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ABSTRACT

One of the biggest challenges in evolutionary computation concerns

the selection and configuration of a best-suitable heuristic for a

given problem. While in the past both of these problems have

primarily been addressed by building on experts’ experience, the

last decade has witnessed a significant shift towards automated

decision making, which capitalizes on techniques proposed in the

machine learning literature.

A key success factor in automated algorithm selection and con-

figuration are good training sets, whose performance data can be

leveraged to build accurate performance prediction models. With

the long-term goal to build landscape-aware parameter control

mechanisms for iterative optimization heuristics, we consider in

this discussion paper the question how well the 24 functions from

the BBOB test bed cover the characteristics of (hyper-)parameter

tuning problems. To this end, we perform a preliminary landscape

analysis of two hyper-parameter selection problems, and compare

their feature values with those of the BBOB functions. While we

do see a good fit for one of the tuning problems, our findings also

indicate that some parameter tuning problems might not be very

well represented by the BBOB functions. This raises the question if

one can nevertheless deduce reliable performance-prediction mod-

els for hyper-parameter tuning problems from the BBOB test bed,

or whether for this specific target the BBOB benchmark should be

adjusted, by adding or replacing some of its functions.

Independently of the aspect of training automated algorithm

selection and configuration techniques, hyper-parameter tuning

problems offer a plethora of problems which might be worthwhile

to study in the context of benchmarking iterative optimization

heuristics.

CCS CONCEPTS

• Computing methodologies → Randomized search; • Soft-

ware and its engineering→ Search-based software engineering;
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1 INTRODUCTION

Evolutionary algorithms, as well as all other commonly used search

heuristics, are, strictly speaking, parametrized frameworks that

the user needs to instantiate before execution. The instantiation

typically requires to set a number of parameters, such as the popula-

tion size, search radius, selective pressure, etc. The parametrization

offers a great flexibility, which allows the user to adjust the algo-

rithm’s behavior to the needs of her problem. However, this flexi-

bility comes at the cost of creating another optimization problem

on top: parameter tuning.
Parameter tuning was very early identified as a very important

problem [20], since the performance of search heuristics is typically

highly sensitive to their parameters [11]. To date, the parameter

tuning problem is considered to be one of the most important

challenges in evolutionary computation (and beyond) [2, 8, 19, 35].

Non-surprisingly, significant research efforts have been under-

taken to assist the user in the parameter tuning problem. These

works have stimulated the design of automated tools which solve

the tuning problem for a given algorithm (on a given sub-problem),

see [1, 3, 25, 34, 36] for only a few examples. In a number of com-

plementary workstreams the question of how to control good pa-

rameter values has been addressed. The underlying observation

of parameter control is that – for a very significant fraction of

algorithms and many problems – the range of good parameter val-

ues can change quite drastically during the optimization process.

Parameter control is therefore not only aiming to identify opti-

mal parameter values, but also to track their evolution throughout

the whole run. Paradoxically, parameter control mechanisms are

again parametrized, so that one might tend to conclude that not

much can be gained by such approaches. Note, however, that they

gain us the flexibility to adjust the first-order parameters during

the run. Numerous examples are known where parameter control

outperforms static choices, see [13, 26] for recent surveys. The

parameters of the control mechanism are commonly referred to

as hyper-parameters, and when considering their optimization we

speak of hyper-parameter tuning.
Giving the omnipresent use of search heuristics throughout all

industrial branches and all data-driven scientific disciplines, we

therefore see that the parameter tuning and hyper-parameter tuning

problems constitute tasks for which a solid understanding is at very

high demand.

Unfortunately, (hyper-)parameter tuning problems can be very

complex. Examples in which a small change in the parameter value

results in an exponential performance gap can be found in [16, 32].

[32] shows an example for which an exponential performance gap is

https://doi.org/10.1145/3319619.3326857
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caused by a threshold behavior, i.e., there is an abrupt change in per-

formance at a certain parameter value. On the other hand, it has also

been demonstrated that a number of parameter tuning problems are

actually much more benign (e.g., smooth, convex, and/or unimodal)

than one might have expected in the first place [39]. This diversity

of behaviours calls for more studies on the understanding of pa-

rameter tuning problems, apart from purely performance-oriented

studies.

With this discussion paper, we are aiming at starting a focused

discussion on howwell (hyper-)parameter problems are represented

in common benchmarks, and whether there is need and room to

extend these benchmarks by (hyper-)parameter tuning problems.

With this goal in mind, we provide a preliminary study in which

we evaluate the fitness landscape of two hyper-parameter tuning

problems taken from the evolutionary computation literature, and

compare their structure to those of the 24 noiseless functions of the

BBOB test bed [21].

Methodology: Exploratory Landscape Analysis. Explorato-

ry landscape analysis (ELA) [31, 37] is a way to measure the struc-

ture of a problem f by sampling from it some (typically random

or quasi-random) solutions, evaluating these, and mapping the re-

sulting set of (x , f (x))-pairs to a vector of real numbers that are

meant to capture the important characteristics of the problem. The

objective is to know what makes the problem difficult, so as to

adapt the algorithm’s behaviour. The landscape-aware parameter

tuning approach is thus to observe the problem through the estima-

tion of its landscape features and use them to tune the algorithm’s

parameters to optimize its performance.

This approach led to promising results when trying to find the

best suitable hyper-parameter tuning to solve a given problem in-

stance. In this “per instance algorithm configuration” [33] approach,

a set of features is first measured on a random sample and the pa-

rameter tuning is derived from a previously learned mapping [24].

This approach necessitates to learn the landscape-parameter map-

ping, called an empirical performance model [4], on an existing

benchmark.

In such a setting, the efficiency of the landscape-aware parameter

tuning strongly depends on the quality of the benchmark. More

precisely, it depends on the so-called “footprint” [27, 38] of the

benchmark instances across the features space. If the benchmark

does not exhibit (some of) the landscapes of the real-world problems,

then the performances of the adapted algorithm may actually be

worse than a more generic counterpart.

Thus, the most urgent question addressed by this paper reduces

to: Are landscapes of algorithm configuration problems similar to
those observed in benchmarks that are commonly used for learning?

In this preliminary work, we use the Black-Box Optimization

Benchmark (BBOB) [22] as a reference. The noiseless functions

of BBOB have been used as the learning benchmark in previous

work on landscape-aware per-instance algorithm configuration [4],

which led to good performance improvements [6]. However, it

should be noted that the landscape-aware parameter tuning prob-

lem is in itself a noisy problem involving amachine learning process.

As such, the recently proposed “Nevergrad” benchmark [41, 42]

may be also considered.

Disclaimer: While we present two case studies within this dis-

cussion paper, we do not claim that they are representative. Our

Algorithm 1: The self-adjusting (1 + (λ, λ)) GA variant with

five hyper-parameters α , β,γ ,A,b

1 Initialization: Sample x ∈ {0, 1}n u.a.r.;

2 Initialize λ← 1;

3 Optimization: for t = 1, 2, 3, . . . do

4 Mutation phase:

5 Sample ℓ from Bin>0(n,p = αλ/n);

6 for i = 1, . . . , λ1 = nint(λ) do x (i) ← flipℓ(x);

7 Choose x ′ ∈ {x (1), . . . ,x (λ1)} with

f (x ′) = max{ f (x (1)), . . . , f (x (λ1))} u.a.r.;

8 Crossover phase:

9 for i = 1, . . . , λ2 = nint(βλ) do

y(i) ← crossc=γ /λ(x ,x
′);

10 Choose y ∈ {x ′,y(1), . . . ,y(λ2)} with

f (y) = max{ f (x ′), f (y(1)), . . . , f (y(λ2))} u.a.r.;

11 Selection and update step:

12 if f (y) > f (x) then x ← y; λ← max{bλ, 1};

13 if f (y) = f (x) then x ← y; λ← min{Aλ,n − 1};

14 if f (y) < f (x) then λ← min{Aλ,n − 1};

main goal is to trigger a discussion on (1) whether feature-based

approaches are suitable to discriminate between different types of

benchmark problems, (2) if (hyper-)parameter tuning is well repre-

sented in the BBOB test bed, in that we can extrapolate reasonable

performance predictions from it, and (3) whether hyper-parameter

tuning problems are suitable as benchmark problems beyond their

own interest, i.e., do these problems provide additional insights into

the working principles of common optimization heuristics?

2 FIRST CASE STUDY: TUNING THE

FIVE-DIMENSIONAL (1 + (λ, λ)) GA
To investigate how well hyper-parameter tuning fits into the BBOB

test bed, we describe in this section a first set of experiments, in

which we compare the feature values of a hyper-parameter tuning

problem with those of the 24 noiseless BBOB functions. More pre-

cisely, we consider the fitness landscape of the five-dimensional

hyper-parameter tuning problem of the generalized (1 + (λ, λ)) GA
presented in [9]. We tune its performance on the 5,000-dimensional

OneMax problem. The generalized (1 + (λ, λ)) GA is summarized

in Algorithm 1, we do not discuss it in great detail here, and point

the interested reader to [9, 12, 14] for an in-depth discussion of

this algorithm. For the tuning problem we consider the following

ranges: α ∈ [0.33, 10], β ∈ [1, 10], γ ∈ [0.333, 10], A ∈ [1.01, 2.5],
and b ∈ [0.4, 0.99]. For the BBOB test bed, we used the R-package

smoof [7] and considered the first five instances per function. A

detailed description of the BBOB functions can be found in [22],

and a survey on the COCO benchmarking platform, which BBOB

is a part of, is available at [21].

For each of the 120 BBOB instances (24 functions with five in-

stances each), as well as for the hyper-parameter tuning problem,

we used a low-discrepancy point set generator to sample 3
5 = 243

points x in total at which we evaluated the fitness. More precisely,
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we have used a Halton point set for the generation of the configura-

tions at which we evaluate the (1 + (λ, λ)) GA tuning problem [40],

and we use a Latin Hypercube sample for the BBOB evaluations (for

convenience, as it is already implemented as standard sampler in

flacco [23, 31], the tool that we use to compute the feature values,

see below). For the hyper-parameter tuning problem we scale the

[0, 1]d -distributed points from the generator to the above-specified

range of the parameters α , β ,γ ,A,b. For each of the 243 configura-

tions we run the self-adjusting (1+ (λ, λ)) GA eleven times, average

the optimization times of the resulting eleven values, and assign

this average running time as fitness to the respective configuration.

The heatmaps in Figure 1 give a first indication how the sampled

configurations are distributed, and how the fitness landscape of the

five-dimensional tuning problem looks like, in a global perspective

(upper figure) and for a zoom into the configurations achieving

an average optimization time of at most 10
7
function evaluations

(bottom figure). We note here that none of the evaluated config-

urations performs extremely well: the best configuration has an

average running time of around 43,395 evaluations, whereas in [9]

several configurations are reported to have a much smaller average

optimization time, which can go as low as 29,000 function evalua-

tions. We also note that the plots indicate some regularity, despite

the fact that the Halton point set was meant to provide a good

distribution. It might be worth investigating how much our results

would change depending on the sample distribution. The point

sets from [40] are known to achieve low L2-discrepancy, but other

measures such as the star discrepancy or energy level measures

might be more suitable. This, however, forms a separate research

thread which we ignore in this present work.

For each of the 121 sets of 243 (x , f (x))-pairs we then compute

the feature values using flacco [23, 31]. Since some feature com-

putations are stochastic, we perform ten independent runs per data

set, leaving us with 1,200 feature vectors for the BBOB functions

and ten feature vectors for the hyper-parameter tuning problem.

For a first indication how similar the tuning problem is to those

in the BBOB testbed, we next determine minimum and maximum

for each of the 66 features (we here disregard all basic features,
as well as cost-related subfeatures as they are not related to the

fitness landscape itself). We then evaluate if the feature values of

the tuning problem are within the range of the BBOB functions.

As a result, we obtain that all but four feature values fall in the

BBOB range. Figure 2 depicts the distribution of the conspicuous

feature values for the 120 BBOB instances against the value of

the tuning problem. All four features are based on deterministic

computations, and the distribution is therefore only with respect

to the 120 deterministic feature values.

The idea behind the four conspicuous features mentioned above

can be summarized as follows: the cell mapping angle (cm_angle)
features [28] discretize the search space into three equidistant in-

tervals per dimension, resulting in 3
5 = 243 cells in total. For all

non-empty cells, i.e., cells which contain at least one of the sam-

pled observations, the angle (in degree) between the worst, the

center and the best observation of the respective cell is computed.

Afterwards, the angles of all feasible (i.e., non-empty) cells are ag-

gregated by means of the arithmetic mean (angle.mean) and their

standard deviation (angle.sd). For the nearest better clustering (nbc)

features [29], two distance sets are computed. The first distance

set comprises the distances of all points to their respective nearest

neighbors, whereas the second one contains all nearest better neigh-

bor distances, i.e., the distances to the nearest neighbor among all

observations with a better fitness value. nn_nb.mean_ratio com-

putes the ratio between the mean distances of the two distance sets.

In contrast, dist_ratio.coeff_var first computes the distance ratio per

observation and afterwards aggregates these ratios by means of

their coefficient of variation (arithmetic mean divided by standard

deviation).

2.1 Averaged Feature Analysis

We perform a second analysis in which we average the feature

values across the ten independent runs of flacco and, in case of

the BBOB functions, the five instances. This approach reveals seven

(feature) outliers, whose distributions are summarized in Figure 3.

The features listed therein extend the previous four outliers from

Figure 2 by one gradient homogeneity (cm_grad, [28]) feature and
two y-distribution (ela_distr, [37]) features. For the former, we first

compute the (normalized) gradients between each point in a cell

and its nearest neighbor, then point each gradient towards its better

end, and afterwards sum up all gradient vectors (per cell). At last,

the lengths of all cumulated gradient vectors are aggregated by

means of the standard deviation (sd). In contrast, the y-distribution
features simply aggregate the frequency of the fitness values. More

precisely, kurtosis and skewness are the kurtosis and skewness of

all fitness values f (x) from the sample.

2.2 Tuning vs BBOB Functions

While we have merely looked at aggregated data in the analyses

above, we next compare the feature values of the tuning problem to

each of the individual BBOB functions. To this end, we compute for

each of the 24 BBOB functions the vector of average feature values,

and compare them to the average feature values of the tuning prob-

lem. We recall here that for the tuning problem, the averaging only

concerns the randomness stemming from the feature computation,

whereas for the BBOB functions we also aggregate over the five

instances. Figure 4 displays the results of this comparison. While

we see a seemingly good fit of the ELA feature values of the tuning

problem with those of BBOB’s F1, F3, F8, F13, F14 and F15 (see

Figure 4b), no BBOB function could be identified for a good fit with

respect to the other feature sets displayed in Figure 4a and 4c.

The plots in Figure 4 also raise the interesting question if one can

design an aggregated measure that captures the similarity between

two or more fitness landscapes. To this end, a more solid under-

standing of the relevance of each feature needs to be developed.

3 SECOND CASE STUDY: THE (1+1) EA WITH

SELF-ADJUSTING MUTATION RATES

We add a second case study to our findings from Section 2, in which

we consider the algorithm proposed in [17], a (1+1) evolutionary

algorithm (EA) with self-adjusting mutation rates. Its pseudocode

can be found in Algorithm 2. The (1 + 1) EA>0 works as follows:

after a random initialization, the algorithm always maintains a

best-so-far solution x , breaking ties towards the last evaluated

search point of current-best fitness value. In each iteration one
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Figure 1: Heatmaps depicting the pairwise hyper-parameter landscapes of the “GA on OneMax” tuning problem for two

precision values: all configurations (top) and configurations with less than 10
7
function evaluations (bottom).
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Figure 2: Features based on 120 BBOB instances (shown as

violin plots) in comparison to the respective feature val-

ues based on the hyper-parameter landscape of the “(1 +

(λ, λ))GA onOneMax” tuning problem (red horizontal line),

for the four features for which the tuning problem does not

fall into the range of the BBOB instances.
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Figure 3: Features based on the 24 BBOB functions (shown as

violin plots) in comparison to the respective feature values

based on the landscape of the “(1 + (λ, λ)) GA on OneMax”

hyper-parameter tuning problem (red horizontal line), for

the seven features for which the tuning problem does not

fall into the range of the BBOB functions.

new offspring y is created by flipping each bit of the parent x
independently with mutation rate p (standard bit mutation). When

y = x a new bit string is sampled until we obtain an offspring y , x .
Equivalently, we can sample the mutation strength, i.e., the number

of (randomly distributed) bits to be flipped, from the conditional

binomial distribution Bin>0(n,p)(k). This distribution evaluates to

0 for k = 0 and to Bin(n,p)(k)/(1−(1−p)n ) =
(n
k
)
pk (1−p)n−k/(1−

(1 − p)n ) for 1 ≤ k ≤ n. This is the description used in Algorithm 2

and explains the subscript “>0” in the name of the algorithm. Once

an offspring y , x is sampled, the algorithm evaluates the fitness

f (y) and replaces the parent x by y if and only if f (y) ≥ f (x). In
this case the mutation rate p is increased to Ap, where A > 1 is one

Algorithm 2: The (1+ 1) EA>0 with update strengths A and b
and initial mutation rate p0 ∈ [1/n

2, 1/2] for the maximization

of a pseudo-Boolean function f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and

compute f (x);

2 Set p = p0;

3 Optimization: for t = 1, 2, 3, . . . do

4 Sample ℓ from Bin>0(n,p);

5 y ← flipℓ(x);

6 evaluate f (y);

7 if f (y) ≥ f (x) then
8 x ← y and p ← min{Ap, 1/2}

9 else

10 p ← max{bp, 1/n2}

of the three hyper-parameters of this algorithm. When f (y) < f (x)
the offspring y is discarded and the mutation rate lowered to bp,
where b < 1 is the second hyper-parameter. The search process

continues until a user-defined stopping criterion is met.

The self-adjusting (1+1) EA>0 has thus three hyper-parameters:

the update strengths A and b and the initial mutation rate p0 ∈
(0, 1). It has been demonstrated in [18] that the influence of the

initial mutation rate is negligibly small when considering “easy”

optimization problems such as OneMax and LeadingOnes. We

therefore fix in the following p0 = 1/n and concentrate on the two-

dimensional tuning problem A ∈ (1, 6] and b ∈ (0, 1). This is the
tuning problem that was studied in [17], with a purely performance-

oriented mindset. Here, instead, we are rather interested in the

characteristics of its fitness landscape.

We consider as test case the (1+1) EA>0 on the 250-dimensional

LeadingOnes problem Lo : {0, 1}n → [0..n],x 7→ max{i ∈ [0..n] |
∀j ∈ [i] : x j = 1}. In this section, all numerical evaluations for the

tuning problem are built upon the data from [17]. This data is as

follows: For each configuration x = (A,b) with A ∈ {1 + 0.1k | 1 ≤
k ≤ 50} and b ∈ {0.02k | 1 ≤ k < 50} we assign as f (x)-value the
average running time of 101 independent runs of the self-adjusting

(1+1) EA>0 with update strengthA and b. We note that this results

in a total number of 2,450 (x , f (x))-pairs for the tuning problem. For

the BBOB data, however we build our computations on 50D = 100

points only (for the simple reason that we had this data readily

available - an update with a similar-sized sample will be done for

the camera-ready version, should this paper be accepted).

3.1 Alternative Parameter Representations

We briefly note that a recent work [15] shows that a better para-

metrization of A and b would require that b = (1/A)1/(s−1), so that

A is the update strength and s the success rule of the algorithm.

This setting generalizes the well-known one-fifth success rule from
evolution strategies [10, 43, 44]. It was proven in [15] that the

optimal update strength F for the (1+1) EA>0 on the LeadingOnes

problem satisfies F = 1 + o(1), while the optimal success rule is

around 1.285. With this setting, the expected optimization time

on the n-dimensional LeadingOnes function is around 0.404n2

(to be very precise, the latter is based on a numerical evaluation
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(a) dispersion features (b) ela features

(c) cell mapping, information content, and nearest better clustering features

Figure 4: Comparison of selected feature values of the tuning problem (bold black line) with those of the 24 BBOB functions

(slim red lines). All values have been normalized to the interval [0, 1]

of an otherwise rigorous mathematically proven bound). Since

such a parametrization requires a very deep understanding of the

underlying optimization process, and since we want to build our

analysis upon the data provided by [17], we ignore this alternative

parametrization in the following, and consider the tuning ofA andb
as used in Algorithm 2. We mention this alternative representation

because we consider it an interesting question to investigate the

influence of such representations on the fitness landscapes and on

the difficulty of the underlying tuning problem. We plan to address

this question in future work.

3.2 Heatmaps

To get a first impression of the global fitness landscape, we first

plot again some heatmaps of the tuning problem, cf. Figure 5. The

left figure displays the full data set, whereas the ones in the middle

and on the right zoom into those configurations which obtain an

average running time of at most 50,000 and 30,000, respectively. For

comparison, the best configurations achieve a running time slightly

above 25,000 ≈ 0.403n2.
We observe that the landscape appears to be very flat when

looking at the largest resolution. However, some structure can be

observedwhen zooming into themore performant runs. In principle,

it might be possible to extend the results from [15] to formulate

the dependence of the average running time of the self-adjusting

(1 + 1) EA>0 on the LeadingOnes problem. Based on those results,

a rather smooth fitness landscape can be expected. The heatmap

structure may indicate that this tuning problem is not too different

from the BBOB functions, a question that we will evaluate in more

detail in the next subsection.

3.3 Feature Value Comparison

Similar as in Section 2 we again first look for feature values of the

tuning problem that do not fall into the range of the 120 BBOB

instances. This is the case for all but three features, whose distribu-

tions are illustrated in Figure 6.

The first feature (dist_ctr2worst.mean) again exploits information

based on the 3
5 = 243 cells of the discretized search space. For all

(non-empty) cells, it computes the distance between the cell’s worst

point and center. Afterwards the computed distances are averaged

across the non-empty cells. The second feature (nb_fitness.cor) mea-

sures the correlation between an observation’s fitness value and

its “indegree” (i.e., the number of points from the sample for which

the current observation constitutes the nearest better neighbor). At

last, nn_nb.sd_ratio is the ratio between the standard deviations of

the nearest neighbor and nearest better neighbor distance sets.
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Figure 5: Heatmaps depicting the hyper-parameter landscapes of LeadingOnes for different precision values: all configura-

tions (left), as well as configurations with < 50k (middle) and < 30k evaluations (right).
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Figure 6: Features based on the 24 BBOB functions (shown

as violin plots) in comparison to the respective feature val-

ues based on the landscape of the LeadingOnes hyper-

parameter tuning problem (red horizontal line), for the

three features for which the tuning problem does not fall

into the range of the BBOB functions.

3.4 Detailed Comparison

Finally, we investigate how the feature values of the parameter

tuning problem compare to those of the BBOB functions. Based

on the data given in Figure 7, it seems that this tuning problem

is indeed, as conjectured in the beginning of this section, better

represented by the BBOB functions than the problem considered in

Section 2. In particular for functions F3 and F15, visual comparison

leads us to observe a slightly better fit across various (but not all)

feature values.

4 CONCLUSIONS AND OUTLOOK

With this work we aim to trigger a discussion on the suitability of

hyper-parameter tuning as benchmarking problems for optimiza-

tion algorithms. Using two examples stemming from the theory of

EA literature we have given some indication that the fitness land-

scapes described by hyper-parameter tuning may currently not be

very well reflected in the 24 BBOB functions. However, we cannot

rule out the possibility that performance data from the BBOB test

bed can nevertheless provide discriminating information about the

algorithms’ performances, in particular by combining data across

several benchmark functions. For a proper scientific evaluation, we

therefore suggest a more detailed, double-sided study on:

(1) whether BBOB performance data can nevertheless be used

as training sets to build reasonable performance models for

(hyper-)parameter tuning problems, and/or

(2) which parameter tuning problems are particularly appro-

priate for benchmarking (general-purpose and/or problem-

specific) solvers

We recall that an answer to the second question must not ignore

the fact that for a reasonable experimental setting the function eval-

uations of the tuning problem should not be too time-consuming

(unless one is interested in the very expensive optimization case,

in which one deals with very small evaluation budgets). Finding

suitable tuning problems that are fast to evaluate, but at the same

time also representative for “real-world” tuning problems might be

a challenging task.

Going forward, we plan on addressing both problems listed above

by investigating parameter tuning problems of different types, e.g.,

exhibiting different dimensionalities, different underlying prob-

lems, etc. In concrete terms, a candidate tuning problem that we are

particularly keen on understanding is the (ideally automated) con-

figuration of the hyper-parameters of the CMA-ES. We furthermore

plan on extending the tuning of its hyper-parameters to setting

different CMA-ES modules that have been suggested in the research

literature. A suitable framework for such a study is provided by the

modular CMA-ES framework available from [45].

One of our long-term objectives is the development of landscape-
aware techniques to control the selection and the configuration of algo-
rithms, which leverage existing experimental data and appropriate

tools from the machine learning literature to select algorithms and

parameters on the fly. Besides building a suitable training set, such

an approach also requires to build efficient predictors for the fitness
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(a) dispersion features (b) ela features

(c) cell mapping, information content, and nearest better clustering features

Figure 7: Comparison of selected feature values of the “(1 + 1) EA>0 on 250d-LeadingOnes” tuning problem (bold black line)

with those of selected or all 24 BBOB functions (slim red lines). All values have been normalized to the interval [0, 1]

landscapes. That is, we need to designmechanisms that require only

a very limited amount of additional function evaluations for approx-

imating the feature values in the optimization problem’s current

state. This question comprises three main difficulties: (1) predicting

the feature values based on a small number of samples (see [5, 30]

for a discussion and first approaches), (2) selecting a subset of

features that is large enough for landscape discrimination, while

being small enough to reduce the learning complexity [30, 31], and

(3) the refinement of feature value computations that are designed

to capture the structure of the global optimization problem to a local
perspective, which measures how the relevant part of the search

space currently “seen by the algorithm” looks like.

5 PERSPECTIVES

Tuning problems might help to bridge the gap between continuous

and discrete evolutionary computation. Independently from the

type of sub-problem the search heuristic is solving, the most generic

hyper-parameter setting problems involve several parameter types:

continuous (e.g., mutation rate), integer (e.g., population size), or

qualitative parameters (e.g., choice of modules). Understanding

discrete and continuous optimization is therefore required for most

real-world applications.

We also want to outline the interplay between machine learn-
ing and black-box optimization: Recent works on landscape-aware

heuristics have shown that machine learning can be used to learn

a feature-parameter mapping [4, 6, 31]. That alone forms an inter-

esting use case for machine learning practitioners, as the corre-

sponding data set is cleanly generated on-demand and at almost

any scale, by sampling a well-defined decision space.

In both domains, the hyper-parameter setting problems are very

similar and search heuristics are already applied to solve them both.

However, while the landscape-aware approach has already been

proven to be useful in the black-box optimization context, we are

not aware if similar concepts are in use within the machine learning

communities.
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