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ABSTRACT

Benchmarking aims to investigate the performance of one or sev-

eral algorithms for a set of reference problems by empirical means.

An important motivation for benchmarking is the generation of

insight that can be leveraged for designing more efficient solvers,

for selecting a best algorithm, and/or for choosing a suitable instan-

tiation of a parametrized algorithm. An important component of

benchmarking is its design of experiment (DoE), which comprises

the selection of the problems, the algorithms, the computational

budget, etc., but also the performance indicators by which the data

is evaluated. The DoE very strongly depends on the question that

the user aims to answer. Flexible benchmarking environments that

can easily adopt to users’ needs are therefore in high demand.

With the objective to provide such a flexible benchmarking envi-

ronment, the recently released IOHprofiler not only allows the user

to choose the sets of benchmark problems and reference algorithms,

but provides in addition a highly interactive, versatile performance

evaluation. However, it still lacks a few important performance

indicators that are relevant to practitioners and/or theoreticians.

In this discussion paper we focus on one particular aspect, the

probability that a considered algorithm reaches a certain target

value within a given time budget. We thereby suggest to extend

the classically regarded fixed-target and fixed-budget analyses by a

fixed-probability measure. Fixed-probability curves are estimated

using Pareto layers of (target, budget) pairs that can be realized

by the algorithm with the required certainty. We also provide a

first implementation towards a fixed-probability module within the

IOHprofiler environment.
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1 INTRODUCTION

Search heuristics are general-purpose optimization algorithms

which aim to identify high-quality solutions by an iterative eval-

uation of solution candidates. The function values of these search
points are used to adjust the strategy by which the next round of

samples are generated. Search heuristic are thus in sharp contrast

with constructive heuristics, which aim at generating suitable solu-

tions by analyzing and manipulating the problem data in a direct

fashion. Among the most prominent search heuristics are local

search algorithms (such as first ascent, steepest ascent, Simulated

Annealing, Threshold Accepting, etc.), genetic and evolutionary

algorithms, estimation of distribution algorithms, ant colony op-

timization algorithms, artificial immune systems, as well as meta-

concepts (e.g., so-called “hyper-heuristics”) that alternate between

different strategies during the optimization process.

A key challenge in applying search heuristics in practice is the

selection of a most suitable algorithm for the given problem at hand.

What is more is that most search heuristics are parametrized, and

ask the user to specify the search radius, the number of samples

that are to be evaluated in each iteration, and the size of the allo-

cated memory – to name but a few parameters of a typical search

heuristic. Both the algorithm selection but also the latter-mentioned

algorithm configuration problem require a very solid experience

with heuristics and/or excessive empirical data from which perfor-

mance extrapolation models can be build. Training human experts

https://doi.org/10.1145/3319619.3326895
https://doi.org/10.1145/3319619.3326895
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and computer programs for these tasks is the purpose of bench-
marking. Put differently, benchmarking aims to provide data-driven

evidence to favor certain algorithms and/or instantiations over

others.

1.1 Performance Criteria

As part of a carefully crafted design of experiments, a meaningful

benchmarking effort also comprises the task of choosing the perfor-

mance measure by which the algorithms are to be evaluated. This

is a very tricky part, since we often observe that a heuristic that is

particularly good for small computational budgets is outperformed

by other heuristics for budgets of medium or large size (and vice

versa). We also observe that an algorithm behaving well on average
need not necessarily show very stable performance. Which algo-

rithm to favor above others depends very strongly on the goal of

the training effort:

• Users with a predefined computational budget will care

mostly about the fixed-budget view, which answer questions

of the type What is the best/median/average/... quality of the
solutions that one can expect to obtain with AlgorithmAwithin
a given computational budget B? On the other hand, users

requiring solutions of a certain quality threshold are likely

to focus on the fixed-target view instead, by asking questions

of the type How long do we need to wait (on average/in the
worst case/in the best case/...) until Algorithm A has identified
a solution of quality at least φ?
• In applications where failures can cause substantial negative

effects (e.g., high cost), we require a very high probability

that the selected algorithm is capable of finding a solution

of desired quality. If, on the other hand, we plan to run

the same algorithm on several parallel machines, we can

typically accept a much smaller success probability.

These considerations show that the performance evaluation of

search heuristics has three main criteria:

(1) solution quality,

(2) computational budget, and

(3) probability of success.

In this light, algorithm selection and configuration classify as multi-

objective optimization problems.

As usual in multi-objective optimization [1, 2], an important

object of a multi-criteria optimization problem is the Pareto front,

which describes the best trade-offs that one can achieve without sac-

rificing at least one of the objectives. Illustrating three-dimensional

Pareto fronts is non-obvious. The two most common ways to dis-

play such Pareto fronts is by fixing one of the three objectives and

showing the two-dimensional section of the Pareto front, which

is simply a curve in a two-dimensional coordinate system. By re-

peatedly fixing the first objective to different values, a number of

sections can be shown at the same time. A similar approach is used

in evolutionary computation, where the probably most frequently

used performance charts plot the median solution quality of an

algorithm against the allocated time budget (fixed-budget plots),
thus effectively fixing the success probability to 50%. Similarly com-

mon are fixed-target plots, which illustrate the median first-hitting

times of an algorithm against the target values, thus again fixing

the success probability to 50%, but inverting the dependence of time

and quality.

While it is also common to add to these curves some confidence

intervals (for example, in the form of box-plots) it is much less

common to explicitly show the time-quality trade-off for quantiles

(i.e., success probabilities) different from 50%. A notable exception

to the median-success plots are empirical cumulative distribution

function (ECDF) curves [6], which aggregate success-probabilities

for a set of fixed targets. In the evolutionary computation litera-

ture, ECDF curves are particularly common in the assessment of

continuous black-box optimization algorithms. At the same time,

they seem to play only a marginal role in the assessment of dis-

crete optimization techniques. A key driver for the success of ECDF

curves in the continuous domain can be seen in the fact that they

are part of the standard performance reports offered by the COCO

platform [7], which is an important benchmarking environment

for continuous black-box optimization heuristics.

1.2 Motivation for Our Work

The performance reports offered by the COCO environment are

rather static, in that there is no immediate interface for the user

to chose the target values for which the ECDF curves are to be

generated. This is in sharp contrast to the philosophy behind the

IOHprofiler – a recently released benchmarking software which pri-

marily targets discrete optimization benchmarking. IOHprofiler [5],

or, more precisely, its post-processing part, the IOHanalyzer, allows

the user to choose for which target values the algorithms are to be

assessed. These targets can be chosen for each problem individually.

Apart from ECDF curves, which – as mentioned above – are much

less commonly used in discrete optimization, IOHprofiler offers a

number of different fixed-target and fixed-budget analyses and plots.

However, following the common trend, a fixed-probability section

of the performance evaluation is currently missing – a gap that we

address in this current work, and that we start to fill by proposing

a first step towards a meaningful three-dimensional performance

evaluation.

The motivation for our work lies in applications where a decent

success probability needs to be ensured. Put differently, we are con-

cerned with use cases in which a reliable performance is required.

In such cases, one wishes to fix the maximum failure probability

ε > 0 that the user is willing to tolerate, and we are interested in

understanding how the quality that can be ensured with probability

1 − ε evolves with the budget, or how much time is required to

achieve a given target precision with failure probability at most ε .

1.3 Availability of Our Implementation

The IOHprofiler modules described in this work are available

at http://iohprofiler.liacs.nl/dev/. The user can load there some

reference benchmark data, and can upload her/his own data to test

the modules. Since the work described in this workshop paper is of

preliminary nature, several modifications can be expected for the

next months. Readers interested in contributing to this effort are

invited to get in touch.

http://iohprofiler.liacs.nl/dev/
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Figure 1: Illustration of iterative search heuristics.

1.4 Related Work

We point out that neither our approach nor our performance mea-

sure are new. In essence, we reduce the performance evaluation of

iterative search heuristics to a multi-objective optimization prob-

lem with three different criteria: time, quality, success probability.

Multi-objective optimization is an important sub-domain in itself,

and forms a core discipline within the evolutionary computation

community. Many different ways to evaluate the performance of

search heuristics for multi-criteria optimization problems are dis-

cussed in the literature, see [11] for a critical survey. A measure

closely related to our fixed-probability curves are the empirical at-
tainment surfaces, for which a discussion of computational aspects

can be found in [8].

2 THE TRADE-OFF BETWEEN TIME,

QUALITY, AND SUCCESS PROBABILITY

Before drawing the reader’s attention to the fixed-probability per-

formance measure, we briefly summarize in this section a few basic

performance indicators. As mentioned above, the most commonly

reported performance measures in the search heuristics literature

are fixed-target running times, fixed-budget results, and ECDF curves.
Our focus in this work is on the evaluation of single benchmark

functions; i.e., we do not address here the question how to aggregate

performances across different benchmark problems. We therefore

disregard ECDF curves in the following descriptions.

Our focus is on iterative search heuristics, as illustrated in Fig-

ure 1.

2.1 Fixed-Probability Measures

We formulate all measures formaximization problems, but all adjust-
ments required in the case of minimization problems are straightfor-

ward. For all positive integers k we abbreviate [k] := {1, 2, . . . ,k }
and set [0..k] := [k] ∪ {0}.

Definition 2.1 (Fixed-Target, Fixed-Budget, and Fixed-Probability
Performance Measures). Let A be an algorithm that is run r times

on a maximization problem f : X → R, with a maximum budget

of B ∈ N function evaluations. For each run i ∈ [r ] and each value

t ∈ [B] let x (i,t ) be the t-th search point queried by the algorithm

(breaking ties randomly in case of parallel evaluations). Finally,

for each t ∈ [B], let X t
be the random distribution over X that

algorithm A uses to sample the t-th search point.

For a given target value φ ∈ Φ := { f (x ) | x ∈ X }, the most

relevant quantities in the fixed-target analysis are as follows.

• S (A, f ,φ) := {j ∈ [r ] | ∃t ∈ [B] : f (x (j,t ) ) ≥ φ} is the
set of successful runs, s (A, f ,φ) := |S (A, f ,φ) | the number
of successful runs, and sp (A, f ,φ) := s (A, f ,φ)/r the success
probability.1

• T (A, f , i,φ) := min{t | f (x (i,t ) ) ≥ φ} is the first hitting time
of target value φ in run i ,
• AHT(A, f ,φ) := avg{T (A, f , j,φ) | j ∈ [S (A, f ,φ)]} is the
average first hitting time (AHT) of algorithm A for target

value φ on function f .
• When at least one run was successful for target φ, we
call ERT(A, f ,φ) := (1 − sp (A, f ,φ))B + avg{T (A, f , j,φ) |
j ∈ [S (A, f ,φ)]} the expected running time (ERT).2 When

S (A, f ,φ) = ∅, we set ERT(A, f ,φ) = ∞. Note here that

the ERT measure implicitly assumes an algorithm that is

restarted when no point of sufficient quality has been found

within the given budget – an assumption that is not always

met in practice. It is therefore recommended to carefully

check whether the use of AHT or ERT values is more appro-

priate.

• Instead of looking at averages, it is also common to look at

the median and other quantiles. For each value 0 ≤ q ≤ 1

with s (A, f ,φ) ≥ qr we set T (A, f ,φ,q) equal to

min

{
t | |{j ∈ [S (A, f ,φ)] | T (A, f , j,φ) ≤ t }| ≥ qr

}
,

and we set T (A, f ,φ,q) := B otherwise. This defines the

empirical q-th quantile running time of all runs for target

value φ.
T (A, f ,φ,q) approximates T ∗ (A, f ,φ,q) := min{b ∈ [B] |
Pr[max{ f (X t ) | t ∈ [b]} ≥ φ] ≥ q}, the fixed-probability
budget required to obtain a solution of objective value at least

φ with probability at least q. In the following we speak of

T (A, f ,φ,q) as the estimated fixed-probability budget evalu-

ated at target φ.

These fixed-target measures have their complementary fixed-
budget performance indicators. For a run i ∈ [r ] and a budget

b ∈ [B],

• V (A, f , i,b) := max{ f (x (i,t ) ) | t ∈ [b]} denotes the current-
best fitness value or best target (value) at time/budget b, and
• V (A, f ,b) := avg{V (A, f , j,b) | j ∈ [r ]} is the average best
target value for this budget b.
• For each 0 ≤ q ≤ 1 the q-th quantile target value

V ∗ (A, f ,b,q) at budget b is

max{φ ∈ Φ | Pr[max{ f (X t ) | t ∈ [b]} ≥ φ] ≥ q},

the largest value φ for which the probability that the best

of the first b evaluated solution candidates has fitness φ or

1
Note here that it would bemore accurate to speak of the “estimated success probability”

but since all quantities studied in this work are based on empirical data, we omit the

explicit mentioning of the term “estimated” – here and throughout this work.

2
Note that this name, despite its common use, is potentially misleading, since the term

“expectation” suggests that this is a mathematical quantity, whereas it reports merely

empirical averages.
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Figure 2: An example (φ,b,p) manifold (blue) induced by al-

gorithmA and problem f , and a fixed probability plane (red).

The fixed-probability curve is defined by V ∗ (A, f , ·,q) and

T ∗ (A, f , ·,q).

larger is at least q. In practice we approximate V ∗ (A, f ,b,q)
by V (A, f ,b,q), which is defined as

max{φ ∈ Φ | |{j ∈ [r ] | V (A, f , j,b) ≥ φ}| ≥ qr }.

To be very clear, we formulate the fixed-probability measures

more explicitly. For each probability 0 < q < 1 the fixed-probability

measures for success probability q are the functions

• V ∗ (A, f , ·,q) : [B]→ R,b 7→ V ∗ (A, f ,b,q), and
• T ∗ (A, f , ·,q) : Φ→ R,φ 7→ T ∗ (A, f ,φ,q).

We note that these functions define two-dimensional fixed-

probability curves (see Fig. 2), an aspect that we will discuss in

more detail below.

Our goal is to add to the IOHprofiler environment, which cur-

rently covers the fixed-target and the fixed-budget perspective, a

fixed-probability section, which automates the computation and

illustration of the fixed-probability measures defined above.

2.2 Intensity Plots

In this section we describe the intensity plots which we imple-

mented in the IOHprofiler. The intensity plots are one way of illus-

trating the fixed-probability measures. Examples for the intensity

plots will be provided in Section 3.

The intensity plots are implemented within both fixed-target

and fixed-budget plots, which means that they are constructed in

the two-dimensional space comprised of the time budget b and the

target value φ. The third dimension (success probability p) is illus-
trated by the intensity of the plot’s color. The success probability is

evaluated empirically based on the number of runs which satisfy

the corresponding target and budget constraints.

Below we interpret the definitions of fixed-probability measures

given in Section 2.1 and show how the implemented intensity plots

relate to them. Imagine a three-dimensional space comprised of

function value φ, time budget b and success probability p illustrated

in Fig. 2. All the (φ,b,p) triplets possible for given A, f form a

manifold. When we fix some probability q, we observe a projection
of this manifold in a two-dimensional space of varying φ and b. The

fixed-probability functions V ∗ (A, f , ·,q) and T ∗ (A, f , ·,q) describe
this projection, which is a fixed-probability curve.

On the intensity plot, we also consider a two-dimensional

space of φ and b, and observe some empirically obtained points

( f (x (i,t ) ), t ) in this space. The traces of this points approximate

the above mentioned curves. We then consider Pareto layers to

estimate the fixed probabilities q which generate these curves. In

other words, the Pareto layers may be seen as the approximations

of the fixed-probability curves.

2.3 Construction of the Pareto Layers

To formally describe the intensity plot, consider a two-criterion

problem of maximizing the target value φ and minimizing the time

budget b. Thus we have the problem of finding the Pareto front

of (φ,b) points in the R2 space. However, we do not observe the

whole space, as the points (φ,b) = ( f (x (i,t ) ), t ) correspond to

search points x (i,t ) obtained during r runs of an algorithm A. We

denote the set of all empirically observed points as E ⊂ R2.
A point e1 = (φ1,b1) is said to strictly dominate another point

e2 = (φ2,b2) in the Pareto sense, denoted as e1 ≺ e2, if the following
condition is satisfied:

e1 ≺ e2 ↔ (φ1 ≥ φ2 ∧ b1 < b2) ∨ (φ1 > φ2 ∧ b1 ≤ b2).

A non-dominated subset of a set Z ⊆ Rd is defined as follows:

N (Z ) = {e ∈ Z | ∄e ′ ∈ Z : e ′ ≺ e},

We define L0 = N (E) as the non-dominated subset of the em-

pirically observed (target, budget) pairs. All the points from R2,
which are visible on the plot and dominate L0, have zero intensity,

i.e. are transparent. This corresponds to p = 0 empirical probability

of obtaining such target and budget pairs.

Next we construct the Pareto layers as Li = N (E \ Li−1), while
there are some points left in E.3 Let us denote the resulting number

of layers as |L|. Note that |L| is usually equal to the number of runs

|r |, unless there are some completely coinciding runs. The empirical

estimation of the success probability for each point that dominates

any point from Li , but is dominated by at least one point from Li−1,
should be plotted as i/|L|. In our implementation, the value of i/|L|
corresponds to the color intensity.

Each Pareto layer may be seen as a curve of a fixed success

probability. Therefore, we may observe some approximation of the

fixed-probability curves on the intensity plot. The examples are

given in Section 3.

3 EXAMPLES OF INTENSITY PLOTS

In this section we illustrate the intensity plots which are already

implemented in the IOHprofiler. These plots may be seen as the

first step towards visualizing fixed probabilities.

In Fig. 3 an example plot is given, which illustrates the perfor-

mance of the Random Local Search (RLS) algorithm on the Leading-

Ones problem of size n = 100 from the fixed-target perspective. 11

runs of RLS were performed. RLS is the algorithm which keeps al-

ways the most recently found best-so-far solution. In each iteration,

RLS creates one random neighbor by flipping one randomly chosen

3
This process is similar, but not identical, to non-dominated sorting [3], as some layers

may share points.
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Figure 3: Intensity plot example for the Random Local

Search on the LeadingOnes problem of length 100, fixed-

target perspective.

Figure 4: Intensity plot example for the Random Local

Search on the LeadingOnes problem of length 100, fixed-

budget perspective.

bit. The new solution replaces the old if it is at least as good in terms

of objective value. Thus, RLS is a random first-ascent hill-climber.

In Fig. 3 we show the expected running time, the intensity plot, and

we also explicitly show each individual run.

The darkest color depicts the area which is supposed to be

reached with the 100% probability. This means that for each point

(φ,b) of this area, the corresponding function value φ was always

reached after b or lower number of evaluations. The area which lies

below any of the observed runs is transparent, as such combinations

of the function value and the number of evaluations dominate all

the actually observed points. In between, we have colors of differ-

ent intensity, which corresponds to the proportion of runs which

reached the φ value withing the b number of evaluations or earlier.

Thus we see the Pareto layers of different intensity described in

Section 2.2. In future work we plan to allow the user to choose a

probability value, and to show within the fixed-probability plots

the respective curve that corresponds to this measure.

We also show in Fig. 3 the best run, i.e. the run with the best

hitting time, and the Pareto layer L0 defined in Section 2.2, which is

Figure 5: Comparing RLS and gHC on LeadingOnes using

intensity plots.

Figure 6: Intensity plot example for the (1 + 1) evolutionary
algorithm on a LeadingOnes-based W-model function.

denoted in the legend as “Pareto optima”. It may be observed that

the best run mostly lies in the light area, which means that only a

little proportion of runs was characterized with such low number of

function evaluations for the most of the observed function values.

However, it may be noticed that the behavior of the best run was not

always optimal. During roughly the first half of the optimization

time, it was dominated by some other runs, thus the best run does

not coincide with L0 there.
In Fig. 4 the same data is shown from the fixed-budget perspec-

tive. The intensity of a point (b,φ) corresponds to the fraction of

runs in which at least as high as φ function value was obtained

after b evaluations. The “mean” notion corresponds to the average

first-hitting time.

In Fig. 5 we compare RLS with a (1 + 1) greedy hill climber

(gHC). Unlike RLS, gHC does not flip a random bit in each iteration,

but goes through the string from left to right and flips one bit

in each iteration. After evaluating flipping the n-th bit, it starts

again with flipping the bit in position one, etc. It behaves like

RLS otherwise, i.e., it creates one offspring per each iteration, and

keeps the most recently evaluated solution of the largest fitness. It

may be clearly seen that gHC gives much better guarantees on the
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obtained function value for a given budget, as it is characterized

with a much bigger dark area on the intensity plot. What is more,

the performance of gHC is very stable. The most of the gHC runs

are close to the Pareto layer L0, so we do not see much of a light

area on its intensity plot, in contrast to the RLS plot.

Fig. 6 gives a fixed-budget intensity plot example for a different

algorithm (namely, (1 + 1) EA) on a function which is harder to

optimize. This function is based on a W-model transformation of

LeadingOnes [10]. Compared to RLS plots, we have a limited dark

area on this intensity plot, which means that a high function value

was obtained by a small fraction of runs only. Note that in this

example only one run reached the optimum. This run is the best

one and it coincides with the Pareto layer L0.

4 CONCLUSION

We have discussed in this work that the performance assessment of

search heuristics is essentially a three-objective optimization prob-

lem, with time budget, solution quality (target value), and success

probability as criteria. While fixed-budget and fixed-target perfor-

mance measures are standard in today’s evolutionary computa-

tion literature, fixed-probability measures are much less commonly

studied. We have discussed the approximation of fixed-probability

measures based on empirical results obtained from a number of

runs.

We also demonstrated a first implementation towards a fixed-

probability module within the framework of IOHprofiler. It is called

intensity plot and displays the Pareto-optimal layers of (target, bud-

get) pairs observed during an experiment. The layers are displayed

using different color intensity. Our next step is to extend this mod-

ule to allow the user to fix some particular success probability and

to explicitly compute the corresponding fixed-probability curve.

Apart from being useful in applications where a high confidence

in the success of an algorithm needs to be guaranteed, we believe

that the fixed-probability measures will give additional insights into

the performance of search heuristics. We note that also in the theo-

retical running time analysis the success probability is a measure

that has recently drawn some attention, for example in terms of the

p-Monte Carlo runtime notion defined in [4]. The p-Monte Carlo

runtime of an algorithm A is the running time needed to find an

optimal solution with probability at least 1−p. This corresponds to
T (A, f ,φ = opt, 1 − p) in our notation from Definition 2.1. Also [9]

studies fixed-probability time to optimum. Thus, overall, we are

confident that fixed-probability results form a promising research

topic both in empirically-oriented and in theory-oriented research

streams, with the potential to complement our current view on

heuristic search by a more cautious consideration of the underlying

success probability.
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