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ABSTRACT

We conduct a fixed-target runtime analysis of (1 + 1) EA with
resampling on the OneMax and BinVal problems. For OneMax,
our fixed-target upper bound refines the previously known bound.
Our fixed-target lower bound for OneMax is the first of this kind.
We also consider linear functions and show that the traditional
approaches via drift analysis cannot easily be extended to yield
fixed-target results. However, for the particular case of BinVal, a
relatively precise fixed-target bound is obtained.
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1 INTRODUCTION

Theory of evolutionary computation (EC) is aimed at showing in-
sights into the working principles of evolutionary algorithms that
could be hard or even impossible to obtain through classical ex-
perimentation. These insights can be leveraged for the design of
more efficient solvers, which was demonstrated, for example, in [2],
which presented a genetic algorithm that achieves an asymptot-
ically better performance than any algorithm without crossover
could possibly achieve, and this even for very smooth optimization
problems. Another example is the heavy-tailed alternative to the
standard bit mutation suggested in [5]. This idea was shown to
increase efficiency when crossing gaps in the fitness landscape.
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It also shows encouraging empirical performance on the recently
announced nevergrad benchmarking platform [10].

A particularly active topic within theory of EC is runtime analy-

sis, which studies the trade-offs between the number of function
evaluations and the quality of the best search points that the al-
gorithm has evaluated within this budget. Most of the works on
runtime analysis are focused on bounding the expectation and the
concentration of the number of fitness evaluations needed to locate
a global optimum. While this seems natural from the perspective
of solving a problem to optimality, finding a global optimum is
infeasible in most practical applications. This has given rise to alter-
native indicators, which aim at making more explicit the mentioned
trade-off between budget and target value. One of the prominent
measures is fixed-budget analysis, which aims at determining which
fitness to expect given a certain computational budget. Brought
to the attention of the theory community by [6], a number of sub-
sequent works [3, 4, 7, 9] proved rigorous fixed-budget results for
some classical problems in the theory of EC.

In [1], fixed-target analysis was proposed as an alternative perfor-
mancemeasure for the anytime behavior of evolutionary algorithms
(EAs). Fixed-target analysis extends the classically considered opti-
mization time by considering also first hitting times of sub-optimal
target values. That is, fixed-target results make statements about
the distribution of the number of function evaluations needed to
find a solution that meets a minimum quality requirement.

We recall that both fixed-budget and fixed-target measures are
among the standard indicators reported in empirical studies, so that
the contribution of [6] and [1] is not to be seen in defining these
measures, but in suggesting them for theoretical considerations.
We also note that some implicit fixed-target results were already
shown before the appearance of [1], see [4, 9] for examples.

Apart from suggesting fixed-target analyses, [1] also suggested
to consider an alternative cost measure. Specifically, they suggest
to omit function evaluations of offspring that are identical to their
parents. It is argued in [1] that this rule can be assumed to be met
in many applications, in particular when function evaluations are
very costly. For some algorithms this non-evaluation strategy is
identical to enforcing that at least one bit is flipped in each iteration,
i.e., by enforcing that the offspring is different from its parent. This
is the case for the well-studied (1+1) EA. Formally, the suggestion
of [1] changes the (1+1) EA to a new algorithm, which is coined as
“resampling” (1+1) EA in [1], or (1 + 1) EA>0 for short.

In this paper, we analyze the fixed-target running time of the
(1 + 1) EA>0 on OneMax and BinVal. To the best of our knowl-
edge, the number of theoretically proven fixed-target results for
this algorithm is very limited. In [1] some bounds are derived for
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OneMax and LeadingOnes. The bounds are parametrized by the
mutation rate p, which assumed to be constant throughout the
run. For the expected fixed-target time needed to solve OneMax
with resampling, in [1] a quite pessimistic lower bound was proven,
which we address in Section 3.1. For LeadingOneswith resampling,
considering k is our target fitness value, an exact fixed-target result
was obtained: Tk =

1−(1−p)n
2p2 ((1 − p)1−k − (1 − p)).

Our main contributions to the existing fixed-target results for
the (1 + 1) EA>0 are:
• a refined upper bound for OneMax, which improves the
bound from [1] by an additive term of Θ(n);
• complementary lower bounds for OneMax (we show how
to leverage tools from classical optimization time analysis);
• a rather precise fixed-target bound for BinVal. Here again
we can make use of existing results on the optimization time,
but in a completely different way than for OneMax, as we
define reductions to the same problem of smaller size.

We also highlight some issues of using classical drift analysis on
the example of linear functions, which appear when using potentials
that do not correlate well with the distance in the search space.

2 PRELIMINARIES

The (1+1) EA>0 is the “resampling” variant of the simple (1+1) EA
which requires that in each iteration at least one bit of the parent
individual is mutated (whereas in the basic (1 + 1) EA it might hap-
pen that parent and offspring are identical). The difference between
parent and offspring is achieved by sampling a new offspring in
case of a 0-bit flip. With this rule, the number l of bit positions to
flip follows the conditional distribution Bin>0(n,p), which assigns
to each t a probability of Pr[l = t] = Pr[Bin(n,p) = t | t > 0] =(n
t
)
pt (1−p)n−t /(1− (1−p)n ). Here and in the following p denotes

the mutation probability. We assume without further mentioning
that 0 < p ≤ 1/2. The (1 + 1) EA>0 is outlined in Algorithm 1.

All problems considered in this work are formulated as functions
f : {0, 1}n → R. We assume maximization as objective. Since in
each subsection we consider a single problem, we will omit its
explicit mention from the notation wherever possible.

By Tk we denote the expected time (measured by the number of
fitness evaluations) that the (1 + 1) EA>0 needs to find a solution
with fitness at least k . The notationTi→k denotes the expected time
to reach a solution with fitness at least k , when starting from a
random solution of fitness equal to i . Assuming x to be a random
parent of fitness f (x) = i and assuming y to be its offspring, we
use pi to denote the probability that f (y) > f (x) holds. We call pi

Algorithm 1 (1 + 1) EA>0 optimizing f : {0; 1}n → R
p : the mutation probability
x ← UniformRandom({0; 1}n ) ▷ the best individual so far
while x is not optimized do

Sample l ∼ Bin>0(n,p), the number of bit positions to flip
y ← Mutate(x , l) ▷ the offspring with l flipped bits
if f (y) ≥ f (x) then

x ← y
end if

end while

the improvement probability at fitness i . Furthermore, we denote
by pi→k the probability that f (y) = k conditioned on the event of
the improvement, i.e., Pr[f (y) = k | f (y) > f (x)]. Finally, we write
x = (x1, ...,xn ) for all x ∈ {0, 1}n .

3 ONEMAX

In this section, we consider the OneMax problem, which is defined
by OM(x) =

∑n
i=1 xi . The exact expression for the probability of

improvement of any solution x with OM(x) = i equals

pi =
n∑

j=i+1

∑min(i,n−j)
k=0

( n−i
k+j−i

) ( i
k
)
p2k+j−i (1 − p)n−2k−j+i

1 − (1 − p)n , (1)

where we recall that the denominator comes from the condition
that we enforce to flip at least one bit per iteration. Since Eq. 1 is
quite complicated, we will use upper and lower bounds on pi .

3.1 Upper Bound

We derive the upper bounds with the help of the commonly used
pessimizations, that is, we assume that only one-bit flips succeed,
from which it follows that, under the resampling strategy:

pi ≥
(n − i) · p(1 − p)n−1

1 − (1 − p)n

and the expected runtime to get from fitness i to fitness k is:

Ti→k ≤

k−1∑
j=i

pj ≤
1 − (1 − p)n

p(1 − p)n−1
k−1∑
j=i

1
n − j

=
1 − (1 − p)n

p(1 − p)n−1
(Hn−i − Hn−k ) ,

where Hj =
∑j
t=1 1/t is the j-th harmonic number. With the pes-

simistic bound Tk ≤ T0→k we get the result from [1]:

Tk ≤ T0→k ≤
1 − (1 − p)n

p(1 − p)n−1
(Hn − Hn−k ) . (2)

On the other hand, the upper bound onTk can be obtained from
the distribution of the initial fitness, Pr[OM(x (0)) = i] =

(n
i
)
2−n :

Tk =
k−1∑
i=0

Pr[OM(x (0)) = i] ·Ti→k

≤
1 − (1 − p)n

2np(1 − p)n−1
k−1∑
i=0

(
n

i

)
(Hn−i − Hn−k ) .

While such precision is unnecessary in proofs of the expected
running time towards the optimum, as most corrections of this
form influence only lower-order terms, the fixed target analysis can
feel this difference for k sufficiently far away from the optimum. In
particular, we are able to improve the bound (2) by roughly a ln 2

p
margin, which is n ln 2 in the case of p = 1/n.

Theorem 3.1. The upper bound on the expected fixed-target run-

time of the (1+ 1) EA>0 with the mutation probability p on OneMax

of the size n and the target value k > n/2 +
√
n lnn is:

Tk ≤
1 − (1 − p)n

p(1 − p)n−1
·

(
Hn/2 − Hn−k

)
· (1 − o(1)).

First we need to prove two lemmas about binomial coefficients.
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Lemma 3.2. For δ = o(1) the following holds:(
n

n
2 (1 − δ )

)
= (1 ± o(1)) 2n√

πn
2

· e−
δ 2n
2 .

Proof. We use the Stirling approximation for factorials:(
n

i

)
= (1 ± o(1))

√
n

2πi(n − i) ·
nn

ii (n − i)n−i
.

Substitution of (1 − δ )n/2 for i results in the following:(
n

n
2 (1 − δ )

)
= (1 ± o(1)) 2n√

πn
2

·
1

(1 − δ2)
n+1
2
·

(
1 − 2δ

1 + δ

) nδ
2

.

Next we use the fact that (1 − ϵ)1/ϵ → e−1 when ϵ → 0:(
n

n
2 (1 − δ )

)
= (1 ± o(1)) 2n√

πn
2

·
1

e−
δ 2(n+1)

2

· e−
nδ 2
1+δ .

This proves the lemma after noticing that

e
−nδ 2
1+δ

e
−δ 2(n+1)

2

= e
δ 2(n+1)

2 − nδ
2

1+δ = e−
nδ 2
2 +

δ 2
2 +

nδ 3
1+δ = (1 + o(1))e−

nδ 2
2 . □

Lemma 3.3. The following inequality holds for k < n/2:
k∑
i=0

(
n

i

)
≤

(
n

k

)
·
n − k + 1
n − 2k + 1 =

(
n

k

)
·

(
1 + k

n − 2k + 1

)
.

Proof. Weuse the facts that
( n
i−1

)
/
(n
i
)
= i

n−i+1 and that
i

n−i+1 >
i−1

n−i+2 to bound
(n
i
)
from above as follows:(
n

i

)
≤

(
n

k

)
·

(
k

n − k + 1

)k−i
,

which enables bounding the sum in question by a sum of an infinite
geometric progression to yield the desired result. □

Proof of Theorem 3.1. It is enough to prove the following:
k−1∑
i=0

(n
i
)

2n (Hn−i − Hn−k ) ≤ (1 − o(1))
(
Hn/2 − Hn−k

)
,

assuming k > n/2 +
√
n lnn. We retain only the indices from n/2 ±

√
n lnn on the left-hand side by showing the following:

n/2−
√
n lnn∑

i=0

(n
i
)

2n · Hn = o(1/n).

Using Lemmas 3.2, 3.3, by choosing δ = 2 lnn√
n

, we show that

n
2 (1−δ )∑
i=0

(n
i
)

2n ≤ (1 ± o(1)) ·
e−

δ 2n
2√
πn
2

·

(
1 +

n
2 (1 − δ )
2δn + 1

)
=

e−2(lnn)
2

Θ(
√
n)
· Θ

( √
n

logn

)
= Θ

(
1

n2 lnn logn

)
, (3)

which is o(1/n) even after multiplying by Hn = O(logn), so it hides
in (1 − o(1)), and the theorem is reduced to:

n/2+
√
n lnn∑

i=n/2−
√
n lnn

(n
i
)
(Hn−i − Hn−k )

2n ≤ (1 − o(1))
(
Hn/2 − Hn−k

)
.

As
∑n/2+

√
n lnn

i=n/2−
√
n lnn

(ni )
2n = 1 − o(1/n), which follows from (3), it

remains to prove that the following expression, which bounds the
change that happens when replacing Hn−i with Hn/2, is small:������

n/2+
√
n lnn∑

i=n/2−
√
n lnn

(n
i
)
(Hn−i − Hn/2)

2n

������ .
We pair up the addends having matching binomial coefficients:������

n/2∑
i=n/2−

√
n lnn

(n
i
)
(Hn−i + Hi − 2Hn/2)

2n

������ (4)

and note that

2Hn/2 − Hn−i − Hi ≤

n/2−1∑
j=i

1
j
−

1
j + n/2 − i ≤

n/2−1∑
j=i

n/2 − i
i2

=

(
n/2 − i

i

)2
≤

(√
n lnn
n/2

)2
= O

(
(logn)2

n

)
,

which promotes to (4) as well and completely hides into 1 − o(1) as
Hn/2 − Hn−k = Ω

(
logn
√
n

)
. □

3.2 Lower Bound

The main result of this section is as follows for p = O(n−2/3−ε ):

Theorem 3.4. Let p̃ = max(p, 1/n), smin = np̃ ln2 n, smax =
1/(2p̃2n lnn), then the lower bound on the expected fixed-target run-

time of the (1+ 1) EA>0 with the mutation probability p on OneMax

of the size n when n is big enough and the target value k is:

Tk
1 − o(1) ≥


1−(1−p)n
p(1−p)n ln 1

4p̃3n2 ln3 n , for n − k ≤ smin;
1−(1−p)n
p(1−p)n ln 1

4p̃2n(n−k ) lnn , for smin < n − k = o(smax).

Proof. Our proof is based on the proof of Theorem 6.5 from [11]
and heavily uses its internals. This theorem proves the lower bound
for the expected runtime of (1 + 1) EA on OneMax by observing
the behaviour of the algorithm between fitness levels n − smax and
n − smin, where smin and smax are defined as above.

For the first case, the target fitness level k is above the upper
fitness level n − smin, so Tk differs from Tn only in lower-order
terms. We thus directly use the result of Theorem 6.5 [11].

For the second case, we replace smin by k ′ = n − k in the proof
of Theorem 6.5. We also refine the choice of the parameter β , that
controls the size and the probability of tolerable large jumps, from
β = 1/lnn to β = b/k ′, where b = p̃n lnn as in Theorem 6.5,
which still satisfies the conditions of [11, Theorem 2.2] used to
derive the runtime bounds. The factor (1 − β)/(1 + β) would still
be 1 − o(1) with this choice. The replacement of smin by k ′ = n − k
affects the logarithm of the ratio of potentials, which now becomes
ln(s0/k ′) = ln(1/(4p̃2n lnnk ′)). □
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Figure 1: Plot of the potential function γi applied to BinVal,

p = 1/n,α = ln lnn,n = 16

4 NOTES ON LINEAR FUNCTIONS

Can the existing tools for runtime analysis be used to obtain good
fixed-target results? Some of them have been successfully used for
problems like OneMax and LeadingOnes, but for wider function
classes (i.e., linear functions f (x) =

∑n
i=1wixi , where the wi are

constant weights) the answer is not straightforward. We consider
a linear function with weights equal to successive powers of two,
called BinVal:

BinVal(x) =
n∑
i=1

2i−1 · xi .

This function can be seen as an “extreme” linear function: a
direct application of the multiplicative drift theorem [8, Theorem
11] yields an O(n2) running time for the (1 + 1) EA with the muta-
tion probability p = 1/n, not the true O(n logn) bound. A typical
workaround is to apply drift theorems to some other functions
(“potentials”) that possibly depend on the individuals. For instance,
Theorem 4.1 from [11], which proves upper bounds for (1+1) EA on
linear functions, uses the following weights instead of the original
weightswi , assumingwi ≤ wi+1 and д1 = 1:

дi = min
{
дi−1 ·

wi
wi−1

,

(
1 + αp

(1 − p)n−1

)i−1}
.

This idea yields an upper bound of (1 + o(1))(ec/c)n lnn on the
expected running time of (1 + 1) EA on all linear functions with
mutation probability p = c/n by choosing α = ln lnn. To apply it to
the fixed-target results, we need to choose a new lower bound smin
to be the minimum potential of the all individuals with f (x) < k ,
where k is our target fitness. The plot of the potential value as a
function of the fitness, for BinVal with n = 16 and α = ln lnn,
is given in Fig. 1. The lower envelope of the blue curve is the
value for smin to take assuming x is the target fitness. Fig. 1 shows
that the upper bounds following from Theorem 4.1 would be very
imprecise. However, for BinVal we may apply the existing tools in
a completely different way to get quite sharp bounds.

Theorem 4.1. The expected fixed-target runtime of (1+1) EA>0 on
BinVal with the problem size n, the target fitness k and the mutation

probability p = O(n−2/3−ε ) satisfies:

Tk ≥ (1 − o(1))
1 − (1 − p)n

p(1 − p)n− min
{
lnn−, ln 1

p3(n−)2

}
,

Tk ≤
pn+α2(1 − p)1−n+ + α

(
ln 1

p + (n
+ − 1) ln(1 − p) + 1

)
(1 − p)n+−1 · p(α − 1) · (1 − (1 − p)n )−1

,

where n− = n − ⌈log2(2n − k)⌉ and n+ = n − ⌊log2(2n − k)⌋, and α
can be chosen appropriately, even depending on n or n+.

Proof. Note that n− and n+ are chosen in such a way that,
assumingx− is an integerwritten in binary notationwithn− leading
ones and n −n− following zeros, and x+ similarly depends on n+, it
holds that x− ≤ k ≤ x+ and n− + 1 ≥ n+. That is, in order to reach
the target fitness k , it is necessary to guess right n− most significant
bits, and it is sufficient to guess right n+ most significant bits. This
effectively reduces the problem to solving a smaller BinVal problem
completely, assuming the same mutation rate.

The lower bound then follows directly from [11, Theorem 6.5],
and the upper bound follows directly from [11, Theorem 4.1], while
noting that we use (1 + 1) EA>0, which introduces a factor of
(1 − (1 − p)n ) to both bounds, where n is unchanged. □

5 CONCLUSION

We improved the existing fixed-target results for (1 + 1) EA>0
on OneMax and expanded them with lower bounds. For linear
functions, it was shown that traditional drift analysis is hard to
apply. We left the further analysis of this general problem for the
future work. However, a rather precise bound was obtained for the
particular case of the BinVal problem.
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