
HAL Id: hal-02179609
https://hal.sorbonne-universite.fr/hal-02179609v1

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bayesian performance analysis for black-box
optimization benchmarking

Borja Calvo, Ofer Shir, Josu Ceberio, Carola Doerr, Hao Wang, Thomas
Back, Jose Lozano

To cite this version:
Borja Calvo, Ofer Shir, Josu Ceberio, Carola Doerr, Hao Wang, et al.. Bayesian performance anal-
ysis for black-box optimization benchmarking. Genetic and Evolutionary Computation Conference
GECCO 2019, Jul 2019, Prague, Czech Republic. pp.1789-1797, �10.1145/3319619.3326888�. �hal-
02179609�

https://hal.sorbonne-universite.fr/hal-02179609v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bayesian Performance Analysis for Black-Box Optimization
Benchmarking

Borja Calvo

University of the Basque Country

UPV/EHU

Donostia-San Sebastian, Spain

borja.calvo@ehu.es

Ofer M. Shir

Tel-Hai College and Migal Institute

Upper Galilee, Israel

ofersh@telhai.ac.il

Josu Ceberio

University of the Basque Country

UPV/EHU

Donostia-San Sebastian, Spain

josu.ceberio@ehu.es

Carola Doerr

Sorbonne University, CNRS

Paris, France

Carola.Doerr@mpi-inf.mpg.de

Hao Wang

LIACS, Leiden University

Leiden, The Netherlands

h.wang@liacs.leidenuniv.nl

Thomas Bäck

LIACS, Leiden University

Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

Jose A. Lozano

University of the Basque Country

UPV/EHU

Donostia-San Sebastian, Spain

ja.lozano@ehu.eus

ABSTRACT
The most commonly used statistics in Evolutionary Computation

(EC) are of the Wilcoxon-Mann-Whitney-test type, in its either

paired or non-paired version. However, using such statistics for

drawing performance comparisons has several known drawbacks.

At the same time, Bayesian inference for performance analysis is

an emerging statistical tool, which has the potential to become a

promising complement to the statistical perspectives offered by the

aforementioned p-value type test. This work exhibits the practical

use of Bayesian inference in a typical EC setting, where several

algorithms are to be compared with respect to various performance

indicators. Explicitly, we examine performance data of 11 evolution-

ary algorithms (EAs) over a set of 23 discrete optimization problems

in several dimensions. Using this data, and following a brief intro-

duction to the relevant Bayesian inference practice, we demonstrate

how to draw the algorithms’ probabilities of winning. Apart from

fixed-target and fixed-budget results for the individual problems,

we also provide an illustrative example per groups of problems. We

elaborate on the computational steps, explain the associated uncer-

tainties, and articulate considerations such as the prior distribution

and the sample sizing. We also present as a reference the classical

p-value tests.
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1 INTRODUCTION
Benchmarking environments and competitions are designed to

compare algorithms’ performance over a set of predefined represen-

tative problems. In Evolutionary Computation (EC), benchmarking

black-box optimization problems evolved differently in continu-

ous versus discrete domains. While the Black-box Optimization

Benchmarking suite (BBOB, [17]) constitutes an established testing

framework for evaluating performance of continuous optimizers,

the discrete domain, on the other hand, has not had the benefit

of an equivalent suite. Attempts to establish such an environment

have lately become prominent [12, 23–25]. Wherever performance

comparisons are sought, based on empirical data, they call for sta-

tistical assessments, to evaluate whether the observed performance

gaps can be supported by an appropriate estimator for the true, un-

derlying performance distribution, i.e., a distribution which assigns

a probability to each possible result of the algorithms. Within the

typical EC context, arrays of recorded optimization runs merely

constitute samples of the corresponding performance distribution.
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Statistical tests fall into the category of statistical inference meth-

ods, which in this case seek to deduce measures about the unknown

population
1
(the set of all possible results), when given only a sam-

ple drawn from that population. The most commonly used statistics

in EC are of the Wilcoxon-Mann-Whitney-test type [26], which

facilitates non-parametric pairwise performance comparisons, in

either paired or non-paired scenarios [19]. In its non-paired ver-

sion, the test concentrates on a null hypothesis, H0, stating that

the compared two populations share the same mean. Furthermore,

this test assumes that both populations share the same shape and

spread of their underlying continuous frequency distributions [19].

To test this hypothesis, a sample from the populations, denoted as

s and referring to two arrays of recorded runs of the algorithms,

is used to get a certain statistic R(s), whose probability distribu-

tion under H0 (PrH0
(R)) is known, given the set of assumptions.

Then, the so-called p-value could be calculated, representing the

probability of observing such an extreme value for the statistic,

p = PrH0
(R ≥ R(s)), subject to all the assumptions (including H0).

Smallp-values, e.g.,p ≤ 0.05, are taken as evidence ofH0 being false,

that is, providing confidence that the averages of the populations

significantly differ. In other words, such p-value are used as a sta-

tistical support to claims concerning, for example, outperformance.

However, often times this probability measure is misinterpreted as

the probability of H0 being true (or, alternatively, 1 − p misinter-

preted as the probability of the counterpart hypothesis to hold, i.e.,

the averages being different) [16].

Recently, Bayesian inference [20] has been proposed as an al-

ternative to analyze algorithms’ performance within the Machine

Learning community [3, 4], and has since been gradually adopted

therein [2]. In this alternative, rather than testing a certain hypoth-

esis, the methods focus on estimating relevant information about

the underlying performance distribution, represented by a set of

parameters θ (e.g., subscribing to a performance difference between

algorithms, or the probability of this difference being in a certain

interval). They directly assess the distribution of θ conditioned on a

sample s drawn from the performance distribution, which formally

reads Pr(θ |s).
The current study aims to demonstrate the effectiveness of

Bayesian inference analysis for algorithms’ performance ranking.

To this end, following a short introduction to this analysis, we

report on its application to a specific benchmarking campaign,

which comprises a set of 23 discrete optimization problems. Tech-

nically, the actual benchmarking execution relies on the recently

announced IOHprofiler [12], and more concretely on the data of

the experiments described in [13].

2 BAYESIAN INFERENCE FOR ALGORITHM
RANKING ANALYSIS

Comparing heuristic optimization algorithms implies handling the

natural uncertainty associated with empirical results. Usually, this

uncertainty stems from two main sources: the stochastic nature

of the algorithms, and the extremely large number of possible in-

stances. Therefore, in order to draw sound conclusions, it is not only

1
The careful reader should note that the term ‘population’ is exclusively used herein

to describe the underlying population of the analysis, rather than the common use in

EC referring to a set of candidate solutions.

essential to craft the design of the experimentation very carefully. It

is equally important to apply statistical tools to the analysis of the

results. Statistical tools are applied to do inference, i.e., to extract

information about a certain underlying probability distribution

using a sample drawn from that distribution. If this distribution

represents, for example, the probability associated with the possible

results obtained by two stochastic algorithms when run on a certain

problem instance, then a sample of such a distribution would be a

certain number of random runs of the algorithms on that instance.

Based on that sample of results, statistical inference methods are

used to obtain information about the performance of the algorithms

on that particular instance.

The most commonly used statistical tools for this purpose are

statistical tests. These methods require the formulation of a null
hypothesis and provide a measure on whether or not this hypothesis

can be refuted with a certain probability. A typical example for a

null hypothesis is the statement that the average performance of

two or more algorithms is the same for a given set of problems. The

statistical test uses the empirical evidence, i.e., the results obtained

by the algorithms on one or more instances, to decide whether or

not the null hypothesis can be rejected with an appropriate degree

of confidence. Therefore, this type of statistical tool provides us

with two possible answers. If the null hypothesis is rejected, then

we state that “there are statistically significant differences between

the algorithms”. Otherwise, we cannot make a statement, since

there is not enough statistical evidence to ensure that the average

performance is different – which is not the same as stating that

there are no differences.

Therefore, statistical tests can either confirm that there are dif-

ferences or simply tell us that we have not enough data to confirm

the differences. At this point it is important to note that, in almost

all realistic use cases, we already know that there are differences
between the algorithms (no matter how small), as the algorithms

are of different design. In this sense, some authors argue that us-

ing statistical tests when comparing algorithms is not informative

enough to draw sound conclusions from the experimental data [2].

One of the weak points of statistical tests is that, when the null

hypothesis is not rejected, it is not a trivial task to explain it –

e.g., either by the small sample size or by the similar performance

of the algorithms. As an alternative to statistical tests, Bayesian

methods provide us with interpretable information, distinguishing

between the estimated measures and the uncertainty about the

estimations [2].

Rather than having a single probability distribution to model

the data, Bayesian statistics simultaneously considers all possible

distributions of a certain family and assigns a probability to each

distribution. Therefore, we represent the probability of the data

with a certain probability model whose parameters themselves have

an associated probability distribution. Before observing any data,

the probability of the parameters is represented by the prior distri-
bution. This distribution represents our prior belief about which

are the true parameters of the distribution from where the data

comes. Obviously, when we have access to actual data, we have

to update this belief accordingly. This is done using Bayes’ rule. If

we represent the data (our sample) as x and its probability (also

known as likelihood function) as p(x|θ ) where θ represents the set

2
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of parameters of the distribution, then we have:

Pr(θ |x) =
Pr(x|θ )Pr(θ )

Pr(x)
, (1)

where p(θ ) denotes the prior distribution of the parameters, and

p(θ |x) stands for the posterior probability of the parameters given

the data. We can use this posterior probability to obtain relevant

information about the distribution (population) for where the data

comes, such as the (posterior) expected value for X . Moreover, we

can also derive information about the uncertainty of the estima-

tions.

Several Bayesian methods have been proposed to compare al-

gorithms’ performance by analyzing the underlying empirical

data [3, 4, 6]. However, to the best of our knowledge, all of them

focus on the pairwise comparisons of algorithms. Despite the high

relevance of these methods, they come short when attempting to

address the following, very commonly asked, broad comparison

question:

Given a set of algorithms, and given their associated

empirical data when run on a predefined set of prob-

lems: Which of those algorithms performs best for

those problems?

One approach to address this question is to explicitly model the

ranking of the algorithms. In [5] a first attempt to answer that

question was made by proposing a Bayesian Plackett-Luce model

to perform the comparative analysis of experimental results.

2.1 Bayesian Plackett-Luce model
The Plackett-Luce model is a probabilistic model defined over the

space of permutations [21, 22], which in our context correspond to

rankings of algorithms. Among the probabilistic models proposed

for permutations (i.e., functions that assign a probability to each

permutation) [18], the Plackett-Luce model collects some features

that make it suitable to model rankings of algorithms. The first

one is that it fulfills Luce’s axiom, which states that the relative

ordering of two algorithms is independent of the non-considered

ones.
2

The second interesting feature has to do with the interpretation

of the set of parameters of the probability model. When modeling

rankings of size k , the Plackett-Luce model has k parameters, one

per algorithm. We will refer to these parameters as weights,wi .

If we represent rankings as σ = (σ1, . . . ,σk )where σi = j means

that the j-th algorithm is ranked in the i-th position, the probability

of a given ranking σ under the Plackett-Luce model is:

PrPL(σ |w) =

n∏
i=1

wσi∑n
j=i wσj

. (2)

In general, the weights can take any strictly positive value. However,

if we restrict them such that

∑
wi = 1,

3
then they can be interpreted

as the probability of each algorithm being the best (the top-ranked

one), i.e.,wi = Pr(σ1 = i).

2
To ease the reading, instead of using terms such as item or element to name the

components of the permutations, from now on, we will refer to them as algorithms.
3
Note that, due to the way the probabilities are computed, we can force the sum to be

any positive value without loss of generality, as any common factor for the parameters

will not affect the probabilities.

In what follows, we will briefly review the Bayesian Plackett-

Luce model, for more details, the interested reader is referred to [5].

As in any Bayesian model, we identify the three distributions men-

tioned above: the likelihood function, the prior distribution, and

the posterior distribution. In this model, the likelihood function

is calculated as the product of the probabilities of the observed

rankings (of algorithms) under the Plackett-Luce model. The prior

distribution of the weights is modeled with a Dirichlet distribution,

which is the generalization of the Beta distribution. Briefly, the

Dirichlet distribution models probability distributions over real-

valued vectors that sum 1 and, thus, it is particularly suitable to

model the prior distribution of the weight vector. By representing

the vector of weights as w and the data (the rankings of the algo-

rithms) as R = {σ (1), . . . ,σ (N )}, the posterior distribution of the

weights can be computed as:

Pr(w|R) =
Pr(R |w)Pr(w)

Pr(R)
. (3)

The above equation has no closed-form, but we can easily sample

the posterior distribution of weights using Markov Chain Monte

Carlo methods.

The inference process is as follows. First, the performance data of

the algorithms is collected, considering the scenario (the population)

from which we want to draw our conclusions. The results are

then transformed into rankings of algorithms (one per run) and

these rankings are used to produce a sample from the posterior

distribution of weights.

Once the posterior distribution of the weights has been defined,

there are several aspects of the rankings’ distribution represented by

the model. We will focus on the probability of each algorithm being

the top-ranked. There are other aspects related with the ranking of

the algorithms that can be analyzed using the Bayesian Plackett-

Luce model, such as the probability of an algorithm being among

the two best algorithms or the expected rank for an algorithm.

However, for space reasons we will limit the analyses to the two

points mentioned above.

3 BENCHMARKING AND ANALYSIS
PREPARATION

In this section we present the preliminaries for the Bayesian infer-

ence analysis – the details behind the actual benchmarking cam-

paign (that is, the source of the generated datasets), as well as the

analysis’ planning and its associated practical considerations.

3.1 Black-Box Discrete Optimization
Benchmarking

We build our statistical analyses upon performance data that has

been obtained from an independent research thread [13], which

is aimed at identifying suitable benchmark problems for discrete

optimization heuristics and at showing that the IOHprofiler envi-

ronment announced in [12] is capable of handling mid-sized bench-

marking requirements. Next, we list the 23 optimization problems

that form the current benchmarking suite:

• OneMax (F1) and W-model extensions (F4-F10)

• LeadingOnes (F2) and W-model extensions(F11-F17)

• Harmonic (F3): linear harmonic function

3
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• LABS: Low Autocorrelation Binary Sequences (F18)

• Ising-Ring (F19)

• Ising-Torus (F20)

• Ising-Triangular (F21)

• MIVS: Maximum Independent Vertex Set (F22)

• NQP: N-Queens problem (F23)

The specified functions have been implemented altogether within

the IOHexperimenter. Each function F is assessed over four prob-

lem dimensions, n ∈ {16, 64, 100, 625}, yielding altogether 92 (F ,n)
pairs. Each algorithm is run on 11 different instances of each of

these 92 pairs, yielding 1, 012 different runs per each algorithm.

Each run is granted a budget of 100n2 function evaluations for

dimensions n ∈ {16, 64, 100} versus 5n2 evaluations for n = 625.

The following 11 EAs were benchmarked (see [13] for details):

(1) gHC: a greedy (1+1)-type hill climber which flips one bit

per iteration, following a deterministic order.

(2) RLS: Randomized Local Search. Like gHC but flips one ran-

domly chosen bit per iteration.

(3) (1 + 1) EA: The (1+1) EA with static mutation rate p = 1/n.
Fips one random bit on average, but can escape local optima

by flipping more than one bit.

(4) fGA: The “fast GA” proposed in [11]. The number of bits

flipped follow a heavy-tail power-law distribution with ex-

ponent β = 1.5.

(5) (1+10) EA: The (1+10) EA with static p = 1/n. Like (1+1) EA
but keeps best of ten offspring.

(6) (1+10) EAr/2,2r : The two-rate (1+10) EA with self-adjusting

mutation rates. Taken from [10].

(7) (1+ 10) EAnorm. : (1+ 10) EA sampling the number of bits to

flip from an adaptive normal distribution. Taken from [27].

(8) (1 + 10) EAvar. : The (1 + 10) EAnorm. with variance control,

also from [27].

(9) (1 + 10) EA
log-n. The (1+10) EA with log-normal self-

adaptation of the mutation rate proposed in [1].

(10) (1 + (λ, λ)) GA: single-trajectory genetic algorithm using

cross-over [9]. We use the variant with self-adjusting param-

eters analyzed in [8].

(11) vGA: A (30, 30) “vanilla” GA (see, e.g., [15]).

3.2 Analysis’ Considerations and Planning
We illustrate the application of the Bayesian Plackett-Luce model

by analyzing some of the performance data of the aforementioned

benchmarking campaign. As described above, the numerical data

encompass optimization results for 23 objective functions in 4 di-

mensions, each benchmarked over 11 instances by 11 competing

algorithms. For each of these 23 × 4 × 11 × 11 = 11, 132 runs, the

following information is recorded: whenever the algorithm has

identified a solution of strictly better quality than the previous-best

solution, a new data entry is created which stores the new incum-

bent fitness value and the number of the fitness evaluations elapsed

before sampling it.
4

The analyses reported in Section 4 involve performance data of

all eleven algorithms. Regarding the functions, we will show how to

4
More precisely, IOHexperimenter tracks much more data, but all computations in

this work are solely based upon the here-described records.

treat them either individually or collectively (in groups). When con-

sidered in groups, we will take two approaches – either considering

the results altogether (i.e., aggregating the performances across the

eleven instances of each function), or taking the median of these

runs. As previously noted, we use the Bayesian Plackett-Luce model

to estimate the probability of each algorithm being top-ranked.

In practice, we will estimate the probability of an algorithm

being the best among its competitors as its expected weight in the

posterior distribution of weights. Additionally, we will analyze the

uncertainty about these probabilities by estimating the 90% credible

intervals for which we will use the corresponding quantiles (5%

and 95%) of the posterior distribution of weights.

Finally, we address one of the main concerns with Bayesian

methods, which lies in the fact that they make use of a prior dis-

tribution for the parameters. Usually, this prior belief is set as a

non-informative one, to which we assign a relatively low strength.

During the Bayesian inference analysis the prior belief and the

information within the data are merged. The impact of the prior

belief decreases as the amount of available data increases. We will

illustrate and discuss the effects of the prior distribution on the

final estimations in Section 4.3.

4 INFERENCE ANALYSES AND RESULTS
We begin our report by providing a qualitative summary of the

observations obtained from amanual examination of the benchmark

data. This report is followed by a rigorous, quantitative Bayesian
analysis that is meant to address some of the qualitative statements

with the goal to corroborate or to refute them.

As an illustration of the data visualization used to support the

qualitative analysis, we depict in Fig. 1 the Expected Running Time

(ERT) values for all 11 algorithms and all 23 functions in dimension

n = 625. The ERT values are with respect to the best solution

found by any of the (algorithm, instance) pairs. Importantly, the

nature of the ERT map could substantially change upon setting

alternative target values. Also note that the different instances

of each problem adhere altogether to the same fitness landscape,

which just undergoes isomorphic transformations (rotation, scaling,

etc., see [13] for details). For the purpose of our analysis, we can

thus regard the data for the eleven instances as eleven independent

runs per each algorithm on a given problem. The following list

summarizes some of the conclusions drawn in [13].

• The following class of algorithms exhibits similar perfor-

mance profiles over the majority of problems: the (1+ (λ, λ))-
GA, (1+1)-EA, (1+10)-EAvar. , (1 + 10) EA

log-n. , (1+10)-EA,

(1+10)-EAnorm. , (1+10)-EAr/2,2r , and (1+1)-fGA. These algo-

rithms behave quite consistently, typically exhibiting fine

performance.

• The gHC and the vGA usually exhibit extreme performance

with respect to the other algorithms. The vGA consistently

suffers from poor performance over all functions, while the

gHC either leads the performance on certain functions or

shows deteriorated performance on others.

• When counting the number of runs in which a solution of

overall best target value has been identified per algorithm,

the (1+10)-EAr/2,2r leads the hitting scores on the “low-

dimensional” functions (n = 16, 64), with the (1+1)-fGA and

4
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Figure 1: ERT values of all 11 algorithms for the 625-dimensional test suite, with respect to the best solution quality found by
any of the algorithms in any of the eleven runs.

the (1 + 10) EA
log-n. being the first runner-up on n = 16

and the (1+1)-fGA and the (1+10)-EAnorm. being second

for n = 64. For n = 100 the (1 + 10) EA
log-n. has the best

success rate, with (1+10)-EAr/2,2r and (1+1)-fGA being the

runner-up. The (1+10)-EA also exhibits fine ranking across

all dimensions. On the other hand, the (1+1)-EA leads the

hitting scores on the “high-dimensional” functions at n =
625, with the (1+10)-EA being the runner-up.When summing

over all dimensions, gHC, vGA, and RLS are with the lowest

scores.

• Function-wise, it is evident that the low-dimensional F1-F6,

F8, F11-F13 and F15-F16 are easily treated by the majority of

the algorithms.

4.1 Fixed-Targets Perspective
As a first analysis, we will demonstrate algorithms’ ranking by con-

sidering the results of a particular function in a certain dimension

and upon setting a fixed target value φ, denoted as a triplet (F ,n,φ).
This subset of the data defines running results for the 11 algorithms,

and in particular, it contains the recorded running time (i.e., number

of evaluations) consumed by each algorithm to hit the prescribed

target. Then, for each run, we rank the algorithms according to this

running time – where the top-ranked algorithm is defined as the

first algorithm to hit the target. Importantly, the distribution that

undergoes inference is the rankings we obtain in random runs of

the 11 algorithms for the selected (F ,n,φ)-triplet. Fig. 2 depicts two
examples of the credible intervals and expected values obtained for

the probability of each algorithm being the best.

These plots illustrate how the Bayesian method does not only

provide us with the expected probability, but also with information

about its associated uncertainty. Taking into account that we have

only 11 samples to do inference, we should expect relatively high

uncertainty about the probability of winning. Clearly, this is the

case for certain algorithms, such as the two best algorithms in the

first example (Fig. 2 (a)). However, for those algorithms that have

the smallest probability of winning, 11 samples can be enough to

get a quite tight interval for the probability. In general, it is hard to

say how many runs are needed to get confident results. However, in

(1+(λ,λ)) GA
(1+1) EA

gHC
(1+10) EA_r/2,2r

(1+10) EA
(1+10) EA_log-n.
(1+10) EA_norm.

(1+1) EA_var.
fGA
vGA
RLS

0.0 0.2 0.4 0.6
Probability of winning

Al
go

rit
hm

(a) F 17, n = 625, φ = 625

(1+(λ,λ)) GA
(1+1) EA

gHC
(1+10) EA_r/2,2r

(1+10) EA
(1+10) EA_log-n.
(1+10) EA_norm.

(1+1) EA_var.
fGA
vGA
RLS

0.0 0.1 0.2 0.3 0.4 0.5
Probability of winning

Al
go

rit
hm

(b) F 9, n = 100, φ = 100

Figure 2: Credible intervals (5% and 95% quantiles) and ex-
pected probability of winning (green dots) for two combina-
tions of function, dimension and target.

Bayesian statistics we can empirically observe how the uncertainty

decreases as the number or runs is increased – one of the strong

points where the Bayesian inference approach shows its potential.

Another key argument in favor of using Bayesian methods is

that they provide us with interpretable information. As an example,

attending to the results produced by the analysis above we can

state that if we run all the 11 algorithms on F17, dimension n =
625 and fix the target to φ = 625, then the estimated expected

5
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probability of RLS being the fastest algorithm hitting the target is

0.426, which is almost 15 times higher than the expected probability

for gHC (that reads 0.03). Moreover, the results above estimate that,

with probability 0.9, the true probability of RLS being the fastest

algorithm lies in the interval [0.272, 0.585]. Statistical tests can also

be used to estimate and then present uncertainty in the form of

confidence intervals. Although this is not the common practice

when comparing algorithms, a binomial test could be used to get

intervals for the probability of being the best, but comparing this

approach with the proposed Bayesian method is out of the scope

of this work. Importantly, mind should be given to the different

interpretation of these two approaches (see [16, p.343]).

The plots in Fig. 2 show that all the algorithms have non-zero

probabilities of being the best, even if some of them never arise

as best in the data. One could think that this is due to the prior

distribution, which assigns equal probabilities to all the algorithms

before the data is incorporated into the model. However, the reason

is not rooted in the prior, which has a negligible impact, as will be

demonstrated in Section 4.3. Rather, the Plackett-Lucemodel itself is

responsible for this behavior, since its parameters (i.e., the weights

associated with each algorithm), reflect the relative ordering of all

the algorithms, and not only the probability of being the best.

So far we have focused on individual functions and, therefore,

our conclusions are limited to the analyzed functions. In some sit-

uations, we may have a set of instances about which we want to

do inference. In such cases, our sample will be the results obtained

by the algorithms in a sample of instances. For each instance we

can have different runs of the algorithms and, thus, there are two

possible paths to follow. The common practice is to average the

results of the different runs – yielding a single value for each in-

stance and algorithm. The simplest way of averaging the runs is

by taking the mean value, but due to the high risk of not having

unimodal, symmetric distributions for the data, a safer approach is

to take the median. An alternative way consists in taking all the

runs at the same time.

Both strategies are sensible, but they are not equivalent, as the

interpretation of the results changes. The difference in the interpre-

tation is rooted in the underlying distribution behind the analyzed

samples. Let us assume that the instances at hand constitute a ran-

dom sample from that statistical population.
5
Then, upon taking the

average value, the underlying statistical population becomes the av-
erage results obtained by the algorithms in a random instance from

the population of instances. Conversely, if all values are accounted

for, the underlying population becomes the result of the algorithms

in random runs over random instances (again, having exactly the

same number of repetitions for each instance is not a proper sample,

but the results may be close enough to those obtained with a proper

sample).

We will illustrate the differences between these two approaches

upon comparing the algorithms’ performance over two subsets

of the functions at n = 625, corresponding to an “easy” subset of

5
In practice, the instances are often not randomly sampled but rather selected based

on some criteria. Formally, this is not a correct way of proceeding if the goal is doing

inference. Nevertheless, in many practical situations defining a statistical population

of instances is not feasible and, thus, we can take the selected instances as a sample

from a certain population.
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Figure 3: Credible intervals (5% and 95% quantiles) and ex-
pected probability ofwinning (green dots) for the “easy” sub-
set of functions at n = 625. Plot (a) represents the results us-
ing all the runs, whereas plot (b) has been obtained with the
median of the runs.
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Figure 4: Credible intervals (5% and 95% quantiles) and ex-
pected probability of winning (green dots) for the “non-
easy” subset of functions at n = 625, based on all the runs.
Note the relatively small probability scale and the tight cred-
ible intervals.

functions (F ∈ {1 − 6, 11 − 13, 15, 16}) versus the complementary

subset of “non-easy” functions.

Fig. 3 shows the results for the “easy” functions. Clearly, the

best performing algorithm in both cases is gHC. When we analyze

random runs in random instances (Fig. 3 (a)), we can see that there

is a big difference between gHC and the rest. Evidently, the credible

intervals are quite tight, suggesting a considerable reduction of the
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Figure 5: Evolution of the probability of winning for dif-
ferent budgets. The lines represent the evolution of the ex-
pected probability of winning while the error bars represent
the 90% credible intervals (5% and 95% quantiles).

uncertainty. This is, mostly, because we have a larger sample than

in the second case (11 samples versus 1 per function). Fig. 4 shows

the results for all the runs in the “non-easy” subset of functions.

In this case we get a somewhat different picture: the estimation of

the probabilities is fairly good (the credible intervals are smaller

than 0.05, whereas mind should be given to the plot’s scaling), but

the probability values are fairly similar (simply due to overlapping).

Overall, there is an uncertainty about which algorithm is best per-

forming over this subset of functions, but not due to limitation of

data, rather due to equivalence in the algorithms’ performance.

4.2 Fixed-Budget Perspective
A different perspective to empirically analyze the algorithms’ runs

considers comparisons that are drawn per a fixed budget. The pro-

posed Bayesian method can be used to compare the algorithms

also in this scenario. In order to show a different approach to the

analysis, we will demonstrate the method by tracking the evolution
of the probability of each algorithm being the best as the budget

increases, which is a novel perspective to the best of our knowledge.

Fig. 5 presents two examples of such probabilities’ evolution plots,

for different cases.
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Figure 6: Comparing the posterior distribution of weights,
when obtained with different prior distributions, for the
data analysis corresponding to F9, n = 100, φ = 100.

In Fig. 5(a), showing results for F21, it is evident that the behavior

of one of the algorithms, gHC, differs from the rest. Its probability of

winning quickly increases, showing that for low budgets it is clearly

the best algorithm. However, although fine objective function val-

ues are quickly acquired by gHC, other algorithms obtain better

values as the budget increases, and accordingly, their probability of

winning increases, thus reducing the probability of gHC being the

best. The picture is quite different when analyzing F22, as depicted

in Fig. 5(b): the gHC exhibits steady increase in its probability of

being the best, up to a probability of about 50% (a high value, taking

into account that we consider altogether 11 algorithms).

4.3 Impact of the Prior Distribution
One of the main concerns about Bayesian statistics is the need to

define a prior distribution for the parameters of the model. For

this reason, an important aspect to investigate is the impact of the

prior distribution over the final estimations. In this section we will

illustrate this type of analysis using one of the previous examples. In

particular, we will compare the posterior distribution of the weights

obtained in the analysis of the results for function F9 at n = 100

with a target value φ = 100 (see Fig. 2).

To this end, we have used three different types of prior distri-

butions: (i) equal treatment of all the algorithms (uniform prior),

(ii) preferred probability to the best algorithms (assigning the best

algorithm higher prior probability of winning), and (iii) preferred

probability to the worst-performing algorithms (deceptive prior).

Distributions (ii) and (iii) make use of the empirical results to de-

termine which algorithms have a higher prior probability of being

the best.

Fig. 6 shows the results of the comparison as boxplots of the

posterior sample of weights. Evidently, when the empirical data is

used to bias the prior distribution toward the best algorithms, the

two best algorithms have slightly higher values and the opposite

happens when the deceptive prior is used, as they have slightly

smaller values. In any case, the actual differences are practically

negligible, even if we have a relatively small sample (11 runs). These

small differences are translated into small differences in our esti-

mations, but they definitely will not alter the general comparison

overview.
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Although the common practice is to use non-informative priors,

one nice property of Bayesian statistics is that it provides a natural

way to do “incremental” analyses. That is, rather than using a non-

informative prior to start the comparison of the algorithms from

scratch, we can use previous analyses to set an “informed” prior,

thereby testing the algorithms in a loop fashion.

4.4 Comparison with Classical Statistical Tests
Finally, as an illustration of the differences between Bayesian in-

ference and the classical statistical test approach, we will show the

results obtained with a standard statistical test workflow for the two

largest budgets in Fig. 5. All the pairwise comparisons are tested

using a Wilcoxon test and the p-values are corrected for multiple

testing using Shaffer’s method [14]. The results are displayed in

Fig. 7. The plots are similar to the Critical Differences plot presented

in [7]. Each algorithm is displayed according to its average rank in

the data. Then, the algorithms which, according to the test, do not

significantly differ (corrected p-value above 0.05) are linked by a

horizontal line.

The results shown in these plots, although reflecting a different

perspective on the data, match those observed in Fig. 5. For the

two functions, the ordering of the algorithms is roughly the same

in both approaches. Regarding the uncertainty, it is too high for

function F21 to conclude that any of the algorithms is clearly the

best. Conversely, for F22 both analyses show that gHC is clearly

better than the rest of the algorithms (it has significant differences

with the second one and the credible intervals in Fig. 5 do not

overlap).

In the case of the Bayesian analysis we have the estimated prob-

ability of each algorithm being the best, together with a notion (in

the form of credible interval) of the uncertainty about this estima-

tion. Moreover, the Bayesian analysis can also be used to estimate

the expected rank (similar, in this example, to the ones directly

derived form the data; these calculations are not included herein

for reasons of space).

5 DISCUSSION AND OUTLOOK
An important task in Computer Science in general, and in EC in

particular concerns the evaluation and comparison of algorithms.

Two critical steps in such an assessment comprise an appropriate

design of experimentation as well as a proper statistical analy-

sis of the performance data. Different statistical procedures and

methods have been suggested in the literature to gain insight into

particular aspects of algorithms’ performance. In this work we

have demonstrated that Bayesian inference using the Plackett-Luce

model facilitates an effective analysis of algorithms’ performance

ranking. Since these results nicely complement classical statistical

tests, we suggest to include Bayesian inference with the Plackett-

Luce model as a standard statistical tool in the practical EC per-

formance comparisons’ repertoire. In this vein, we also suggest to

include a Bayesian inference analysis module in IOHanalyzer, the

data-analysis component of IOHprofiler.

The Bayesian Plackett-Luce model described in this work has

some strong points (e.g., the ability to handle multiple algorithms),

but – as with any statistical tool – also some weaknesses. It is there-

fore important to understand the limits of the model. An important

3 4 5 6 7 8 9 10 11

(a) F 21, n = 100, Budget 1100

1 2 3 4 5 6 7 8 9 10 11

(b) F 22, n = 100, Budget 200

Figure 7: Demonstration of the statistical test workflow ap-
plied to the results for two problem instances for a fixed bud-
get. The plots present the average rank of each algorithm,
and also display which algorithms do not exhibit statisti-
cally significant differences (linked by a horizontal line).

point to note is that by aggregating performances into rankings

we lose information about the magnitude of the differences. Put

differently, the model is capable of estimating the probability of an

algorithm being the best, but it does not quantify the performance

gap with respect to the first runner-up. Developing new statistical

procedures to inspect the results from other, alternative points of

view, forms an important line for future research.

Another important line of further research concerns a deeper

analysis of the Bayesian Plackett-Luce model – not only regard-

ing aspects of convergence of the estimators, but also in terms of

identifying other useful metrics. An example for such metrics is

the probability of an algorithm being among the top k algorithms,

which has the potential to enrich the algorithms’ comparison.

Finally, an ambitious but a necessary goal involves the careful

definition of the most appropriate workflow for the comparisons.

There is no single method that is best suited to answer all the

questions we may ask, and not all the methods require the same

type of data. Thus, clearly articulating the questions, devising the

appropriate methods to address them, and formulating the data’s

requirements for their application – are tasks from which the com-

munity can greatly benefit.
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