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ABSTRACT
Following a general trend in artificial intelligence, Evolutionary
Computation has, in recent years, witnessed substantial perfor-
mance gains from landscape-aware selection and parameter tuning
of algorithmic modules. Such approaches, however, are critically
relying on suitable benchmarks, or training sets, that provide the
appropriate blend of performance and generality. With this position
paper we argue that, on a landscape analysis basis, the benchmark
design problem will form a substantial part of the next-generation
of automated, on-demand algorithm design principles.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion; Randomized search; • Software and its engineering →
Search-based software engineering;
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1 INTRODUCTION
The automation of the design of programs has been a classical con-
cept in the evolutionary algorithm community from the start [4, 7]
and was quickly applied to the design of algorithms themselves [5].

It was also stated very early that the performance of evolution-
ary algorithms is very parameter-sensitive [6] and that the tuning
problem is in itself a (meta-)optimization problem [8]. Since then,
problems related to the automated design of evolutionary algo-
rithms have been commonly studied [1, 8]

In the broad sense, the automated design of an optimization
solver may encompass any choice that has an impact on its behavior,
namely the selection of the algorithm(s) [11, 14], the choice of its
module(s) [15], or its parameter setting(s) [1]. Significant progress
has been achieved on that side of the problem with automated
parameter tuning methods [10] or hyper-heuristics [3].

More recently, the use of fitness landscapes features [12] as amean
of observation of the problems, from the algorithm perspective,
prove to be particularly useful for design problems [2, 11].
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2 LANDSCAPE-AWARE SOLVER:
ALGORITHM + BENCHMARK

In order to design a good, specific, solver, two problems are crucial:
algorithm design and benchmark design. The problem of designing
the best algorithm is arguably the most studied in the literature, but
we argue thatit should be coupled with the problem of designing the
benchmark (cf. Figure 1) in order to provide adequate feature-wise
representation of the intended use.

Modern search heuristics performances are always assessed first
on a benchmark, most of the time a “synthetic” one, designed for
fast execution and a sufficiently large “footprint” [9, 13], or repre-
sentativity of potential instance types. As such, their design is very
often influenced by the benchmark’s design. This is even more true
for heuristics that embed a landscape-aware process, where the
given benchmark fully determines the general performance of the al-
gorithm. Following [11, 13], we thus argue that having benchmarks
with large “footprint” is a crucial challenge.

Going further, we argue that landscapes may be used for au-
tomated benchmark design. In that setting, the problem becomes
to design benchmarks that “cover” the landscape space of a given
optimization problem well enough, with as few instances as pos-
sible. That is to find a fixed set of problem instances from which
reasonable performance prediction models can be built.

In the ideal setting, the benchmark generator is a configurable
mean to produce problem instances with respect to specified land-
scape features based performance criteria. Hidden in that setting
is the problem of selecting the subset of features that are usefulon
the benchmark instances themselves.

Figure 1 shows the proposed coupling between the algorithm
design and benchmark design optimization problems. The process is
heavily using landscape-aware tools in order to produce an adaptive
solver. The benchmark design optimization loop (top-right corner)
adapt the instances set to a targeted footprint performance and
output the related selected features as a byproduct.

3 CONCLUSION: COUPLED DESIGN NEEDED
We think that very significant gain can be expected from automating
solver design for a specific problem and set of performance criteria
by automatically generate the benchmark used by landscape-aware
processes. The essential goal is the appropriate generalization level:
maximum performance on foreseen use without counterproductive
generalization. The long-term goal is an optimized solver generator
in which an end-user would input her problem formalization, her
desired benchmark footprint and performance criteria. Managing
the interplay between features, benchmarks and algorithms is of
course one of the biggest challenge in our suggested approach.
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Figure 1: Diagram of the landscape-aware solver design scheme. The coupling between the algorithm design (top-left loop) and
the benchmark design (top-right loop) occurs through the optimized set of problem instances and selected features (center).
The output is a landscape-aware solver (bottom) that is able to adapt its behaviour to foreseen problem features.
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