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ABSTRACT
Insights on characteristics of an optimization problem is highly im-
portant in order to select and configure the right algorithm. Some
techniques called features are defined for analyzing the fitness land-
scape of a problem. Despite their successes, our understanding of
which features are actually relevant for the discrimination between
different optimization problems is rather weak, since in most ap-
plications the features are used in a black-box manner. Another
aspect that has been ignored in the exploratory landscape analysis
literature is the robustness of the feature computation against the
randomness of sample points from which the feature values are
estimated. Moreover, the influence of the number of sample points
from which the feature values are estimated is also an aspect ig-
nored by the literature. In this paper, we study these three aspects:
the robustness against the random sampling, the influence of the
number of sample points, and the expressiveness in terms of abil-
ity to discriminate problems. We perform such an analysis for 7
out of the 17 features sets covered by the flacco package. Our test
bed are the 24 noiseless BBOB functions. We show that some of
these features seems very well-fitted for the discrimination of the
problems and quite robust whereas others lack robustness and/or
expressiveness, and are therefore less suitable for an automated
landscape-aware algorithm selection/configuration approach.
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1 INTRODUCTION
When facing a new optimization problem to solve, insights on its
characteristics can be leveraged to select a well-performing algo-
rithm and a suitable instantiation of its parameters [4, 8]. Reliable
indicators that give insight on the structure of the fitness landscape
are therefore at high demand. The design and analysis of such
landscape features is the subject of exploratory landscape analy-
sis [9], and the landscaped-based selection and instantiation are
commonly referred to as landscape-aware algorithm selection and
configuration.

For a given problem, fitness landscape analysis aims at measur-
ing problem characteristics through functions that assign to each
problem a vector of real numbers. To date, most works on fitness
landscape analysis concentrate on continuous optimization prob-
lems [1], but the concepts have also been very successfully applied
to some NP-hard combinatorial problems, for example to the satisfi-
ability problems [12] and to the travelling salesperson problem [5].

A description of the most relevant features for numerical prob-
lems can be found in [4] and can be conveniently computed using
the R-package “flacco” [7]. flacco computes up to 343 features for
each problem, clustered into 17 feature sets. A feature set regroups
several sub-features corresponding to the same idea. For instance,
the feature set y-distribution has 3 sub-features: skewness, number
of peaks and kurtosis, which measure different aspects of the fitness
value distribution.

While the previously mentioned success stories [1, 5, 12] demon-
strate that the feature values can indeed be used for reliable per-
formance predictions, we currently lack a good understanding of
which features are most relevant for the accuracy of the perfor-
mance models. With the long-term goal to investigate this question
in more detail, we contribute with this work a first essential step
towards a better understanding, by analysing (1) the expressiveness
of the various features and (2) the robustness of their computation.

In light of the important impact that the existing applications
of landscape-aware algorithm selection and configuration have
demonstrated, it may be surprising that these two questions have
not been rigorously addressed in the research literature. However,
among the existing works, we could only identify one example that
studies related questions. Morgan et al. [10] have done a study on
the influence of the sample size and the dimension of the problem
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on a single feature, the so-called dispersion metric. They found
that the expressiveness of the dispersion feature, measured by its
ability to discriminate between different optimization problems, is
negatively correlated with the dimension. Moreover, they found
that as the dimensionality increases the dispersion of the sample
will converge to fixed value which is the same for every considered
problem.

In this paper, we focus on a fixed dimension D = 5 and we
discuss the robustness of several feature sets against a random
sample of points. Moreover, as mentioned above, we aim at finding
which subset of features allows to extract useful information on the
problem instance at hand. We analyse this question by generating
different samples on several problems extracted from BBOB [2].
Then, we compute the values of the features and look at their
distributions. Our key findings are that some features can not be
used on this benchmark because of a low robustness or no gain of
knowledge over the problem instance. Conversely, we found some
features that could be used for landscape-aware heuristic design,
since they show a high degree of expressiveness and are robust
against both random sampling and the number of sample points.

2 DESIGN OF EXPERIMENT
From the 17 feature sets available in flacco, we ignore all of the cell-
mapping-based metrics, since it was pointed out in [6] that they are
not fitted for complex problems. When the budget is small, those
features that do not require additional sampling (such features were
coined “cheap” features in [1]) are preferable over “expensive” ones,
which, for example, would require to perform a local search. In
our experiments we therefore keep only the cheap features. Thus,
overall, we are left with the following 7 feature sets:

• Dispersion (disp) which, intuitively speaking, aims at mea-
suring the distance among points of a subset of the sample.
These subsets are created with predefined threshold (2%, 5%,
10% and 25%);

• Information Content (ic) measuring the variety of infor-
mation objects of the landscape (i.e. smoothness, ruggedness
or neutrality);

• Nearest Best Clustering (nbc) which extract information
based either on the nearest or the better neighbours;

• Principal Component Analysis (pca) converting a set of
observation variables that could be correlated to a set of
variables, called principal components, which are linearly
uncorrelated;

• Meta Model (ela_meta) fitting linear and quadratic regres-
sion models to the initial design;

• y-distribution (ela_distr) which describe the distribution
of the fitness values;

• Level Set (ela_level) splitting the initial data into two classes
with a level defined by a threshold. The features are based
on misclassification errors of each classifier;

The benchmark used is the Black-Box Optimisation Benchmark
(BBOB) [3]. We study the first instance of each functions. We recall
that we fix the dimension toD = 5. We choose this scale of problems
to have meaningful results with convenient computational time.
For each function we create 100 samples of 5D = 3125 search points,
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Figure 1: Distribution of the em Principal Component Anal-
ysis, expl_var.cor_x sub-feature for 3125 search points. The
y axis is normalized for all problems.
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Figure 2: Distribution of the ELA distribution, kurtosis sub-
feature for 3125 search points. The y axis is normalized for
all problems.

all taken from the domain [−5, 5]D . 1 Additionally, to measure the
dependency of features to the number of search points, we also
planned experiments for less points i.e. 300 and 30 on the same
domain. In order to cover the decision space efficiently, we used a
low-discrepancy sample generator [11] to sample the search points.
Such quasi-random sampling methods avoid the cluster effect, and
are thus more suited for a design of experiments where we seek to
cover the search space well.

3 RESULTS
Once the features are computed, the feature values of the different
samples are aggregated into histograms, one for each BBOB func-
tion. We then compare the distributions of the feature values, their
averages and standard deviations.

3.1 Results for a fixed number of points
In this section, we look at the results for a number of points fixed
at 5D = 3125.

Fig. 1 shows the distribution of a feature from the Principal
Component Analysis set. As the distribution is the same for all 24
benchmark functions, only the two last functions are shown.

The central tendencies of the distributions of the feature in Fig. 2
appear to be different for a large fraction of function pairs. Nev-
ertheless, the variability of the distributions is very large, when

1The BBOB functions are traditionally studied over the search domain [−5, 5].
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Figure 3: Distribution of the Information Content, esp_ratio
sub-feature for 3125 search points. The y axis is normalized
for all problems.
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Figure 4: Distribution of the Principal Component Analysis,
expl_var.cor_x sub-feature with different number of search
points. The y axis is normalized for all problems.

measured against the value range and the differences between cen-
tral tendencies. For instance, the standard deviation for function 12
is almost as large as the maximal value range of all 24 distributions.

In Fig. 3, we observe two main important properties: firstly,
the variability of the distributions is very low for each function;
secondly, from the visual analysis, the feature seems suitable to
discriminate around 475 out of the 24 × 23 = 552 function pairs.
However, functions 4 and 7 can hardly be distinguished, for instance.
Measuring the discriminative power of each feature set through a
rigorous statistical approach is one of the next steps to validate our
findings.

3.2 Results for different number of points
Fig. 4, 5 and 6 represent the distributions of expl_var.cor_x, kurtosis
and esp_ratio features over the BBOB functions for 30, 300 and 3125
search points. The values of the y axis are normalized and are the
same for the 3 subplots of each features.

The results are comparable to one can expect. Indeed, when
you reduce the number of search points, the variance of a measure
almost always rise up. This phenomenon appears in Fig 5 with
the kurtosis. For the fewer number of points, the variability of the
values for some problems is as wide as the value range (problems
12,18,19 and 20 for instance). Only expl_var.cor_x (Fig. 4) shows
almost the same values regarding either the different problems or
the different sample sizes.

One can note in Fig 6 that the variance is only inching up com-
pared to Fig. 5. Moreover, when it was hard to distinguish problems
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Figure 5: Distribution of the ELA Distribution, kurtosis sub-
feature with different number of search points. They axis is
normalized for all problems.
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Figure 6: Distribution of the Information Content, esp_ratio
sub-feature with different number of search points. The y
axis is normalized for all problems.

with the kurtosis and 30 search points, it is still possible with the
esp_ratio feature. Nevertheless, the discriminative power of this
feature seems to fall with the diminution of search points.

4 DISCUSSION
4.1 Expressiveness
In our work, we define the expressiveness of a feature as its ability to
distinguish several problems. Hence, the more expressive a feature
is, the more problems it can distinguish.

For some features, like the one shown in Fig. 1, the distributions
are identical or very similar, making it impossible to discriminate
problems based on those features. Consequently, we should discard
them in a feature-based algorithm selection and/or configuration,
because they do not offer substantial insight into the characteristics
of a problem.

In order to be able to identify a problem based on its feature
values, the location of the central tendencies of the distribution and
the variability of the values are key elements. As can be seen in
Fig. 2, the central tendencies are not very similar but from this data
we cannot claim that each pair of functions can be distinguished. If
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the variability of the values is too wide, two feature distributions of
distinct problems can overlap. When a feature value falls into this
overlapping range, several problems correspond to the measured
feature value.We therefore conclude that a feature that is well-fitted
to discriminate problems combines differences in central tendencies
with a low variability on the different samples. Fig. 3 shows a good
example for such a well-fitted feature.

4.2 Robustness
In this paper, we call a feature robust when its variance is not large
over the range of values taken on all problems. Note here that we
discuss in this paper the robustness of a feature to the sampling in
two different ways :

• The robustness to the different samples of the same size.
Only the locations of points are different;

• The robustness to the number of points generated the same
way.

For instance, in case of Fig. 2, as the variance seems to be as big
as the value range, it is possible to say that the kurtosis is not robust
to the different samples. It also appears that kurtosis is not robust
to the number of points since the variance seems to be increasing
as the number of points is decreasing. As a matter of fact, this result
is more or less generalized to nearly all the features. Nevertheless,
for the classification of problems, the robustness of a feature is
not sufficient. Fig. 4 is a perfect example of this statement. We can
see that this is a very robust feature either regarding the size of
the sample or regarding the different samples. For that reason, we
should be looking at both expressiveness and robustness to define
a well-fitted feature.

4.3 Expressive and robust features
Based on our computations, two of the most expressive and robust
features are:

• eps_ratio feature of Information Content: this feature com-
bine a low dispersion and central tendencies that are very
well separated;

• lin_simple.intercept of ELA Meta-Model: as the first feature,
it has a low dispersion and well separated central tendencies.

Conversely, the least expressive features are:
• expl_var.cov_x of Principal Component Analysis;
• expl_var.cor_x of Principal Component Analysis;
• expl_var.cov_init of Principal Component Analysis.

These 3 features have the same downside. The central tendencies
and dispersions are exactly the same for all 24 functions.

Some features like the expl_var.cor_init of Principal Component
Analysis or ratio_m_25 from Dispersion can be used to defined
groups of functions. It seems that for these kind of features, the
distributions are alike for only a couple of functions. It is quite
interesting to note that these groups do not correspond to the
commonly regarded grouping of the BBOB functions. Hence, it
could be useful to define groups of functions from a feature point
of view.

We also observe that the identification of the BBOB functions
requires only a small number of features. As mentioned in Section 3,
some pairs of functions can be distinguished with only one feature.

For the mentioned example of functions 4 and 7, which cannot be
discriminated by this feature, the kurtosis feature displayed in Fig. 2
allows to distinguish this pair. Identifying the minimal number of
features needed to distinguish all pairs of functions is a promis-
ing research question, since it allows to reduce the computational
overhead of the feature computation and will hopefully lead to a bet-
ter interpretability of high-performing landscape-aware algorithm
selectors and configurators.

5 CONCLUSION
Our study exhibits three categories of features. One category con-
cerns the features that are not robust against the sampling, such
as the example from Fig. 2. Another category concerns features
that are not expressive, in the sense that the feature values are
similar for several function pairs. The feature from Fig. 1 shows
an extreme example of this case. A third category comprises the
features that are well-fitted to discriminate between problems. As
discussed above, these features are both expressive and robust.

Our results were mostly based on visual analysis, so that an obvi-
ous direction for future work is the application of suitable statistical
tests to confirm our findings. Moreover, we plan on comparing the
standard grouping of BBOB functions to those groups of suggested
by the feature analysis.
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