Johann Dreo
email: johann.dreo@thalesgroup.com

Carola Doerr
email: carola.doerr@lip6.fr

Yann Semet
email: yann.semet@thalesgroup.com

Coupling the Design of Benchmark with Algorithm in Landscape-Aware Solver Design

Keywords: CCS CONCEPTS, Computing methodologies → Heuristic function construction, Randomized search, • Software and its engineering → Search-based software engineering, landscape-aware heuristics, algorithm engineering, algorithm design, black-box optimization, benchmarking, benchmark design

Following a general trend in artificial intelligence, Evolutionary Computation has, in recent years, witnessed substantial performance gains from landscape-aware selection and parameter tuning of algorithmic modules. Such approaches, however, are critically relying on suitable benchmarks, or training sets, that provide the appropriate blend of performance and generality. With this position paper we argue that, on a landscape analysis basis, the benchmark design problem will form a substantial part of the next-generation of automated, on-demand algorithm design principles.

INTRODUCTION

The automation of the design of programs has been a classical concept in the evolutionary algorithm community from the start [START_REF] Nichael | A representation for the Adaptive Generation of Simple Sequential Programs[END_REF][START_REF] Fogel | Artificial intelligence through simulated evolution[END_REF] and was quickly applied to the design of algorithms themselves [START_REF] Dickmanns | Der genetische algorithmus: Eine implementierung in prolog[END_REF].

It was also stated very early that the performance of evolutionary algorithms is very parameter-sensitive [START_REF] Charles | The choice of step length, a crucial factor in the performance of variable metric algorithms[END_REF] and that the tuning problem is in itself a (meta-)optimization problem [START_REF] John | Optimization of control parameters for genetic algorithms[END_REF]. Since then, problems related to the automated design of evolutionary algorithms have been commonly studied [START_REF] Bartz-Beielstein | Experimental methods for the analysis of optimization algorithms[END_REF][START_REF] John | Optimization of control parameters for genetic algorithms[END_REF] In the broad sense, the automated design of an optimization solver may encompass any choice that has an impact on its behavior, namely the selection of the algorithm(s) [START_REF] Kerschke | Automated Algorithm Selection: Survey and Perspectives[END_REF][START_REF] Muñoz | Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges[END_REF], the choice of its module(s) [START_REF] Van Rijn | Towards an Adaptive CMA-ES Configurator[END_REF], or its parameter setting(s) [START_REF] Bartz-Beielstein | Experimental methods for the analysis of optimization algorithms[END_REF]. Significant progress has been achieved on that side of the problem with automated parameter tuning methods [START_REF] Hutter | ParamILS: An Automatic Algorithm Configuration Framework[END_REF] or hyper-heuristics [START_REF] Burke | Hyper-heuristics: a survey of the state of the art[END_REF].

More recently, the use of fitness landscapes features [START_REF] Merz | New ideas in optimization[END_REF] as a mean of observation of the problems, from the algorithm perspective, prove to be particularly useful for design problems [START_REF] Belkhir | Feature Based Algorithm Configuration: a Case Study with Differential Evolution[END_REF][START_REF] Kerschke | Automated Algorithm Selection: Survey and Perspectives[END_REF].

LANDSCAPE-AWARE SOLVER:

ALGORITHM + BENCHMARK

In order to design a good, specific, solver, two problems are crucial: algorithm design and benchmark design. The problem of designing the best algorithm is arguably the most studied in the literature, but we argue thatit should be coupled with the problem of designing the benchmark (cf. Figure 1) in order to provide adequate feature-wise representation of the intended use.

Modern search heuristics performances are always assessed first on a benchmark, most of the time a "synthetic" one, designed for fast execution and a sufficiently large "footprint" [START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009[END_REF][START_REF] Muñoz | Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space[END_REF], or representativity of potential instance types. As such, their design is very often influenced by the benchmark's design. This is even more true for heuristics that embed a landscape-aware process, where the given benchmark fully determines the general performance of the algorithm. Following [START_REF] Kerschke | Automated Algorithm Selection: Survey and Perspectives[END_REF][START_REF] Muñoz | Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space[END_REF], we thus argue that having benchmarks with large "footprint" is a crucial challenge.

Going further, we argue that landscapes may be used for automated benchmark design. In that setting, the problem becomes to design benchmarks that "cover" the landscape space of a given optimization problem well enough, with as few instances as possible. That is to find a fixed set of problem instances from which reasonable performance prediction models can be built.

In the ideal setting, the benchmark generator is a configurable mean to produce problem instances with respect to specified landscape features based performance criteria. Hidden in that setting is the problem of selecting the subset of features that are usefulon the benchmark instances themselves.

Figure 1 shows the proposed coupling between the algorithm design and benchmark design optimization problems. The process is heavily using landscape-aware tools in order to produce an adaptive solver. The benchmark design optimization loop (top-right corner) adapt the instances set to a targeted footprint performance and output the related selected features as a byproduct.

CONCLUSION: COUPLED DESIGN NEEDED

We think that very significant gain can be expected from automating solver design for a specific problem and set of performance criteria by automatically generate the benchmark used by landscape-aware processes. The essential goal is the appropriate generalization level: maximum performance on foreseen use without counterproductive generalization. The long-term goal is an optimized solver generator in which an end-user would input her problem formalization, her desired benchmark footprint and performance criteria. Managing the interplay between features, benchmarks and algorithms is of course one of the biggest challenge in our suggested approach. The output is a landscape-aware solver (bottom) that is able to adapt its behaviour to foreseen problem features.

Figure 1 :

 1 Figure1: Diagram of the landscape-aware solver design scheme. The coupling between the algorithm design (top-left loop) and the benchmark design (top-right loop) occurs through the optimized set of problem instances and selected features (center). The output is a landscape-aware solver (bottom) that is able to adapt its behaviour to foreseen problem features.

 GECCO '19 Companion, July 13-17, 2019, Prague, Czech Republic Johann Dreo, Carola Doerr, and Yann Semet

					Problem
					model
	Algorithm Performances			Benchmark Footprint		Handmade Benchmark Instances	Features
					Benchmark	Benchmark	Landscae
					Generator	Instances	Analysis
	Performances	Algorithm			
	Estimator	Model		Footprint Estimator	Bench. Generator Parameters	Features Measures
		Algorithm			
		Generator			Benchmark	Selected	Features
					Optimization	Features	Selection
	Algo. Generator	Algorithm			Benchmark Design
	Parameters		Instances		
				Problem Instances	Features
		Algorithm			
		Optimization			
	Algorithm Design				
				Feature	Landscape
				Measures	Analysis
		{Feature → Algo} Mapping	Algorithm Assembling		Performances Level	Unknown Benchmark Instances
	Legend				
	User Inputs			Algorithm	
				Instances	
	Expert Inputs	Solver			
	Functions			Run	
	Byproducts				
				Problem	
				Solution