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SUMMARY

High-accuracy next-generation DNA sequencing
promises a paradigm shift in early cancer detection
by enabling the identification of mutant cancer mole-
cules in minimally invasive body fluid samples. We
demonstrate 80% sensitivity for ovarian cancer
detection using ultra-accurate Duplex Sequencing
to identify TP53 mutations in uterine lavage. How-
ever, in addition to tumor DNA, we also detect
low-frequency TP53 mutations in nearly all lavages
from women with and without cancer. These muta-
tions increase with age and share the selection traits
of clonal TP53 mutations commonly found in human
tumors.We show that low-frequency TP53mutations
exist in multiple healthy tissues, from newborn to
centenarian, and progressively increase in abun-
dance and pathogenicity with older age across
tissue types. Our results illustrate that subclonal
cancer evolutionary processes are a ubiquitous
part of normal human aging, and great care must
be taken to distinguish tumor-derived from age-
associated mutations in high-sensitivity clinical
cancer diagnostics.
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INTRODUCTION

Worldwide, >250,000 new cases of ovarian cancer are diag-

nosed each year, and two-thirds of these women die from the

disease (Bray et al., 2018). This high mortality is largely due to

the high frequency of metastasis before diagnosis and a lack

of effective screening and early detection methods. More than

60% of cases are diagnosed at an advanced stage, when the

5-year survival rate is only 29% (Siegel et al., 2017). In contrast,

survival for women with localized disease is 92%, indicating that

early ovarian cancer detection could vastly decrease mortality,

yet diagnosis at this stage is rare. The most used approach for

ovarian cancer screening involves a combination of serum pro-

tein CA-125 level and transvaginal ultrasound, but this has not

demonstrated survival benefit, and it may result in harm due to

false-positives, such as unnecessary surgeries in cancer-free

women (Henderson et al., 2018). Thus, the US Preventive Ser-

vices Task Force recommends against its use (Grossman

et al., 2018). Better tools for early ovarian cancer detection re-

mains an urgent and unmet clinical need (Drescher and Ander-

son, 2018).

In recent years, it has been demonstrated that cancers can be

non-invasively detected in ‘‘liquid biopsies,’’ that is, blood or

other body fluids in which cancers shed cells or DNA (Diaz and

Bardelli, 2014). Proof-of-principle for this approach in ovarian

cancer detection was initially accomplished via the identification
commons.org/licenses/by/4.0/).
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Figure 1. Detection of Ovarian Cancer Using UL and DS

(A) UL is carried out by passing a small catheter through the cervix, followed by concurrent flushing and aspiration with 10 mL of saline.

(B) After cell isolation by centrifugation, DNA is extracted, fragmented, and ligatedwith DS adapters, which include degeneratemolecular tags (a and b). Following

amplification, hybrid capture, and sequencing, reads sharing the same tags are grouped and mutations are scored only if present in both strands of each original

DNA molecule.

(C and D) Each spot on the 2D surface represents one of the 1,179 coding positions in TP53. The y axis indicatesmutant allele frequency (MAF). By standard NGS,

all positions show false mutations (C). DS of the same sample (case 6 in E) eliminates errors and reveals only true mutations (D).

(E and F) TP53mutations identified by DS in UL from women with ovarian cancer (E) and women who are cancer-free (controls; F). Fuchsia bars, matching tumor

mutation; blue bars, biological background mutations. Mutations are sorted by ascending MAF within each patient and patients are sorted by age.
of tumor-derived mutations in DNA extracted from routine

Papanicolaou (Pap) tests (Kinde et al., 2013). Although the sensi-

tivity for ovarian cancer detection was only 41%, these findings

supported the exciting possibility that ovarian cancer could be

detected by the genetic identification of cancer cells dissemi-

nated into the gynecological tract. A follow-up study recently

reported that improved sensitivity, up to 63%, could be obtained

by combining mutation detection in Pap tests and plasma. In

addition, sampling with an intrauterine brush also improved

sensitivity, probably due to increased tumor cell recovery by

more proximal collection to the anatomical site of tumors

(Wang et al., 2018).

An alternate means for tumor cell collection, developed by

members of our team, consists of trans-cervical lavage of the

uterine cavity (Figure 1A;Maritschnegg et al., 2015). This method

improves the efficiency of collection by rinsing the uterus and
fallopian tubes, the latter being the site of origin of most serous

ovarian cancers (Labidi-Galy et al., 2017). This lavage technique

demonstrated 80% sensitivity for ovarian cancer detection

(Maritschnegg et al., 2015). The challenge, however, was that

cancer-derived mutations, particularly those from early-stage

tumors, were often present in a very small fraction of the total

lavage DNA. To detect these mutations, digital droplet PCR

(ddPCR) was required, which is a sensitive method but not prac-

tical for prospective screening because the tumor mutation

needs to be known a priori.

Next-generation DNA sequencing (NGS) is a widely used,

variant-agnostic form of mutation detection, but it has a

background error rate of up to �1%, which precludes confident

identification of lower-frequency mutations (Salk et al., 2018). Of

the mutations that make up the 80% sensitivity achieved in our

previous study, conventional NGS missed 25% (Maritschnegg
Cell Reports 28, 132–144, July 2, 2019 133



et al., 2015). Currently, the most accurate NGSmethod is Duplex

Sequencing (DS) (Salk et al., 2018), which uses double-stranded

molecular barcodes for error correction and decreases the error

rate of sequencing from 10�3 to <10�7 (Kennedy et al., 2014;

Schmitt et al., 2012). We previously demonstrated that DS can

detect ovarian cancer-derived mutations in DNA extracted

from peritoneal fluid at frequencies as low as 1 tumor mutation

per 25,000 normal genomes (Krimmel et al., 2016). This extreme

sensitivity for mutation detection also led to the discovery of

prevalent yet very-low-frequency (<0.01%) TP53 mutations in

both the peritoneal fluid and peripheral blood from healthy

women. These ‘‘biological background’’ mutations resembled

TP53 mutations found in cancers, but appeared to result from

the normal aging process. This observation was among the first

of an emerging body of literature that has identified age-related,

cancer-associated mutations within non-cancerous tissue

(Risques and Kennedy, 2018).

In the present study, we combine the most sensitive reported

sampling technique for ovarian cancer detection, uterine lavage

(UL), with the highest-accuracy sequencing technology avail-

able, DS. High-grade serous ovarian carcinoma (HGSOC) is

both the most common and the most deadly histological type,

accounting for 70%–80% of ovarian cancer deaths (Bowtell

et al., 2015). More than 98% of HGSOCs carry mutations in

TP53, which makes this gene an ideal, cost-effective target for

sequencing (Ahmed et al., 2010; The Cancer Genome Atlas

Research Network, 2011; Vang et al., 2016). In addition, TP53

mutations are one of the earliest genetic events in HGSOC for-

mation, as demonstrated by their presence in early serous

epithelial proliferations found in the fallopian tubes (often termed

p53 signatures), as well as serous tubal intraepithelial carci-

nomas (Chien et al., 2015; Kuhn et al., 2012; Kurman and Shih,

2010; Soong et al., 2019).

The primary goal of this study is to demonstrate the technical

feasibility of using DS to deeply sequence TP53 from UL as a

potential test for ovarian cancer detection. We capitalize on

the accuracy of DS to identify true-positive cancer-derived mu-

tations and to uniquely detect low-frequency, age-related

mutations that may affect diagnostic performance. To better

understand the extent and nature of these biological back-

ground mutations, we perform a detailed characterization of

somatic TP53 mutations in multiple gynecologic tissues from

women without ovarian cancer of ages spanning a century of

human lifetime.

RESULTS

DS Detects Ovarian Cancer Mutations in ULs with High
Sensitivity
We used DS to examine the coding region of TP53 in DNA ex-

tracted from the lavage cell pellet (Figures 1A and 1B) of 10

women with ovarian cancer and 11 controls under blinded con-

ditions. Most of the lavages from women with ovarian cancer

were included in the original study that reported 80% sensitivity

for ovarian cancer detection with prior knowledge of tumor

mutation (Maritschnegg et al., 2015; Table S1). We sought to

determine whether similarly high sensitivity was possible without

prior knowledge of the tumor mutation by using DS. DS uses
134 Cell Reports 28, 132–144, July 2, 2019
special adapters with double-stranded molecular barcodes,

which allow the identification of sequencing reads that are

derived from both strands of each starting DNAmolecule. Muta-

tions are only scored if they are present in the majority of reads

from both DNA strands, effectively eliminating sequencing

and PCR artifacts (Figure 1B). The estimated error rate of DS

is <1 in 10 million (Schmitt et al., 2012), which allows for extreme

sensitivity and specificity of mutation detection when carrying

out high-depth sequencing. To illustrate the superior accuracy

of DS compared with standard NGS, an example of a UL sample

(case 6) processed by both methods is shown in Figures 1C and

1D. Standard NGS entails alignment and variant calling from Illu-

mina sequencing reads. Whereas every nucleotide position in

the gene artifactually appears mutated in 0.1%–0.5% of mole-

cules with standard sequencing, DS eliminates these tens of

thousands of erroneous mutations to reveal the known tumor

mutation at a mutant allele frequency (MAF) of 0.15%, a value

that is very close to the frequency previously determined

by ddPCR (0.12%; case 6 in Table S2;Maritschnegg et al., 2015).

Among the 10 lavages from women with ovarian cancer, we

identified the expected tumor mutation (fuchsia bars, Figure 1E)

in 8, matching the post hoc 80% sensitivity of the previous study.

In the subset of these lavages that had been analyzed by con-

ventional NGS and/or ddPCR, we confirmed tumor mutations

at similar allele frequencies in most cases (Table S2). In addition

to the tumor mutations, in nearly all of the lavages from women

with and without ovarian cancer, we identified very-low-fre-

quency TP53 mutations (blue bars, Figures 1E and 1F). To

confirm that these mutations were not due to technical errors,

two of the mutations identified in controls (lavages con2 and

con7) were assessed by ddPCR (Table S2). This orthogonal

assay demonstrated that these mutations, present at a compa-

rable frequency of <0.1% by both assays, were authentic. As a

further demonstration of the high sensitivity, accuracy, and pre-

cision of DS, we carried out a mixing experiment whereby cell

lines bearing point mutations in TP53 and two other genes

were spiked into a normal DNA sample at ratios from 1/100 to

1/100,000. Three replicates of this mixture were prepared and

sequenced on different days at DS depths of up to 400,0003.

All of the variants were identified in each replicate at expected

frequencies (R2 of 0.95–0.98), demonstrating excellent repro-

ducibility and accuracy (Figure S1).

Although TP53 background mutations were common, their

MAF was always <1% (Figures 1E and 1F), which could be

used as a threshold to optimally identify patients with ovarian

cancers from patients who are cancer-free. In this, albeit small,

pilot study, a 1% threshold yielded a sensitivity of 70% and a

specificity of 100%. Furthermore, the maximum mutation

frequency was significantly higher in cases than controls

(p = 0.0005 for test of no difference in log maximum frequency

between groups and no change after adjustment for age), and

in the lavages in which the tumor mutation was identified, its

frequency was at least 10-fold above the highest background

mutation in that individual.

TP53 Mutations in UL Increase with Age
To better understand the basis of TP53 background muta-

tions, we examined the association of their abundance with
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Figure 2. The Frequency of TP53Mutations in UL Increaseswith Age

Frequency is calculated as the total number of unique TP53 mutations iden-

tified in each sample (including exons and flanking intronic regions) divided by

the total number of DS nucleotides sequenced.

(A) UL samples from patients with ovarian cancer; n = 10, r = 0.89, p = 0.0006

by Spearman’s correlation test.

(B) UL samples from control patients without cancer; n = 11, r = 0.83, p = 0.001

by Spearman’s correlation test.
age. When patients were ordered by ascending age (Figures

1E and 1F), it appeared that older patients carried more muta-

tions. However, the number of mutations found depends on

the total number of nucleotides sequenced (Figure S2), which

was variable across samples and tended to be higher in

controls due to increased sequencing depths (Table S1). To

compensate for this variation, for each sample we calculated

the total TP53 mutation frequency by dividing the number

of mutations identified in UL (including exons and flanking

intronic sequences) by the total number of DS bases

sequenced. For patients with cancer, we excluded the tumor

mutation from this calculation to fairly reflect only TP53 back-

ground mutations. For patients with ovarian cancer, as well as

cancer-free control patients, the TP53 mutation frequency

significantly increased with age (Figure 2; p = 0.0006 for

ovarian cancer, p = 0.001 for controls, Spearman’s correlation

test). This trend was identical to prior observations of TP53

background mutation frequency in peritoneal fluid and periph-

eral blood (Krimmel et al., 2016).
TP53 Mutations in UL Are Not Random, but Rather Are
Positively Selected
The TP53 gene is a tumor suppressor, the genetic disruption of

which facilitates cell proliferation in tumors, even when only
one allele is mutated (Leroy et al., 2014). An age-associated in-

crease in ultra-low-frequency TP53 backgroundmutations could

result from random, age-related mutagenic processes or, alter-

natively, from mutagenesis coupled with clonal selection of

pathogenic variants. To distinguish between these possibilities,

we performed a detailed analysis of traits of selection among

the 112 age-associated TP53 backgroundmutations collectively

identified among all 21 patients (tumor mutations and intronic

and UTR mutations excluded) (Figure 3; Table S3).

First, we calculated the proportion of non-synonymous TP53

mutations in ULs from cases and controls and compared it

with the expected proportion when considering all of the

possible mutations in the TP53 gene (n = 3,546). The percentage

of non-synonymous mutations in both UL controls (90.5%) and

cases (93.5%) was significantly higher than expected under no

selection (76.6%) with p = 0.0035 and p = 0.031, respectively

(Figure 3A, exact binomial test). The excess of non-synonymous

mutations was not driven by a subset of outlier samples, but

rather was uniformly observed across nearly all of the lavage

samples (Figure S3A).

Second, we examined the metrics of selection related to the

genic location of mutations. Background TP53 mutations were

not randomly distributed along the gene but clustered in certain

regions of biological significance. Nearly 25% of TP53 lavage

background mutations occurred in the context of CpG dinucleo-

tides, which is remarkable given the fact that these dinucleotides

make up <5% of the coding region of TP53 (Figure 3B, p = 2.23

10�10 for controls and p = 1.4 3 10�5 for ovarian cancer muta-

tions, by the exact binomial test). Mutations were also enriched

in exons 5–8, which encode the DNA-binding domain of the

protein (Figure 3C, p = 2.4 3 10�6 for controls and p = 4.5 3

10�4 for ovarian cancer mutations, by exact binomial test). The

most significant enrichment, however, was observed in TP53

cancer-associated hotspot codons, which are the codons

most recurrently mutated in cancer. We considered the nine

most abundantly mutated codons in the Universal Mutation

Database (UMD; April 2017 version) (Leroy et al., 2014). These

codons encompass only 2.3% of the coding region of TP53,

yet >25% of lavage background mutations clustered within

these 27 bp (Figure 3D, p = 5.1 3 10�17 for controls and p =

2.4 3 10�9 for ovarian cancer mutations, by exact binomial

test), and among these, all were non-synonymous. The biases

for each characteristic were not driven by outliers but were

distributed evenly across samples in both groups (Figure S3B–

S3D). Cases and controls were not significantly different for

any of these traits (using Fisher’s exact test or using generalized

estimating equations [GEEs]) to account for the correlation

between patients with and without adjustment for sequencing

depth).

To assess the impact of thesemutations on TP53 protein func-

tion, we took advantage of Seshat, a recently developed online

tool for TP53 analysis that provides comprehensive mutational

information, including prediction of impact on protein activity

and pathogenicity (Tikkanen et al., 2018). We queried all back-

ground TP53 mutations identified in the 21 lavages and color-

coded them according to 5 binned categories of protein activity

and predicted pathogenicity. Nearly all of the samples carried at

least one TP53 mutation that inactivated the protein totally or
Cell Reports 28, 132–144, July 2, 2019 135
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Figure 3. Evidence of Positive Selection in

TP53 Background Mutations from ULs

(A–D) Percentage of non-synonymous TP53

mutations (A), and percentage of TP53 mutations

localized in CpG dinucleotides (B), in exons 5–8 (C),

and in hotspot codons (D). For (A–D), TP53 muta-

tions identified in UL from controls and cancer

significantly exceed expected values without se-

lection. *p < 0.05, **p < 0.0001 by binomial exact

test, n = 79 for UL controls, and n = 33 for UL cancer.

(E and F) Protein activity (E) and predicted patho-

genicity (F) color-coded as five groups from Seshat

data. Patients are sorted by ascending age. For

each patient, TP53mutation frequency is calculated

as the number of mutations in the coding region

divided by the total number of DS nucleotides

sequenced in that region. Two cancer patients with

unusually low sequencing depth and no identified

TP53mutations are not shown. Nearly all cases and

controls carry mutations that have an impact on

protein activity and predicted pathogenicity.
partially (Figure 3E) and/or was predicted to be pathogenic (Fig-

ure 3F). Cases and controls were not significantly different

when comparing the proportion of mutations that inactivated

protein activity (categories of ‘‘inactive,’’ ‘‘splice/truncated,’’

and ‘‘partially inactive’’ in Figure 3E) or the proportion of muta-

tions with predicted pathogenicity (categories of ‘‘pathogenic,’’

‘‘likely pathogenic,’’ and ‘‘possibly pathogenic’’ in Figure 3F)

(Fisher’s exact test p values are 0.49 and 0.99, respectively).

The unambiguous signature across six distinct metrics of posi-

tive selection (Figures 3A–3F) within the ultra-low-frequency

TP53 mutations observed in all lavages, regardless of cancer

status, indicate that these mutations expanded under strong se-

lective pressure and are not the result of technical errors.

TP53 Mutations in UL Resemble Mutations in Cancer
We next compared the features of the selection of TP53 muta-

tions identified in lavages to TP53 mutations from cancers. For

this analysis, we used all of the cancer mutations present in

the UMD cancer database (April 2017, n = 71,051). We deter-

mined the percentage of these mutations that reside at CpG
136 Cell Reports 28, 132–144, July 2, 2019
sites, cancer hotspots, and exons 5–8, as

well as the percentage of mutations that

affect protein activity (first 3 categories in

Figure 3E) or are predicted to be patho-

genic (first 3 categories in Figure 3F). For

each trait, we compared the distribution

of mutations in the theoretical absence of

selection, in the 21 ULs, and in the cancer

database (Figure 4A). Remarkably, for all

of the traits, TP53 background mutations

from ULs far more strongly resembled

TP53 mutations in the cancer database

than the pattern expected by random

chance. This was true for TP53 mutations

found in lavages from cases and controls

(Figure S4), as expected due to the fact

that mutations in both groups were not sta-
tistically different for these traits (Figure 3). We also used a

feature of Seshat that categorizes TP53 mutations according

to their frequency in the UMDdatabase. Nearly all of the UL sam-

ples harbored TP53 mutations listed as ‘‘frequent’’ or ‘‘very

frequent’’ in the database (Figure 4B). Again, cases and controls

did not significantly differ in the proportion ofmutations that were

common in the cancer database (neither when comparing ‘‘very

frequent’’ and ‘‘frequent’’ versus the rest nor when comparing all

groups separately; Fisher’s exact test, p = 0.84 and p = 0.27,

respectively).

To further characterize background TP53 mutations in UL in

comparison to those in cancers, we compared mutation type,

spectrum, and gene location. Non-cancer-derived mutations in

ULs from women with and without cancer were predominantly

missense, similar to mutations in the database (Figure 4C), and

displayed a mutational spectrum enriched in G > A and C > T

transitions, comparable to cancer mutations (Figure 4D). The

distribution of low-frequency TP53 background mutations from

only 21 women along the length of the gene is a mirror image

of the distribution of TP53 mutations from >71,000 different
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Figure 4. TP53 Mutations in UL Are Very Similar to TP53 Mutations Found in Human Cancers

(A) Traits of positive selection are compared between all of the possiblemutations in the TP53 coding region (no selection; n = 3,546), TP53 backgroundmutations

found in UL (n = 112), and TP53 mutations reported in the UMD cancer database (n = 71,051).

(B) UL mutations in cases and controls color-coded by their abundance in the UMD TP53 database. For each sample, TP53mutation frequency is calculated as

the number of mutations in the coding region divided by the total number of DS nucleotides sequenced in that region. Most samples harbor TP53mutations that

are common in the database.

(C and D) TP53mutation type (C) and TP53mutation spectrum (D) are compared betweenmutations identified in UL from controls (n = 79), UL from cases (n = 33),

and the UMD database (n = 71,051).

(E) TP53 mutation distribution map for UL (top) and the UMD cancer database (bottom). Bars quantify the frequency of mutations at each codon. Colored

background reflects a 20-bp sliding window average of mutation density around each position. Gene exons and protein domains are indicated in the center

section.
tumors included in the database (Figure 4E). Thus, the somatic

TP53 mutations recovered from cells sloughed into the uterine

cavity from normal healthy women are not random, but appear

to emerge from an evolutionary process of mutation, selection,

and clonal expansion akin to what takes place in tumors, but

within normal tissue.

TP53 Mutations Are Common in Healthy Tissues from
Middle-Aged Women
These striking results prompted us to consider what the tissue

origin of the mutation-bearing cells in the ULs may be. To
address this question, we sequenced TP53 from DNA obtained

from pre-operative UL and peripheral blood, as well as multiple

gynecological tissues collected postoperatively following total

hysterectomy and bilateral salpingo-oophorectomy for symp-

tomatic fibroids (benign leiomyomas) from two middle-aged

women (Figure 5A; Table S4). DNAwas extracted and processed

for DS as before, except that samples were sequenced to a

higher average depth (Table S4). We identified TP53 mutations

in all of the samples from a 56-year-old woman and in all but 2

samples from a 46-year-old woman (Figure 5B). When we

compared the mutation frequency across all of the samples,
Cell Reports 28, 132–144, July 2, 2019 137



A B

Figure 5. TP53 Mutations in Normal Tissues and UL from Two Middle-Aged Women

(A) Normal tissues collected included leukocytes, peritoneum, cervix, endometrium, myometrium, fallopian tube, ovary, and UL.

(B) TP53 mutation frequency for each sample calculated as the number of TP53 mutations in the coding region divided by the total number of DS nucleotides

sequenced. (a) and (b) indicate two spatially separated samples from the same tissue. The blue bars correspond to the samples in this study; the orange bars

correspond to the mean values for ULs from control women in the first study.
several interesting observations emerged. First, the UL from the

56-year-old had a mutation frequency that appeared

disproportionally high, both when compared to that of most

other tissues and when compared with the lavage of the

46-year-old. However, when compared to the mean values of

ULs from control women of similar ages (50- to 56- and 40- to

46-year-olds) from the first part of the study, the frequencies

by age were quite similar (Figure 5B).

Moreover, the distribution of mutations according to each trait

of positive selection (type, frequency in the cancer database,

predicted activity and pathogenicity, exon clustering, CpG

clustering, and enrichment for cancer hotspots) was comparable

to the lavages previously analyzed (Figure S5). Both lines of

reasoning support the conclusion that the elevated frequency

of mutations in the UL of the 56-year-old woman is not artifactual

and confirm the previously observed age effect.

For other tissues, however, we did not observe an obvious in-

crease in TP53 mutation frequency between 46 and 56 years of

age. There was substantial variability in the mutation content of

different tissues and of different biopsies of the same tissue,

which reflects either a stochastic effect or the imprecision of

macrodissection for obtaining exactly comparable tissue sam-

ples (e.g., the depth of endometrium harvested, how distal the

tubal fimbriae were cut). No single tissue stood out as obviously

more mutation prone than another, nor could any tissue be iden-

tified as a dominant source of the mutations found in lavages.

When we checked for mutations shared between tissues, we

did not find any common mutation between UL and any of the

rest of the tissues analyzed from the 49-year-old woman and

only 1 mutation in the 56-year-old woman that was shared

between UL and leukocytes (Figure S6).

TP53 Mutations Increase in Number and Cancer-like
Features during Normal Human Aging
With the hope of observing a stronger aging mutational signal,

we looked to tissue samples from greater extremes of age. While

the procurement of such material was challenging, we obtained

several gynecologic tissues at autopsy from a neonate who died

from a congenital vascular malformation and from a 101-year-
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old female who died of natural causes (Table S4). Together

with the middle-aged samples, this unique specimen collection

represents the full breadth of a century of human lifespan.

Although the tissue types available were not fully identical

across all four subjects, the pattern of TP53 mutations, never-

theless, yielded unique insights. To help more intuitively visu-

alize this multiparametric data, in Figure 6 we annotated all of

the mutations found among the different tissues of the four

subjects as color-coded boxes for each feature of selection:

red for ‘‘cancer-like,’’ blue for non-cancer-like. The number of

columns of colored boxes per sample reflects the total number

of mutations identified. When viewed in this format, it is

apparent that TP53 mutations are not only more abundant

with age but are also more ‘‘cancer-like.’’ Mutations found in

older tissues are disproportionately observed in cancers and

are predicted to inactivate the protein or be otherwise patho-

genic. In contrast, mutations found in the newborn are rarely

found in cancer, tend to preserve the protein activity, and are

not predicted to be pathogenic.

Different tissues and different biopsies within the same tissue

showed substantial variability in both the number of mutations

and their cancer-like features. In aggregate, fallopian tube

epithelium appeared to be a ‘‘hot’’ tissue, with a high number

of mutations and a high percentage of cancer-like mutations.

However, in the 56-year-old, one fallopian tube sample harbored

only a single synonymous mutation, which is consistent with the

notion of ‘‘hot’’ and ‘‘cold’’ zones within a tissue. This was

similarly seen in the two distinct endometrial biopsies of the

centenarian.

In addition to a larger number of clones, with aging we would

predict an increase in the size of clones, as would be reflected by

a higherMAF of each variant found. However, in this study, some

samples were sequenced at a lower depth, which may lead to

outlier (low event count) biases in the calculation of MAFs, thus

precluding a fair comparison between samples (Figure S7).

Despite this caveat, 2 large clones were clearly seen within the

peripheral blood leukocytes of the 101-year-old (Figure S7; Ta-

ble S5; c.659A > G MAF: 1.2 3 10�2, and c.455C > T MAF:

4.53 10�3). The exact TP53mutation that defined each of these



Figure 6. Characterization of TP53 Mutations in Normal Tissues over a Century of Human Lifespan

TP53 mutations identified by DS in leukocytes and gynecological tissues are indicated as columns within each tissue. Each mutation is characterized by four

parameters: type (synonymous, non-synonymous, and hotspots), frequency in cancer, protein activity, and predicted pathogenicity. The last three parameters

are color-coded, with red indicating ‘‘cancer-like’’ mutations and blue indicating benign mutations. Vertical black lines separate different biopsies from the same

tissue. Within each biopsy, mutations are ordered left to right by decreasing cancer frequency. The biopsies that were sequenced but no mutations were

identified are shown in gray. Note that the female newborn in the study had no blood collected. The leukocytes included here correspond to a similarly aged

newborn male.
clones was also detected at lower frequencies in peritoneal and

endometrial samples from the same subject, revealing an

apparent contribution of leukocyte DNA to those tissue samples

(Figure S6).

In fact, this cross-tissue mutation sharing was common in the

101-year-old woman, suggesting that aged leukocytes may

indeed harbor relatively large clones that recurrently contribute

to the mutations found when sequencing other biopsies.

Mutation sharing was less prevalent in middle-aged women.

While very-low-frequency mutations are often hard to replicate

due to the low precision of the measurement resulting purely

from sampling statistics (not technical accuracy), it is important

to keep in mind that certain mutations may also be recurrently

identified simply because they are hotspots, and thus a common

origin cannot automatically be assumed. For example, the

hotspot mutation c.659A > G was identified in the large blood

clone of the 101-year-old woman and in a myometrium

sample and a fallopian tube biopsy of the 46-year-old woman

(Figure S6). The processing of these particular samples was

done on different days, making a cross-contamination explana-

tion improbable.

As already considered, an important limitation of this study

was the different depth of sequencing achieved across samples,

due to the inherent variability in library preparations and differ-

ences in DNA availability. Because numerically more mutations

will be identified in samples with more sequencing (Figure S8A),
it is essential to compare samples based on their mutation

frequency, which is a sequencing-normalized value calculated

as the number of mutations divided by the number of total DS

error-corrected nucleotides sequenced (Figure S8B). TP53

mutation frequency tended to be higher at older ages in the three

tissue types shared by the neonate and the centenarian (leuko-

cytes, peritoneum, and endometrium), although there was sub-

stantial variability across samples.

TP53 Mutations in Newborn Tissue Are Random, yet
Become Positively Selected over a Lifetime
As further illustration of the increase of cancer-like mutations

with aging, we divided all TP53 mutations into two binary cate-

gories: ‘‘common in cancer’’ and ‘‘not common in cancer,’’

with the former being defined by those classified as ‘‘frequent’’

or ‘‘very frequent’’ in the UMD cancer database. When plotted

by age, the progressive enrichment for cancer-like mutations

was easily apparent, especially in certain tissues such as fallo-

pian tubes and leukocytes (Figure 7A).

We then examined the five traits of selection previously calcu-

lated for the UL study, but for TP53 mutations found in the

newborn, middle-aged, and centenarian tissues (Figures 7B

and S9). For mutations found in newborn tissue, all five traits

yielded values consistent with random processes (e.g., absence

of selection), yet inmiddle-aged and evenmore so in centenarian

tissue, values reflected selection to an extent that neared that
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Figure 7. Cancer-Associated TP53 Mutations Are Positively Selected during Normal Aging

(A) Across a variety of human tissues, TP53mutations accumulate with age and are progressively enriched for mutations commonly found in cancers. Tissues are

color-coded. (a) and (b) indicate two biopsies from the same tissue.

(B) Traits of positive selection are compared between all of the possible mutations in the TP53 coding region (n = 3,546); TP53 mutations found in newborns

(n = 19), middle-aged individuals (n = 85), and centenarian individuals (n = 38); and TP53 mutations reported in the UMD cancer database (n = 71,051).

(C and D) Distribution of TP53mutation type (C) and mutation spectrum (D) for newborn, middle-aged, and centenarian mutations compared to the UMD cancer

database.
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seen in mutations from tumors in the UMD database. Analysis of

mutation type (Figure 7C) revealed a decrease in synonymous

mutationswith age (in fact, no synonymousmutationswere iden-

tified in centenarian tissue; Table S5).

Lastly, regarding the mutation spectrum, we noted an inter-

esting preponderance of C and G mutations in newborn tissue,

which progressively shifted toward an increased representation

of A and T mutations in centenarian tissue, which is more similar

to the pattern in cancers. The significance of this shift is unknown

as it could represent both biases in the nucleotide composition of

the gene at selectable hotspots and differential age-associated

mutagenic processes (Alexandrov et al., 2015), which dispropor-

tionately contribute to the clonal mutation burden of tumors

because tumors mostly arise in the elderly.

TP53Mutations in cfDNA andPeritoneal Fluid Follow the
Same Patterns as Solid Tissue
To explore the abundance of TP53mutations in liquid biopsies of

clinical interest, we analyzed plasma-derived cell-free DNA

(cfDNA) and peritoneal fluid from the 46-year-old woman. TP53

mutations were identified in both, with cancer-like features

similar to what was observed for solid tissue biopsies, UL, and

leukocytes (Figure S10). None of the mutations identified in

cfDNA or peritoneal fluid overlapped with mutations detected

in other samples from the same woman (Figure S6). Peritoneal

fluid is routinely collected for disease staging during gynecologic

surgery, and we previously demonstrated that it carries TP53

background mutations with cancer-like features (Krimmel

et al., 2016), in agreement with our findings here. cfDNA had

not been analyzed previously by DS. The fact that we identified

one pathogenic mutation commonly found in cancers within

cfDNA from a healthy woman (Figure S10; Table S5) raises

important concerns over specificity in cancer-screening studies

based on mutation detection in plasma.

DISCUSSION

We have demonstrated that DS can detect TP53 ovarian cancer

mutations in UL, providing proof-of-principle for an innovative

approach with the potential for ovarian cancer detection. Our

combined approach of UL plus DS improves upon past muta-

tion-based screening efforts through the use of a collection

method that recovers cancer cells very close to the anatomical

site of the tumor and an ultra-accurate DNA sequencing technol-

ogy that can resolve exceptionally low-frequency mutations. We

were able to achieve remarkable sensitivity and specificity

without prior knowledge of the tumor mutation and using a

MAF threshold for differentiating cancers from controls. The

study, however, was small and patients had advanced ovarian

cancer, important limitations that will need to be addressed

with much larger prospective trials. These trials will be facilitated

by the fact that UL is minimally invasive and can be practically in-

tegrated into routine gynecologic primary care (Maritschnegg

et al., 2018).

However, the most profound finding of this work is not the

biomarker performance itself, but the incidentally found muta-

tional patterns that reflect a somatic evolutionary process that

appears operative throughout much of human life in normal tis-
sues. Specifically, we identified widespread low-frequency

TP53 mutations that were heavily enriched for pathogenic vari-

ants. This enrichment reflects a process of natural selection

that favors the survival and proliferation of cells with mutations

that are identical to those observed in cancer, but as part of

routine aging. The unambiguous selection signature is sup-

ported by multiple orthogonal metrics and cannot be explained

by technical errors; both the biological and diagnostic implica-

tions are substantial.

One of the main reasons that cancer biomarkers fail to reach

the clinic is their inability to achieve the extremely high speci-

ficity that is required for screening (Diamandis, 2012). This is

critical for cancers with low incidence and that require an inva-

sive procedure to follow up positive screening tests, such as

the case with ovarian cancer (Drescher and Anderson, 2018).

Harms due to false-positives and a lack of proven reduction

in mortality are the reasons for the recent recommendation

against the use of CA-125 and transvaginal sonography for

screening asymptomatic women (Grossman et al., 2018). In

recent years, mutation-based cancer screening from plasma

or other body fluids has emerged as a promising method to

detect cancer based on the supposition that cancer-associated

mutations found in liquid biopsies are a specific indication of

cancer somewhere in the body (Aravanis et al., 2017). Here,

we demonstrate that cancer-associated mutations can be

found in most normal tissues and, therefore, they are not can-

cer specific.

The detection of cancer-associated mutations in normal tis-

sues is not entirely new (Risques and Kennedy, 2018). In 2014,

3 groups reported acute myeloid leukemia mutations found as

minority subclones in the blood of �10% of healthy elderly indi-

viduals—a phenomena dubbed clonal hematopoiesis of indeter-

minate potential (CHIP) (Genovese et al., 2014; Jaiswal et al.,

2014; Xie et al., 2014). One year later, Martincorena et al.

(2015) observed hundreds of tiny clones carrying cancer-associ-

ated driver mutations on sun-exposed eyelids, a finding recently

replicated in normal aged esophagus (Martincorena et al., 2018).

Cancer-associated mutations have been similarly reported in

abnormal but non-cancerous tissues, including endometriosis

(Anglesio et al., 2017; Suda et al., 2018) and benign dermal

nevi (Shain et al., 2015). The use of laser capture microdissection

in recent studies has revealed that as many as 1% of normal

colorectal crypts of middle-aged individuals (Lee-Six et al.,

2018) and >50% of normal endometrial glands of middle-aged

women (Suda et al., 2018) carry mutations in cancer driver

genes. A broader body of work related to quantifying the accu-

mulation of neutral mutations in aging normal tissues (Abyzov

et al., 2017; Welch et al., 2012; Yadav et al., 2016) has afforded

important insights into themechanisms of age-associatedmuta-

genic processes.

The relation between mutations and cancer has been known

for decades, yet the delay in appreciating their presence outside

cancer can be largely attributed to technical limitations. The

advent of NGS enabled surveying wide swaths of the genome

and detection of mutations present clonally or as modest-size

subclones. In the above studies, standard whole exome or

multi-gene NGS was able to identify driver mutations because

of unique scenarios in which clones were either relatively large
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(CHIP in a subset of very elderly individuals) (Genovese et al.,

2014; Jaiswal et al., 2014; Xie et al., 2014) or spatially coherent

and comprising a sizeable percentage of cells when very small

biopsies were taken (Lee-Six et al., 2018; Martincorena et al.,

2015, 2018; Suda et al., 2018). With higher-accuracy NGS tech-

niques able to resolve lower-frequency subclones, later studies

have found that CHIP mutations are abundant in middle-aged

adults (Acuna-Hidalgo et al., 2017; Young et al., 2016). Using

ultra-accurate DS, we found extremely low-frequency cancer-

associated TP53mutations in both the blood and peritoneal fluid

of women without cancer, and, in both sample types, the abun-

dance of mutations increased with age (Krimmel et al., 2016). A

subsequent study that used UL for endometrial cancer detection

found pathogenic mutations in cancer driver genes in lavages of

cases as well as controls (Nair et al., 2016), in agreement with the

data reported here.

In addition to UL, we examined 10 different tissue or sample

types from a unique cohort of individuals spanning more than a

century of human lifespan and assessed the pattern of mutations

found using multiple different metrics of selection. A significant

findingwas thatnotonlydoTP53mutations increase inabundance

with age but also the relative representation of randommutations

versus cancer-associated mutations transitioned from almost

entirely the former to almost entirely the latter from birth to the

end of life. Moreover, the extent of mutation frequency varied

considerably by sample type and tissue. Our research comple-

ments recent efforts to characterize the accumulation of random,

unselected somatic mutations with aging (Blokzijl et al., 2016;

Hoang et al., 2016) and suggests that these findings are likely

only the tip of the iceberg. Further work is important to expand

beyond the main limitations of this study, which include the anal-

ysis of mostly gynecological tissues from only four individuals at

a coarse spacing along the aging continuum; imperfect matching

of sample types for each subject due to the inherent challenges

of tissue acquisition at the extremes of age; and focus on a single

gene, albeit the one most commonly mutated in cancer.

The implications of our findings are important as a cautionary

message for mutation-based cancer biomarkers. At the same

time as we have shown that highly sensitive NGS methods are

essential for maximal mutation detection, we have also illus-

trated a substantial specificity challenge related to biology, not

technology, the extent of which has been under-appreciated.

This is not limited to one or a few tissues; rather, it seems to

be ubiquitous among the epithelial, mesenchymal, and hemato-

poietic cell lineages that we investigated. Moreover, cancer-

associated mutations were found in liquid biopsies, including

UL and cfDNA. This suggests that ongoing large-scale efforts

to develop universal liquid biopsy cancer screening tests via

deep sequencing of cfDNA need to be approached with great

caution (Alix-Panabières and Pantel, 2016; Aravanis et al., 2017).

Despite biological background mutations and with the caveat

of this being a quite small study from a biomarker perspective,

our approach worked remarkably well as a minimally invasive

cancer test. We identified 80% of tumor mutations, and 70%

of those were above the 1% MAF threshold we used to distin-

guish cases from controls. The only tumor mutation missed

below this threshold corresponded to a 42-year-old woman,

one of the youngest in the study. Younger women tended to
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have fewer background mutations and mutations with lower

MAFs, which suggest that, moving forward, sensitivity could

probably be increased by using age-adjusted thresholds. In

addition, specificity could likely be improved by uniform lavage

collection at the luteal phase in premenopausal women,

sequencing of peripheral blood to identify and exclude CHIP

clones that may be present in lavage, and longitudinal assess-

ment of mutations to identify MAF increases over time. Of

note, we have demonstrated detection of intermediate- and

late-stage cancers, but the most critical targets for screening

are early-stage cancers because they are the most curable. In

that regard, monitoring of high-risk populations, such as

BRCA1 and BRCA2 carriers, may be the highest-impact near-

term clinical implementation.

The sensitivity improvements lent by new sequencing technol-

ogies are forcing a far more nuanced genetic definition of what

distinguishes a cancer cell from simply an old cell. Our results

show that CHIP clones are merely one relatively easy to detect

manifestation of a far broader phenomena that appears to extend

tomost, if not all, tissues in the body. From a biomarker perspec-

tive, the fact that those who are at greatest risk of cancer and for

whom cancer screening holds the most benefit (older adults) are

also the population with the most cancer-like age-associated

background mutations is particularly inconvenient. Ongoing im-

provements will be needed to find ways to maximize specificity

through careful MAF threshold calibration and combination with

orthogonal biomarkers. Further investigation into the significance

of biological background mutations from the perspective of hu-

man aging and biology is similarly warranted. While the notion

that our somatic genomes are steadily evolving toward neoplasia

with each passing decademay viewed as disheartening, an alter-

native perspective is that despite this, most people do not

develop overt cancer in their lifetime. This serves as a reminder

of just howmuch remains unknown about the body’smany com-

plex mechanisms of tumor suppression, a toolkit that we can

perhaps augment with future technologies for cancer prevention.
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Risques (rrisques@uw.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAIL

We performed two complementary studies. The objective of the uterine lavage study was to determine the ability of DS to detect

ovarian cancer through deep sequencing of TP53mutations in uterine lavage. This study included 10 patients with high grade serous

ovarian cancer (cases) and 11 with benign gynecological masses (controls). The objective of the normal tissue study was to

characterize somatic TP53 mutations that accumulate during aging. This study included tissue from two newborn subjects (one

newborn male only provided blood), two middle age women (ages 46 and 56 year-old) and one centenarian woman (101 year-

old). Clinico-pathological information for all subjects is listed in Table S1.

Uterine Lavage
In the first study, we analyzed uterine lavages collected by a trans-cervical catheter from women undergoing procedures for

suspected gynecological malignancies (Table S1). None of the women had endometriosis. Lavages were collected immediately
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pre-operatively as previously described (Maritschnegg et al., 2015). Lavage samples were centrifuged at 300x g for 10 minutes at

room temperature and DNA was isolated from the cell pellet (QIAamp MinElute Kit, QIAGEN, Hilden, Germany). Patients were

recruited in three institutions: Medical University of Vienna (Austria), Charles University Pilsen (Czech Republic) and University

Hospitals Leuven (Belgium). Sample procurement was performed in accordance with the institutional review boards of the Medical

University of Vienna (EK#1148/2011 and EK#1766/2013), the Catholic University Leuven (B322201214864/S54406) and the Medical

Faculty Hospital Pilsen (No 502/2013).

Normal Tissue
In the second study, multiple gynecological tissues were collected per Table S4. Not all sample types were available for all subjects.

Newborn and centenarian tissue was collected at autopsy, while tissue from middle age women was collected following hysterec-

tomy. Peripheral blood was unavailable from the female newborn, so we sequenced peripheral blood from a similar aged neonatal

male. No other tissue was collected from the newborn male other than blood. The two newborn autopsies were performed at Seattle

Childrens’ Hospital and tissues were collected under research IRB #52304. The diagnoseswere vein of Galenmalformation (newborn

female) and bronchopulmonary dysplasia (newborn male). The twomiddle age women had uterine leiomyoma and were operated on

at the Medical University of Vienna. Samples were collected with informed consent and according to approved IRB EK# 1152/2014.

Uterine lavage was collected with the same procedure as in the first study. For the 46 year-old woman, cfDNA was collected preop-

eratively and peritoneal lavage collected intraoperatively. For the centenarian woman, tissue was obtained via rapid autopsy from

Tissue for Research Inc. and processed at the University of Washington under IRB waiver 2016-52304. All samples were collected

using sterile new instruments between biopsies and frozen over liquid nitrogen immediately after collection and stored at�80�C until

DNA extraction. To confirm normal histology, tissue biopsies immediately adjacent to the biopsy used for DNA extraction were

embedded in OCT, sectioned, stained with H&E and reviewed by a pathologist (M.T.). In all samples, morphologic examination re-

vealed only normal tissue, without inflammation, necrosis, hyperplasia or neoplasia.

METHOD DETAILS

Digital Droplet Polymerase Chain Reaction
Lavage DNA from 5 ovarian cancer cases and 2 controls was analyzed by ddPCR (Table S2). In ovarian cancer lavage, ddPCR ampli-

fied the tumor mutation whereas in benign lavage, the assay targeted twomutations previously identified by DS at frequencies below

0.1%. ddPCR was performed with the QX100 Droplet Digital PCR system (Bio-Rad Laboratories, Hercules, CA) using custom

TaqMan SNP Genotyping Assays (Life Technologies, Carlsbard, CA) designed using Primer Express 3.0 software (ThermoFisher).

10-20ng of DNAwere used in each reaction and samples were analyzed at least in duplicates. A positive control and a wild-type con-

trol were included in every run.

Duplex Sequencing
Duplex Sequencingwas performed as previously describedwithminormodifications (Kennedy et al., 2014). Briefly for most samples,

DNA was sonicated, end-repaired, A-tailed, and ligated with DS adapters using the KAPA HyperPrep library kit (Roche Sequencing,

Pleasanton, CA). DNA from the two sets of normal tissues obtained from the middle-aged hysterectomy specimens were prepared

with a prototype Duplex Sequencing kit (TwinStrand Biosciences, Seattle, WA). After initial amplification, 120 bp biotinylated oligo-

nucleotide probes (Integrated DNA Technologies, Coralville, Iowa) were used to capture the coding region of TP53. Two successive

rounds of captures were performed to ensure sufficient target enrichment, as previously described (Schmitt et al., 2015). Indexed

libraries were pooled and sequenced on an Illumina HiSeq2500 or NextSeq500. Sequencing reads were aligned to hg19 then reads

sharing a common molecular tag in both distinct strand orientations were grouped and assembled into an error-corrected Duplex

Consensus Sequence as previously described (Kennedy et al., 2014).

The total number of Duplex nucleotides sequenced for each uterine lavage and tissue sample is listed in Tables S1 and S4. In

aggregate, we sequenced 587,169,708 unique nucleotides, 319,576,913 of which corresponded to coding nucleotides. We targeted

a median DS depth of �1000x. Three tissue biopsies were excluded because of insufficient depth. Because Duplex reads corre-

spond to original DNA molecules, DS depth reflects the total number of haploid genomes sequenced. For each sample, TP53 mu-

tation frequency was calculated as the number of identified mutations divided by the total number of Duplex nucleotides sequenced.

For each individual mutation, mutant allele frequency (MAF) was calculated as number of mutated Duplex bases divided by the total

DS depth at a given nucleotide position. Mutations identified as SNPs in the 1000 genome database were excluded from mutation

analysis. All mutations were manually reviewed with the Integrative Genome Viewer (IGV).

Characterization of TP53 mutations using Seshat and the UMD TP53 database
The final list of mutations from all samples in the study (uterine lavage study n = 166, normal tissue study n = 264) was converted into a

Variant Call Format (VCF) file and submitted to Seshat (https://p53.fr/TP53-database/seshat), a web service that performs TP53mu-

tation annotation using data derived from the UMD TP53 database (Tikkanen et al., 2018). This database is the most updated and

comprehensive repository of TP53 variants. From the Seshat output, the following variables were extracted: cDNA variant, HG19

Variant, Variant Classification, Frequency, Activity, Pathogenicity, Exon, Codon, CpG,Mutational Event and Variant Comment. These
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variables were used to annotate the DS pipeline-generated mutational calls in Table S3 (uterine lavage) and Table S5 (normal tissue).

The human genomic reference hg19 (GRCH37) was used for data reporting. Mutations occurring in the coding region and adjacent

splice sites were selected for mutational analysis (uterine lavage n = 112, normal tissue n = 180).

Mutations were annotated based on type (missense, nonsense, splice, indel, synonymous), mutation spectrum (each of the 12

possible nucleotide substitutions), localization to CpG dinucleotides, localization in exons 5 to 8 (encoding the protein’s DNA binding

domain), localization to mutational hotspot (9 most common mutated codons in the UMD TP53 database: 175, 179, 213, 220, 245,

248, 249, 273, 282), frequency of the mutation in the cancer database, functional activity, and predicted pathogenicity. Functional

activity was assessed by a transcriptional activity chart assay for 3,000 variants performed by Kato et al. (2003). Pathogenicity

was based on multiple predictive algorithms included from dbNSFP (Liu et al., 2016) as well as functional activity (Tikkanen et al.,

2018). For the last 3 variables (frequency in cancer database, activity, and pathogenicity), mutations were aggregated into 5

categories and 2 categories. Categories of frequency in cancer database included very frequent, frequent, not frequent, rare/unique,

and never identified in human cancer. The first 2 categories were considered ‘‘common in cancer’’ and the last 3 categories ‘‘not

common in cancer.’’ Categories of activity included inactive, splice/truncated, partially active, active, and synonymous/unknown.

The first 3 categories were considered ‘‘impaired activity’’ and the last 2 categories ‘‘active/likely active.’’ Categories of pathogenicity

included pathogenic, likely pathogenic, possibly pathogenic, benign, and variants of uncertain significance. The first 3 categories

were considered ‘‘expected pathogenic’’ and the last 2 categories ‘‘unlikely pathogenic.’’

TP53 cancer database mutational analysis
From the UMD TP53 database (April 2017 version), we selected the set of 71,051mutations reported within human tumors of all types

(mutations from cell lines, normal, and premalignant tissue were excluded). Then we determined the distribution of mutations in the

following categories: CpG, hotspots, exons 5-8, activity, pathogenicity, mutation type, and mutation spectrum. These values were

used as a comparator for TP53 mutations identified in uterine lavage and normal tissues.

TP53 mutations without selection
To assess the distribution of TP53 mutations in the absence of selection, we generated a list of all possible mutations in the gene

coding region (n = 3,546) in silico. Then we submitted this list to Seshat to determine the distribution of mutations in the same

categories as above. The values obtained represent the distribution of all possible TP53 mutations in the absence of selection

and were used as a comparator for TP53 mutations identified in uterine lavage and normal tissue.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlations were tested with Spearman’s rank test due to high variability in the outcomes (non-normality). Comparisons by groups

were performed with Fisher’s exact tests (for comparison between case and control groups) or with the exact binomial test for

comparison of one group with a hypothesized null probability of a success (mutation). Generalized estimating equations (GEE)

also was investigated to take into account possible correlation within patients (lack of independence among observations/mutations

with a patient) for these comparisons, but the results from the exact tests that assume independence were more conservative and

thus, are the ones reported. Further, taking into account the sequencing depth either as an adjustment in binomial models or an offset

in Poisson count models did not affect the significance of results. Sensitivity and specificity were calculated as simple proportions.

Adjustment for age was performed by fitting log (maximum frequency) in a linear model. All tests were two-sided at an alpha level

(type 1 error rate) of 0.05. Statistical analyses were performed with SPSS and R.

DATA AND CODE AVAILABILITY

Code availability
Software for DS data analysis is available at https://github.com/loeblab/Duplex-Sequencing

Data availability
The accession number for the sequencing data reported in this paper is Sequence Read Archive BioProject ID: PRJNA503496.
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