heg
[Hansen 1968]. These investigations of the ground states of liquid and solid Helium,
based on variational approaches, were extended in 1973 - 74 within the framework of
a collaboration with Mal Kalos. Kalos had initiated and promoted a ground-breaking
Monte-Carlo method allowing the exact sampling of the ground-state wavefunction of
many-boson systems, referred to as Green’s Function Monte-Carlo. The collaboration
led to the first application of this exact algorithm to an N-body system, namely a
quantum system of hard spheres [Kalos 1974].

3 The context of the development of MD and MC at Orsay: the
late sixties and beyond

The development of MD and MC simulations at LPTHE in the sixties and early
seventies was based on the close collaboration of Loup Verlet with his students: Do-
minique Levesque, Daniel Schiff, Jacques Vieillard-Baron, Jean-Pierre Hansen, and
Jean-Jacques Weis and the mutual collaboration of group members. Verlet’s group
also benefited from a very active international collaboration with distinguished vis-
itors including: Berni Alder, Anees Rahman, John Valleau, Ian Mc¢ Donald, Konrad
Singer, Mal Kalos, George Stell, Mark Nelkin and post-docs Juhani Kurkijarvi, Roy
Pollock among others.

In the academic research environnement of France during the sixties and early
seventies, the simulation work of the LPTHE group was favourably regarded as wit-
nessed by the Langevin prize of the French Physical Society awarded to Loup Verlet
in 1971. At this time, it was clear that MD and MC simulations applied to simple
classical or quantum systems were able to establish the limits of validity of approx-
imate theoretical approaches, and even to predict unexpected physical phenomena
like the freezing of hard spheres or the algebraic (rather than exponential) decay of
time dependent correlation functions [Alder 1967, Levesque 1974]. But it was much
less clear that these simulation methods would eventually be able to study genuinely
complex systems, just as it was difficult to foresee the near exponential growth of
computer power, at exponentially decreasing costs, which we have been witnessing in
the last decades.

Meanwhile, strengthening the development of the Orsay Faculty, the Centre Na-
tional de la Recherche Scientifique (CNRS) established on the Orsay campus, at
the end of the sixties, the Centre Inter-Régional de Calcul Electronique (CIRCE),
a national computational facility equipped with an IBM computer. However at the
LPTHE, the coding of the MD and MC programs which was partly in Univac machine
language, in order to reduce computational times, prevented an immediate portabil-
ity of the codes to other computers. Moreover, since the installation of the Univac
computers at Orsay had hardly been welcomed by IBM, the LPTHE group had de-
veloped a kind of "allergy" towards IBM, and used the CIRCE facilities only very
marginally. Within the CIRCE building, Carl Moser, a quantum chemist, created
the Centre Européen de Calcul Atomique et Moléculaire (CECAM) in october 1969.
Members of the Verlet group did not participate, due to initial misunderstandings
and the aforementioned "allergy” to IBM, in the workshops organized by CECAM
which contributed strongly to the development of MD and MC methods and their



applications throughout Europe. But this initial "boycott" did not affect scientific col-
laborations between LPTHE group and participants of the workshops who regularly
visited the LPTHE and spent sabbatical leaves with the Verlet group.

While the Orsay group focused mostly on improving and exploiting Molecular
Dynamics methodologies, the Monte Carlo method in Statistical Mechanics spread
simultaneously to other European countries. At Royal Holloway College near London,
Tan McDonald and Konrad Singer introduced the very efficient "histogram reweight-
ing" method [McDonald 1967|, and applied it to classical fluids. In Austria, at the
Technical University of Vienna, Kurt Binder applied MC sampling to discrete spin
systems, in an effort to model magnetic materials and analyse neutron scattering
data [Binder 1968]. At the Munich Technical University, Dietrich Stauffer was the
first to use MC methods to study particle percolation on a lattice, which later led
to a well-known monograph [Stauffer 1985]. More generally throughout the seventies,
participants in CECAM workshops started new computational statistical mechanics
groups throughout Europe, including Giovanni Ciccotti in Rome and Herman Berend-
sen in Groningen among others.

4 Some prolongations

In the late sixties, and early seventies, the MD and MC simulation projects at
LPTHE diversified along several lines, of which we give a few examples. Daniel
Schiff used "computer experiments" to investigate simple liquid metals based on ef-
fective ion-ion potentials [Schiff 1969]. Jacques Vieillard-Baron was the first to sim-
ulate assemblies of hard ellipses as a simple model for two dimensional nematic or-
dering [Vieillard-Baron 1972]; his pioneering work inspired the seminal papers by
Daan Frenkel and collaborators on the phase diagram of lyotropic liquid crystals
[Frenkel 1985]. Jean-Jacques Weis joined forces with Berni Alder and Berkeley ex-
perimentalist Herbert Strauss to investigate depolarized light scattering via MD sim-
ulations [Alder 1973]. Dominique Levesque and collaborators were the first to ex-
tend MD to simple models of rigid diatomic molecules [Barojas 1973]. Jean-Pierre
Hansen joined forces with Ian Mc Donald and Roy Pollock to investigate the static
and dynamical properties of the "one component plasma" (OCP) a model for highly
compressed plasmas generated in inertial confinement fusion experiments, both by
MC [Hansen 1973] and MD [Hansen 1975] simulations. The Verlet group also en-
gaged in a fruitful collaboration with LPTHE theoretical physicists, in particular with
Bernard Jancovici, a former classmate of Loup Verlet at Ecole Normale Supérieure
[Hansen 1972].

Around 1974, Loup Verlet and Daniel Schiff moved to other areas of research and
human endeavour. In 1974 they published an opinion column in the November is-
sue of the journal La Recherche [Verlet 1974], putting forward their questioning of
the objectives of fundamental research in theoretical physics and their motivations
to contribute to other areas. Their concerns, in particular those related to ecological
issues are still of crucial relevance today. Loup Verlet’s practice of theoretical physics
also led him to an epistemological analysis of the creation and development of sci-
entific theories published in his two books "La Malle de Newton" [Verlet 1993| and
"Chimeres et Paradoxes" [Verlet 2007].

5 Conclusion

To conclude this brief historical review of the development of the MD and MC simu-
lations at Orsay Faculty, we quote an extract from Loup Verlet’s book "Chiméres et



Paradoxes", on pages 174-175, where Loup Verlet gives his personal account of this
period:

« Immediately after World War II, the increase in power of computers allowed to
reconsider the basis of the question raised by the atomistic hypothesis and addressed
by Maxwell and Boltzmann in the 19th century: how to determine the macroscopic
properties of gases and liquids, knowing that they are composed by large numbers of
atoms obeying Newton’s equations of motion and assuming that they interact via a
given force law? This question became all the more pressing towards the end of the
century, in light of growing evidence that atoms and molecules really exist. Until the
end of the World War II, this question remained essentially unsolved except in the
case of low density gases. The situation changed in the fifties due to the advancement
of powerful computers. It became possible to follow, over a sufficiently long time span,
the trajectories of several tens or even hundreds of particles behaving like billiard balls.
A few years later it became feasible to tackle a more realistic model, namely about one
thousand particles interacting via pair-wise Lennard Jones forces. Within a collective
research effort, I suggested, among other procedures to speed up the calculations, a
new algorithm for the integration of Newton’s equation of motion of the dynamics of
the molecules. Simple, stable and accurate, this algorithm can be used to simulate the
motion of very complex molecules. At that time, I did not realise that the algorithm
I had suggested was nothing but the generalization of the geometric algorithm of
Newton ... ».

In Fig.1, we show this geometric algorithm extracted from Newton’s "Principia"
[Newton ed. 1883]: The particle’s discrete trajectory 7 (¢) is the broken line A, B,
C, D, E, F, ... and the source of the force acting on the particle is at S. As Loup
Verlet notes on page 124 of "Chiméres et Paradoxes", even if « the translation of
proportionality ratios into vector equalities is anachronistic, it reflects Newton’s in-
dications », (cf. [Principia Translation 1934]). In particular the AB segment can be
interpreted as ¥ (t — dt) dt or 7 (t) — 7 (t — dt), the segment BV as ?(t) dt? /m, etc.
This translation into vectorial quantities, and noting that ABCV is a parallelogram,
leads to the relation:

(7 (¢ +dt) = 7 () — (F(6) — 7 (¢ — de))]/de* = F (1) /m (3)

which is precisely Verlet’s algorithm (1).
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SECTIO 1I.
De Inventione Firium-Ceniripetarum.

PROPOSITIO I. THEOREMA 1.
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Fig. 1. From a facsimile edition of Newton’s Philosophiae naturalis principia mathematica,
schema of a particle trajectory submitted to a central force [Newton ed., 1883|, cf. text

below.
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