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Abstract

Sustainable yields that are at least 80% of the maximum sustainable yield are sometimes re-
ferred to as pretty good yield (PGY). The range of PGY harvesting strategies is generally broad
and thus leaves room to account for additional objectives besides high yield. Here, we analyze
stage-dependent harvesting strategies that realize PGY with conservation as a second objective.
We show that (1) PGY harvesting strategies can give large conservation benefits and (2) equal
harvesting rates of juveniles and adults is often a good strategy. These conclusions are based on
trade-off curves between yield and four measures of conservation that form in two established
population models, one age-structured and one stage-structured model, when considering dif-
ferent harvesting rates of juveniles and adults. These conclusions hold for a broad range of
parameter settings, though our investigation of robustness also reveals that (3) predictions of
the age-structured model are more sensitive to variations in parameter values than those of
the stage-structured model. Finally, we find that (4) measures of stability that are often quite
difficult to assess in the field (e.g. basic reproduction ratio and resilience) are systematically
negatively correlated with impacts on biomass and impact on size structure, so that these later
quantities can provide integrative signals to detect possible collapses.

Introduction

Almost one third of the world’s fished marine stocks are currently overexploited (FAO 2016).
Some fish stocks have even collapsed, with examples including the Californian sardine (Sardinops
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sagax, Clupeidae) fishery in the 1950s (Radovich 1982), the Atlanto-Scandian herring (Clupea
harengus, Clupeidae) fishery in the late 1960s (Krovnin and Rodionov 1992), the Peruvian an-
chovy (Engraulis ringens, Engraulidae) fishery in the 1970s (Clark 1977), and the Northern cod
(Gadus morhua, Gadidae) fishery off the east coast of Canada in the 1990s (Hannesson 1996;
Olsen et al. 2004). The large proportion of overexploited marine fish stocks underscore the
importance of implementing sustainable harvesting practices and for further improving modern
fisheries-management methods.

Maximum sustainable yield (MSY) has long been a central concept in population ecology
(Smith and Punt 2001; Hilborn 2007; Mesnil 2012). While maximization of yield from har-
vested populations is economically desirable, there is a rich scientific literature that criticizes
the MSY concept and highlights its shortcomings, including the difficulty of correctly estimating
MSY, the inappropriateness of long-term yield maximization as the single management objec-
tive, and the practical difficulty of accurately implementing the required level of harvesting
effort (Smith and Punt 2001). MSY has further been criticized for its inability to prevent the
collapse of important fisheries (Beverton and Holt 1957; Larkin 1977; Mangel and Levin 2005;
Hilborn 2010). As an example, Alaska’s Bering Sea Pollock fishery declined in 2009, and de-
spite being known as a sustainable fishery which implements scientific recommendations, the
management has been criticized for considering mainly MSY (Morell 2009).

MacCall and Hilborn have introduced the concept pretty good yield (PGY; Hilborn 2010) for
sustainable yields that are at least 80% of the MSY. In contrast to MSY harvesting-management
objectives, PGY can be realized by a range of harvesting strategies and therefore leaves room
to account for other desirable objectives in addition to the maximization of yield. The added
value that PGY offers will depend on the extent to which the implemented harvesting strategies
can successfully account for other desirable objectives beyond yield.

The aim of this paper is to investigate to which extent PGY harvesting strategies can simul-
taneously account for high yield and large conservation benefits. To increase the chances that
our conclusions are valid over a broad range of circumstances, we base our study on two estab-
lished population models. The first is an age-structured model (henceforth age model) that is
commonly used for modeling fish populations and evaluating fishing strategies (Francis 1992;
Punt 1994; Punt et al. 1995; Punt and Hilborn 1997; Hilborn 2010). The second is a stage-
structured consumer-resource population model (henceforth stage model) that has been intro-
duced by de Roos et al. (2008). Both models are capable of describing a range of aquatic and
terrestrial animal populations. The age model belongs to a class of models that have a long his-
tory in fisheries science and that incorporates age-dependent fecundity, age-dependent survival,
and density-dependent recruitment. The stage model is derived from a fully size-structured
counterpart with food-dependent growth, fecundity and maturation, and accounts for feedbacks
from resource depletion. In particular, it accounts for ontogenetic asymmetry, i.e., differential
abilities of juveniles and adults to utilize available resources (de Roos and Persson 2013). With
the age-model and stage-model being two fairly distinct representatives of contemporary pop-
ulation models, results on which they agree are likely to be fairly robust and results on which
they differ are likely to be ones where careful description of the population ecology is impor-
tant and may therefore differ from species to species. Using separate independently developed
models to investigate robustness of findings should be a reasonable strategy (Levins 1966).

We extend both models by introducing selective harvesting of juveniles and adults, giving
wide ranges of possible harvesting strategies with different consequences for yield and conserva-
tion. While it is straightforward to quantify the yield of a harvesting strategy, it is less obvious
how the conservations benefits should be measured. Here, we consider four different measures
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of conservation benefits: two measures that capture the direct impacts on the harvested pop-
ulation (the impact on population biomass and the impact on the population size structure)
and two measures that capture the indirect risks of collapse due to changes in population dy-
namics (resilience and the basic reproduction ratio). We determine trade-offs between yield
and conservation benefits by finding the so-called Pareto-efficient front; the set of strategies
that cannot simultaneously be improved upon in both yield and conservation benefit. These
trade-off curves allow us to assess how large conservation benefits can be gained while preserv-
ing PGY. Finally, we determine the relationship between the direct impact measures and the
indirect risk measures, with the idea that the former are likely to be more easily observable in
the field while the latter better reflect the risks of collapse. Taken together, our results show
that there are large potential gains of using specific PGY harvesting strategies over traditional
MSY strategies. Moreover, among PGY strategies, the ones that include equal harvesting of
adults and juveniles often allow the best compromises between conservation and yield.

Methods

In this section we first present the two population models, one age-structured and one stage-
structured. We extend both models by introducing selective harvesting of juveniles and adults,
giving wide ranges of possible harvesting strategies with different consequences for the realized
yield and for conservation. We next present our methods of stability analysis involving the
impact measures and risk measures that we will use to evaluate different harvesting strategies.
Finally, we recall the concept of maximum sustainable yield (MSY) and the economic concept of
Pareto-efficiency which we will use to determine trade off curves between yield and conservation.

The age model

We adopt an age-structured population model that in different guises has been widely used
when modeling fish populations and evaluating fishing strategies (Francis 1992; Punt 1994;
Punt et al. 1995; Punt and Hilborn 1997; Hilborn 2010). The model incorporates density-
dependent recruitment in the form of a Beverton-Holt stock-recruitment relationship with a
tunable degree of random recruitment variability. Natural mortality is assumed to be indepen-
dent of age and time, and age-specific harvesting is assumed constant over time. The central
elements of the model, which are mainly derived from Hilborn (2010), are described below.

We denote by Na,t the number of individuals of age a in year t and assume that individuals
mature at age amature after which they reproduce at an age-dependent rate proportional to
their body size. Individuals younger than amature are considered juveniles, while individuals
older than or with age equal to amature are considered adults. For simplicity, we assume that
the population is made up entirely of female individuals, but as we show in the Appendix, our
results are unchanged with a standard Fisherian sex-ratio of 50% females. The age-dependent
fraction of mature females (ma) and their corresponding egg production (fa) are given by

ma =

{

0 if a ≤ amature

1 if a > amature
fa = c sa, (1)

where c is a positive constant that scales the fecundity rate and sa is the mass of an individual
at age a. We adopt a von Bertalanffy (1957) growth curve to describe individual length as a
function of age, and assume that individual mass sa is proportional to the cube of individual
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length, i.e.

sa = smax

(

1− e−K(a−a0)
)3

, (2)

where smax is the asymptotic maximum body mass, K is a growth rate parameter and a0 is a
hypothetical negative age at which the individual has zero length. In Appendix Fig A 3 we
illustrate von Bertalanffy growth curves for some parameter values.

The total egg production in a year t = 0, 1, 2, . . . is found by summing over the offspring
produced by mature females of different ages,

Et =
amax
∑

a=0

mafaNa,t, (3)

where amax is the maximum age of individuals and Na,t is the number of individuals, per unit
of volume, of age a in year t.

The number of individuals in each age class changes from year to year according to

N0,t = Rt, and

Na,t = Na−1,t−1S(1− γa−1) for 1 ≤ a, (4)

where Rt is the recruitment of newborn individuals in year t, t = 1, 2, 3, . . . , as described
further below, and S(1− γa−1) is the probability that an individual survives from one year to
the next. This survival probability is decomposed in survival from natural mortality S and
from harvesting mortality (1 − γa−1). Note that, as probabilities, these variables always take
values from 0 to 1.

We incorporate stage-selective harvesting by allowing separate constant fractions harvested
of juveniles (FJ) and adults (FA) and setting the vulnerability of individuals to

γa =

{

FJ if a < amature

FA if a ≥ amature.
(5)

We assume Beverton-Holt recruitment (Beverton and Holt 1957),

Rt+1 =
Et

α + βEt
exp

(

ut −
σ2
u

2

)

, (6)

where ut are independent and normally distributed random variables with mean 0 and standard
deviation σu. The factor −σ2

u/2 ensures that the expected number of recruits remains the same
with varying σ2

u because the lognormal random variable represented by the exponential has
always mean 1. The parameters α and β are not used directly as they lack a direct ecological
interpretation. Instead, they are determined from the expected total egg production at equilib-
rium in absence of harvesting (E0) and from the steepness parameter (h) setting the sensitivity
of the recruitment to the total egg production. The steepness is defined as the ratio of re-
cruitment when egg production equals 20% of E0 to recruitment at E0 (Mace and Doonan 1988;
Hilborn 2010) and may take values between 0.2 and 1. If h is close to 1, recruitment is almost
independent of the egg production, and if h is close to 0.2, recruitment is almost proportional
to the egg production. In Appendix Fig. A 1 we illustrate how recruitment depends on E0 and
h and state their exact mathematical relationship with α and β.
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For the age model, we use

R0 = smax = c = 1, amax = 100, K = 0.23, a0 = −2,

amature = 8, h = 0.7, S = 0.8, σu = 0, (7)

as our default parameters values, with substantial motivations given in the Appendix. Here, R0

is measured in number of individuals per unit of volume, smax and c−1 have an arbitrary mass
unit, while amax, a0, amature and K−1 are measured in years. However, after a rescaling of the
equations, R0, smax and c (as well as sa, Et, Rt and Na,t) can be considered as non-dimensional
and we can take R0 = smax = c = 1 without loss of generality. See the Appendix for details.
While we believe that the parametrization in (7) is a reasonable choice, we have considered
substantial variations and present how our results from the age model depend on parameter
values in the result section. A systematic investigation of the robustness of our results with
respect to variations of the parameter values in (7) are given in the Appendix.

The stage model

We adopt an archetypal consumer-resource model that has been introduced by de Roos et
al. (2008) as a reliable approximation of a fully size-structured population model. The
model is stage-structured and incorporates key aspects of individual life history such as food-
dependent growth, maturation, and fecundity. In contrast to the age-model, the population-
level feedback that results from resource depletion induces competition between life-history
stages whenever juveniles and adults have differential abilities to utilize available resources.
Competition under such ontogenetic asymmetry can strongly influence the ecological dynam-
ics (de Roos and Persson 2013) and may thus effect how harvesting affects population size
structure. The central elements of this model are described below, with the detailed model
formulation given in de Roos et al. (2008).

Individuals are composed into two stages, juveniles and adults, depending only on their
size. Both juveniles and adults forage on a shared resource R = R(t). The juvenile biomass
is denoted by J = J(t) while adult biomass is denoted by A = A(t). Juveniles are born with
size sborn and grow until they reach the size smax at which point they cease to grow, mature,
and become adults. Juveniles use all available energy for growth and maturation, while adults
do not grow and instead invest all their energy in reproduction. The juvenile growth rate
and adult reproduction rate depend on resource abundance. In accordance with metabolic
theory of ecology, foraging ability and metabolic requirements increase with individual body
size (Brown et al. 2004). Juveniles and adults do not produce biomass when the energy intake
is insufficient to cover maintenance requirements.

The rate at which the biomass of juveniles, adults, and available resources changes are given
by three differential equations:

dJ

dt
= (wJ(R)− v(wJ(R))−M − FJ)J + wA(R)A,

dA

dt
= v(wJ(R))J − (M + FA)A, (8)

dR

dt
= r(Rmax − R)− Imax

R

H +R
(J + qA) .

Here, wJ(R) and wA(R) are the net biomass production, per unit body mass, of juveniles and
adults, respectively. The natural mortality is denoted by M while FJ and FA are the respective
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stage-dependent harvesting rates of juveniles and adults. Continuing, v(wJ(R)) is the resource-
dependent rate at which juveniles mature and become adults, r is the resource turnover rate,
and Rmax is the maximum resource density.

The net biomass production rates for juveniles and adults are assumed to equal the balance
between ingestion and mass-specific metabolic rate T according to

wJ(R) = max

{

0, σImax
R

H +R
− T

}

and wA(R) = max

{

0, σqImax
R

H +R
− T

}

.

Here, σ represents the efficiency of resource ingestion, and the maximum juvenile and adult
ingestion rates per unit biomass equal Imax and qImax, respectively, H is the half-saturation
constant of consumers, and the factor q describes the difference in ingestion rates between
juveniles and adults. The juvenile maturation rate depends on the net biomass ingestion and
thus also on the resource density. It is derived from the fully size-structured counterpart by
assuming that the population size structure is at equilibrium and by determining the rate at
which juvenile individuals reach the maturation size smax. In the stage model, the juvenile
maturation rate is given by

v(wJ(R)) =
wJ(R)−M − FJ

1− (sborn/smax)
1−(M+FJ)/wJ(R)

The function v(wJ(R)) results from a mathematical derivation and lacks a clear biologically
interpretable form. When wJ(R) = M + FJ the function is undefined, and at this value it
is defined by v(M + FJ) = −(M + FJ)/ log(sborn/smax). In Appendix Fig. A 7 we illustrate
the maturation function v(wJ(R)) as well as the net biomass production functions wJ(R) and
wA(R). Noting that the size at birth sborn and the size at maturation smax appears only as the
fraction sborn/smax we can reduce the numbers of parameters by letting z = sborn/smax.

For the stage model, we use

H = T = r = 1, Rmax = 2, σ = 0.5, Imax = 10, M = 0.1, z = 0.01, q = 0.85, (9)

as our default parameters values. Here, H and Rmax are measured in biomass per unit of
volume while T, r, Imax and M are expressed per unit of time. However, after a rescaling of
the equations all parameters, as well as the biomass densities J , A and R, can be considered
as non-dimensional and we can take H = T = 1 without loss of generality. See the Appendix
for details. The parameter values in (9) are inspired by de Roos et al. (2008) and may be
considered as archetypal. We show in the Appendix that our results are largely robust with
respect to variations of these default values.

Model dynamics

Both the age model and the stage model are nonlinear dynamical systems and therefore com-
plicated dynamics can not be ruled out a priori. However, extensive numerical investigations of
basin of attractions indicate that solution trajectories end up, after sufficient time, at a glob-
ally stable equilibrium in both models. This equilibrium is therefore the only attractor which
is either an interior (positive) equilibrium or an extinction equilibrium depending on the har-
vesting rates. Indeed, our nonlocal approach to resilience (presented below) tests the dynamics
in both models for a large number of perturbations (inferred through initial conditions) and
would detect any coexisting attractor with a high probability. We refer the reader to Meng et
al. (2013) and Roos et al. (2008) for more on dynamic properties, mathematical analysis as
well as numerical investigations of the stage model.
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Stability analysis: measures of conservation

Stability of ecological systems is important for both conservation and harvesting purposes. In
unstable systems, population dynamics may transiently go to low biomass values where the
populations become vulnerable to demographic stochasticity or other factors. Hence, lack of
stability promotes extinction. Stability is desirable also for harvest managers as it ensures
stable yield. There are many definitions of stability, see e.g. McCann (2000), and we propose
here to study the consequences of harvesting on stability through four different measures of
conservation. The first two are impact measures; impact of harvesting on the population
biomass and impact of harvesting on the population size structure. The second two measures
have a natural link to the risk of extinction and will be referred to as risk measures. These
are the resilience and the basic reproduction ratio (the recovery potential in case of the stage
model). We define the resilience as the reciprocal of the time needed for the population to
recover from a perturbation, and we consider here both small and large perturbations. The
basic reproduction ratio/recovery potential describes the population’s rate of increase from very
low abundances, and thus could be construed as the likelihood of population rebound, following
a crash (e.g. due to a large disturbance).

Measures of impact on biomass and size structure

Let J∗ = J∗(FJ, FA) and A∗ = A∗(FJ, FA) denote the juvenile and adult biomass at equilibrium,
respectively, of the harvested population. In case of the stage model J∗ and A∗ are given directly
by the state variables at equilibrium. For the age model, J∗ and A∗ are obtained through the
formulas

J∗ =

amature−1
∑

a=0

N∗

asa and A∗ =

amax
∑

a=amature

N∗

asa,

where N∗

a denotes the number of individuals of age a at equilibrium. Furthermore, let J∗

u

and A∗

u denote the juvenile and adult biomass at equilibrium in the absence of harvesting, i.e.
J∗

u = J∗(0, 0) and A∗

u = A∗(0, 0). Moreover, let B∗ = J∗ + A∗ and B∗

u = J∗

u + A∗

u. We measure
impact on biomass of harvesting through the expression

Impact on biomass = 1−
B∗

B∗

u

.

Similarly, we consider impact on size-structure through the expression

Impact on size-structure =
J∗

J∗ + A∗

[

J∗

u

J∗

u + A∗

u

]

−1

− 1,

which equals the relative change in the fraction of juvenile biomass following harvesting. If the
impact on size-structure is positive (negative), then harvesting has increased (decreased) the
fraction of juveniles in the population.

Resilience, basic reproduction ratio and recovery potential as risk measures

Resilience as a risk measure is increasingly used in ecology (Pimm and Lawton 1977; Loreau
and Behera 1999; Petchey et al. 2002; Montoya et al. 2006; Loeuille 2010; Valdovinos et al.
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2010). Resilience is now also increasingly discussed in a fishery management context (Hsieh et
al. 2006; Law et al. 2012; Fung et al. 2013). The higher the resilience, the smaller the risk of
extinction due to random drift.

We consider resilience of the population by measuring the reciprocal of the time needed for
the population to recover the positive equilibrium given a random perturbation. We do this
by considering a large number of initial conditions. From each initial condition, we measure
the time until the population (and also the resource in case of the stage model) returns to a
small neighborhood of the equilibrium. The average value of this return time over the number
of trials are then used to quantify the resilience:

Resilience =
1

Average value of the return times
.

Our resilience measure estimates the population’s expected rate of return, given a random
perturbation. In contrast to many other studies on resilience that assess resilience based on
eigenvalues of the Jacobian matrix, our approach is not limited to the immediate neighborhood
of the equilibrium, but can also tackle large disturbances, a point we will return to in the dis-
cussion section. The precise procedure by which we determine the resilience is described in the
Appendix where we also present an alternative resilience measure, estimating the population’s
probability to return within a time limit, and reproduce some of our results using different
magnitudes of disturbances.

We also consider the basic reproduction ratio as a risk measure, which represents the average
number of offspring produced over the lifetime of an individual in the absence of density-
dependent competition, i.e., when the population abundance is very low. For the age model,
we derive the following expression for the basic reproduction ratio as functions of the harvesting
rates FJ and FA:

Basic reproduction ratio =
(1− FJ)

amature ×
∑amax

a=amature+1 sa S
a (1− FA)

a−amature

(

1− h−0.2
0.8h

)

×
∑amax

a=amature+1 sa S
a

. (10)

A basic reproduction ratio larger than one ensures that the biomass of an initially small pop-
ulation increases on average, while a basic reproduction ratio less than one implies that the
population will eventually become extinct. The derivation of expression (10) can be found in
the Appendix.

In case of the stage model we use the recovery potential introduced in Meng et al. 2013,

Recovery potential =
wA(Rmax)

M + FA
×

v(wJ(Rmax))

v(wJ(Rmax))− wJ(Rmax) +M + FJ
.

The recovery potential is the generational net biomass production (per unit body mass) in a
pristine environment (free from density-dependent mortality) and is therefore closely related to
the basic reproduction ratio. Similar as for the basic reproduction ratio, a recovery potential
larger than one ensures that the biomass of an initially small population increases on average,
while a recovery potential less than one implies that the population will eventually become
extinct. The basic reproduction ratio, as well as the recovery potential, are directly linked to
the probability of surviving a period of low population abundance during which random drift
caused by demographic stochasticity can lead to extinction. We further discuss this fact, as well
as giving overall motivations of our choices of conservation measures, in the discussion section.
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Maximum sustainable yield and trade-off through Pareto efficiency

Recalling that J∗ and A∗ denote the juvenile and adult biomass at equilibrium, for any given
harvesting rates FJ ≥ 0, FA ≥ 0, the yield objective function is given by

Yield = FJJ
∗ + FAA

∗. (11)

Moreover, the maximum sustainable yield (MSY) is obtained by taking the maximum of the
yield objective function across all harvesting strategies (FJ, FA). In addition to the yield func-
tion we are, in case of both the age model and the stage model, armed with four measures of
conservation as functions of the harvesting rates (FJ, FA). Using these objective functions we
can calculate both the yield and the conservation for given harvesting strategies, see Fig. 1 in
the Results section.

To determine the trade-off between the two objectives yield and conservation, we plot the
yield as a function of each conservation measure in the results section and apply the economic
concept of Pareto efficiency to evaluate different harvesting strategies. A harvesting strategy
is Pareto efficient if it cannot be improved upon without trading off one of the considered
objectives against the other, see e.g. Karpagam (1999, page 11). The Pareto front is the set of
all Pareto efficient harvesting strategies. Hence, managers can restrict the choice of harvesting
strategy to this set, rather than considering the full range of possible harvesting strategies. The
closer a strategy is to the Pareto front, the more efficient it is.

Results

Figure 1 shows how the four measures of conservation and the yield changes with harvest-
ing intensity for equal harvesting rates of juveniles and adults (henceforth equal harvesting),
i.e. FJ = FA. As harvesting pressure increases, the yield first increases after which it decreases
as the population becomes “overexploited”. The impact on biomass and the impact on size-
structure increase with harvesting pressure, while the basic reproduction ratio and the recovery
potential decrease. The resilience decreases with harvest pressure in case of the age model, but
first increases to a maximum and then decreases in case of the stage model. Note that due to
the different nature of the age model and the stage model, the values of the harvesting rates in
the two models may not be immediately compared.

We are now ready to present the trade-offs between yield and the four measures of conser-
vation. Figure 2 represents results from the age model, while Fig. 3 gives the corresponding
results for the stage model.

Pretty good yield allows large conservation benefits

Focusing on the age model, Figs. 2 (b)-(d) show that the basic reproduction ratio is relatively
low and the impact on size structure is also relatively large at MSY, while the resilience is
relatively high at MSY. Focusing on the stage model, Figs. 3 (c) and (d) show slightly different
results; harvesting for MSY (which is obtained by harvesting only adults) gives a resilience and
a recovery potential that is only a tiny fraction of the unexploited state and is close to the
boundary of extinction. Hence, harvesting for MSY may substantially increase the risk of stock
collapse. Fig. 3 (b) shows also that the impact on size structure is at a maximum at MSY.

Common for both models and all four measures is, see Figs. 2 (a)-(d) and Figs. 3 (a)-(d),
that by stepping back in yield by 20% into the range of PGY, we can find harvesting strategies
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Figure 1: The four measures of conservation and yield as functions of the harvesting rates
considering equal harvesting (FJ = FA) in case of the age model and the stage model. Yield
(black, solid), impact on biomass (blue, dash-dot), impact on size-structure (green, dotted),
resilience (red, solid) and basic reproduction ratio (recovery potential) (yellow, dashed). To
visualize all objectives in the same plot graphs show (left) 14.5×Yield, 50×Resilience, 0.1×Basic
reproduction ratio and (right) 3.3×Yield, 5×Resilience, 0.13× log(Recovery potential).

with nearly half the impacts on biomass and half the impact on size structure, and also with
nearly twice the basic reproduction ratio (age model) and a much higher recovery potential
(stage model). Resilience can also be improved in case of both models, though the difference in
resilience is most impressive for the stage model, see Figs. 3 (c). Hence, both the age model and
stage model give the result that PGY allows for large conservation benefits. Varying parameter
values show that this conclusion is robust in both models (see Appendix).

However, stepping back in yield into the range of PGY does not automatically ensure
conservation in terms of any of the measures we consider. To exclude the non-optimal harvesting
strategies and to find the best ones within the range of PGY, we apply the economic concept of
Pareto efficiency, as introduced in the previous section. Following the Pareto front (the set of all
Pareto efficient harvesting strategies shown as the green curves in Figs. 2 and 3) reveals these
preferable harvesting strategies. In the following, we will discuss simple harvesting strategies
which are relatively close to the Pareto fronts in all cases.

Equal harvesting rates on juveniles and adults is often a good strategy

Figs. 2 and 3 show that equal harvesting (FJ = FA), performs well with respect to both models
and all four measures of conservation. In particular, in the range of PGY, the black curves
come rather close to the Pareto front in all subfigures (especially in a neighborhood of the black
dots). Therefore, we can harvest juveniles and adults at equal rates, which should be strategies
that are rather easy to implement, without losing too much yield or conservation. The black
dots in Figs. 2 and 3 show one such strategy. Indeed, harvesting only adults is costly on some
aspects, particulary in terms of resilience (stage model) and the impact on size structure as well
as basic reproduction/recovery potential (both models). Harvesting only juveniles is costly in
terms of resilience (both models) and in terms of impact on biomass (age model).

Varying parameter values show that this conclusion is very robust in the stage model, where
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Figure 2: Trade-offs between yield and the four conservation measures in the age model. The
gray regions show “all possible” combinations that can be realized when varying the harvesting
rates on juveniles and adults. The solid green curves represent the Pareto front, while the
dotted grey lines give the border for PGY, i.e. 80% of MSY. The yellow dots represent MSY
and the green squares give the unfished state. We observe that within the range of PGY, equal
harvesting performs well with respect to all measures. The black dots represent a suggested
harvesting strategy, within the range of PGY, produced by FA = FJ = 0.06. Parameter values
are as in (7) and yield normalization is as in Figure 1.
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Figure 3: Trade-offs between yield and the four conservation measures in the stage model.
The gray region, curves, dots, and squares are as in Fig. 2. We observe that within the range of
PGY, equal harvesting performs well with respect to all measures. The black dots represent a
suggested harvesting strategy, within the range of PGY, produced by FA = FJ = 0.8. Parameter
values are as in (9) and yield is normalized as in Fig. 1.
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it seems to remain in the wide ranges M ∈ [0, 0.5], z ∈ [0.0001, 0.2], σImax ∈ [3, 100], q ∈

[0.6, 2], Rmax ∈ [0.5, 100]. We refer the reader to the Appendix for substantial investigations
(both numerical and analytical) of robustness with respect to variations of parameter values.
Additional trade-off curves, as those presented in Fig. 3, are given for six different parametriza-
tions in Figs. A 8, A 9 and A 10.

However, equal harvesting is often but not always suggested by the age model. Here, the
efficient strategies seem to depend on the fraction of juveniles at the unharvested equilibrium,
J∗

u/(A
∗

u+J∗

u), as well as on the survival from natural mortality, S. We proceed by investigating
this dependence by comparing pure adult harvesting (henceforth adult harvesting), equal har-
vesting and pure juvenile harvesting (henceforth juvenile harvesting) for a wide range of param-
eter values in the age model. Figure 4 gives an approximation of regions in which the age model
suggest adult harvesting, equal harvesting and juvenile harvesting. Juvenile or adult harvesting
is suggested only if such strategies are the most Pareto-efficient once, within the range of PGY,
with respect to all four conservation measures. The borders in Figure 4 are approximations
which are produced by examining a large number of variants of Figure 2 for parameter values in
the intervals a0 ∈ [−3,−0.2], K ∈ [0.1, 1], amature ∈ [3, 15], h ∈ [0.3, 0.9], σu ∈ [0, 0.5].
Indeed, we varied each parameter at a time, keeping the others at the default values given
in (7), and tested at least 10 values in each interval. Further parameter combinations have
also been tested in order to refine the borders in Figure 4. Points P0 − P8 in Fig. 4 corre-
spond to different parametrizations of the age model. The default parametrization in (7) gives
J∗

u/(A
∗

u + J∗

u) ≈ 0.6, S = 0.8 and is marked with P0. In Appendix Figs A 2, A 4, A 5 and A
6 we present trade-off curves, similar to those in Fig. 2, for different parametrizations corre-
sponding to the remaining eight points P1 − P8. The Appendix also contains motivations and
explanations for the dependence shown in Fig. 4.

It turns out that if it is possible to obtain PGY for a wide range of harvesting strategies
(including adult, juvenile and equal harvesting), then our conservation measures are in favor of
equal harvesting. When adult or juvenile harvesting performs better than equal harvesting, it
is usually because equal harvesting can not give a yield in the range of PGY.

The age model is more sensitive to variations in parameter values

than the stage model

Focusing on the age model we first note that for the parameter values used in Figs. 1 and
2 we have a survival from natural mortality of S = 0.8 (Mills et al. 2002) and the fraction of
juveniles in an unharvested population, J∗

u/(A
∗

u+J∗

u) ≈ 0.6. We conclude that in this case equal
harvesting is a good strategy. Varying the parameter values, it turns out that an increase in the
fraction of juveniles implies an increase in the yield obtained when harvesting only juveniles, i.e.
the blue curves will be lifted in Fig. 2. Similarly, a decrease in the fraction of juveniles implies
an increase in the yield obtained when harvesting only adults, i.e. the red curves will be lifted in
Fig. 2. This dependence, which is expected and natural, can be observed in both models, but it
is much stronger in the age model. While Fig. 4 gives an approximation of the borders between
adult harvesting, equal harvesting and juvenile harvesting, a similar investigation on the stage
model gives a much larger region suggesting equal harvesting. In particular, in the stage model,
the most Pareto-efficient strategies, within the range of PGY, seems to be dominated by equal
harvesting as long as 0.1 < J∗

u/(A
∗

u + J∗

u) < 0.9. (For the parameter values used in Figs. 1 and
3, we have J∗

u/(A
∗

u + J∗

u) ≈ 0.5.)
In conclusion, for populations in the region where the age model suggests equal harvesting,
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Figure 4: The harvesting strategy suggested by the results of the age model depends on S
and the fraction of juveniles in the unharvested population. In the dark-grey region, equal
harvesting is suggested by the age model, while adult harvesting is better for low fraction of
juveniles and juvenile harvesting is to recommend when the fraction of juveniles is high. The
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such strategies are the most Pareto-efficient once, within the range of PGY, with respect to all
four conservation measures. Point P0 corresponds to the default parametrization, while points
P1 − P8 correspond to parametrizations considered in the Appendix.
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the age model and the stage model agree on similar results. For populations outside of this
region the age model suggests adult harvesting, or, for some rare parameter settings, juvenile
harvesting.

Impact on size structure and impact on biomass serve as warning

signals

As neither the resilience nor the basic reproduction ratio (recovery potential) can be directly
measured in the field, it is important to identify reliable proxies for conservation management
that can be measured in field surveys. Figs 5 and 6 show that a harvesting strategy with a
high impact on population size structure, or a high impact on biomass, implies a low basic
reproduction ratio (recovery potential) and a low resilience and hence a high risk of collapse.
Indeed, we find that resilience and basic reproduction ratio (recovery potential) are system-
atically negatively correlated with impacts on biomass and size structure, so that these later
quantities, which should be relatively easy to measure in field surveys, can provide integrative
signals to detect possible collapses.

Discussion

We have investigated how well stage-dependent harvesting strategies that qualify for pretty good
yield (PGY) can account for conservation as a second objective. To increase the chances that
our results apply to a broad range of populations, we have studied two established population
models and reported conclusions that are common to both. We have also investigated a wide
range of parameter values for both models. To incorporate conservation as a second objective
for our optimization procedure, we have used four different measures of conservation applied
to both the age model and the stage model. First, this extended analysis allows us to conclude
strong robustness of the results when all measures agree for both models; e.g., that there are
large potential gains of using specific PGY harvesting strategies that often, but not always,
correspond to equal harvesting rates of juveniles and adults. Second, we are able to discuss and
compare both the two models as well as the four measures of conservation with each other.

Implications for management of harvested populations

Our study supports the implementation of PGY. Furthermore, our results support implementa-
tion through equal harvesting of juveniles and adults, in conjunction with regular surveys that
aim to detect changes in population biomass and size structure. Managers aiming to imple-
ment optimal regulations may want to parameterize the age and stage model (or other suitable
population models) for the specific species in question. A similar analysis as the one presented
here can then be carried out and will give the specific harvesting strategy that maximizes con-
servation benefits, e.g. as described by the four conservation measures considered here, for a
given target-value of sustainable yield.

Managers relying on other approaches may still be interested in assessing changes in the
size structure of a population, as well as changes in biomass, as these are strongly linked to
our risk measures and may thus serve as warning signals for an impending collapse. In fisheries
management, changes in size structure and biomass can be measured through trial fishing,
reinforcing our conclusion that size-structure and biomass are appropriate proxies for the risk
of collapse and possible extinction.
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Figure 5: The relation between impact measures and risk measures for the age model. We ob-
serve that a large impact on biomass implies a low basic reproduction ratio (recovery potential)
and also a low resilience. The same is true for impact on size structure. Curves, green squares
and parameters are as in Fig. 2.
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Figure 6: The relation between impact measures and risk measures for the stage model.
We observe that a large impact on biomass implies a low basic reproduction ratio (recovery
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green squares and parameters are as in Fig. 3.
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One should note that equal harvesting should be relatively easy to implement. Indeed,
in a single-species setting an equal harvesting strategy is implemented by setting the same
harvesting rate over all sizes of individuals. This joint rate should then be tuned against the
smallest value giving the desired yield. In a multi-species setting, the harvesting rate should still
be the same over all ages/sizes within each species, but the preferable rate may differ between
species. Naturally, the rate should be higher for species with a higher productivity, and lower for
species having lower productivity. Related to this is the concept of balanced harvesting, which
has attracted considerable attention recently, and aims to distribute “a moderate mortality
from fishing across the widest possible range of species, stocks, and sizes in an ecosystem, in
proportion to their natural productivity, so that the relative size and species composition is
maintained” (Garcia et al., 2012). While implementing balanced harvesting is difficult since
such strategy may be selective within each species as well (since productivity may depend on
age/size), see e.g. Reid et al. (2016), our results show that size-structure can be preserved
fairly well by implementing the simple strategy of equal harvesting.

We have optimized for yield and conservation, not for economic yield. Therefore, depending
on the market (price of small fish versus price of large fish), managers may obtain different
preferable harvesting strategies if aiming for economic yield.

Why harvest juveniles? Differences and similarities between the age

model and the stage model

While harvesting individuals before they mature is a debated topic, we have seen that both
the age model and the stage model give arguments for equal harvesting rates of juveniles and
adults. Indeed, relying on the stage model this argument is robust with respect to variations
in parameters values. The age model is more sensitive and the suggested harvesting strategy
varies between mainly equal harvesting and adult harvesting as a function of parameter values.
To understand these results we first recall (see Results) that if it is possible to obtain PGY
for a wide range of harvesting strategies, then our conservation measures are in favor of equal
harvesting. Therefore, we can focus the following discussion on when and why the models allow
for such wide range of harvesting strategies.

By extensive numerical experiments we illustrate this dependence for the age model in Figure
4. Varying the parameters values in the age model, it turns out that an increase in the fraction
J∗

u/(A
∗

u+J∗

u) of juveniles implies an increase in the yield obtained when harvesting only juveniles,
and that a decrease in the fraction of juveniles implies an increase in the yield obtained when
harvesting only adults. This is natural; when considering harvesting of a population consisting
of mainly juveniles it is not possible to obtain a good yield by harvesting only adults. From Fig.
4 we also see that as the survival from natural mortality S increases, the recommendation goes
towards including more juveniles in the harvesting strategy. A reason for this is that for small S
additional mortality through harvesting on young individuals implies that too few individuals
survive and become adults and the population declines.

A corresponding parameter dependence, as described in Fig. 4, is much weaker in case of
the stage model. Indeed, as mentioned in the results section, the stage model suggest equal
harvesting for wide ranges of parameter values, see the Appendix for more on this. One reason
for this difference in sensitivity of the recommended harvesting strategies between the two
models, with respect to parameter values, is as follows. The stage model explicitly models
the resource R(t) through the third equation in (8), and reproduction, growth and maturity
are assumed to be increasing functions of the resource. Therefore, removing adult or juvenile
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biomass through harvesting results in more resource available for the remaining population,
which in turn increases biomass production through all three mechanisms reproduction, growth
and maturity of juveniles. This feedback implies that the dynamics of the stage model allows
for wide ranges of efficient harvesting strategies.

On the other hand, the age model incorporates the Beverton-Holt spawner recruit curve
in (6) for reproduction, and, independent of the recruitment, individuals are assumed to grow
following the Bertalanffy growth curve in (2). Growth and recruitment are thus assumed to
be independent in the age model, while they are dependent through the resource in the stage
model. This means that if some juveniles are removed by harvesting it will not be in favor
of the recruitment of newborns in case of the age model, as it would be in case of the stage
model. Thus, it is more costly to harvest juveniles in the age model than in the stage model,
and therefore the age model more often suggests to leave small individuals, let them grow, and
catch them as adults.

In conclusion, the more extensive population-level feedbacks in the stage model makes the
population productive for a wider range of harvesting strategies than the age model does, and
the age model is more restrictive to juvenile harvesting than the stage model. This explains why
equal harvesting performs well through wider ranges of parameter values in the stage model,
than in the age model.

Importance of preserving population size structure

Our advice is based on our finding that large impacts on size-structure generally implies a high
risk of collapse as captured by our risk measures, see Fig. 5 and 6. To reduce the impact
of harvesting on population size structure, it seems advisable to harvest juveniles as well as
adults, see Fig. 2 and 3. Thus, equal harvesting is more likely to preserve the size structure
than single-stage harvesting. (A similar conclusion was reached by Jacobsen et al. 2014.) We
have shown that large impacts on size structure typically indicate unfavorable readings of our
risk measures. Our work thus reinforces the conclusions from a large and growing number of
studies (considering both ecological and evolutionary aspects) that argue for the importance
of preserving the size structure of harvested populations. These studies, which we discuss
below, reinforce the importance of including impact on size structure explicitly as an important
conservation measure when discussing harvesting strategies. In fact, not accounting for the
impact on size structure explicitly in our analysis means that we should find the recommended
harvesting strategies from Figs. 2 and 3 (a), (c) and (d) only, not including the Pareto efficiency
in Figs. 2 (b) and 3 (b). This would result in a shift towards recommending adult harvesting,
especially in case of the age model.

From an ecological point of view, our analysis that size structure largely impacts the
structure and functioning of the system is in agreement with previous works. Anderson et
al. (2008) show that populations with a larger fraction of juveniles have less stable popula-
tion dynamics because of changes in demographic parameters, and, therefore, suffers a larger
risk of extinction. (In this context, see also Wikström et al. 2012.) Moreover, changes in
the size-structure of the population affect the balance of intra- and interspecific competition
(Loreau and Mazancourt 2013).

From an evolutionary point of view, affecting the size-structure of a population can poten-
tially induce changes in biological traits such as size-at-age and age-at-maturation. One reason
is that harvesting only large individuals creates a large mortality selective pressure so that only
adults that reproduce early, and at small size, pass their genes (Dunlop et al. 2015). A conse-
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quence may be evolution toward small individuals reproducing early, which is generally not de-
sirable from an ecological (low reproduction) nor from an economical (too small to be valuable)
point of view (Grift et al 2003; Olsen et al. 2004). Evolutionary changes may have large impact
on economic profit and future management (Conover and Munch 2002; Jorgensen et al. 2007;
Belgrano and Fowler 2013), and may be difficult to reverse. Studying the collapse of the north-
ern cod (Gadus morhua, Gadidae), it has been shown that, before government imposed a
moratorium, the life history shifted towards maturation at earlier ages and at smaller sizes
(Olsen et al. 2004), suggesting fisheries-induced evolution of maturation patterns. Moreover, a
recent study provides experimental evidence for rapid evolution induced by changes in the popu-
lation size-structure of a fished population (van Wijk et al. 2013). Significant genetic variation
for production-related traits is also present in fished populations (Law 2000), and Cameron et
al. (2013) experimentally demonstrate evolutionary changes, in response to harvesting juveniles
or adults. In Kuparinen and Merilä (2007) the authors argue that we should stop targeting
only large individuals to avoid evolutionary impact on fisheries. See also Garcia et al. (2012)
and Law et al. (2012) for more arguments for harvesting preserving population size structure.
In conclusion, we recommend that managers consider the impact on size structure and that
they avoid large deviations from the size structure of a pristine, unharvested population.

Relations between the four measures of conservation

We have considered conservation as a second objective, beyond yield, in our optimization pro-
cedure. To quantify conservation we have chosen two impact measures; impact on biomass
and impact on size structure, and two “risk” measures; resilience and basic reproduction ratio
(recovery potential). It is not obviously true, even though it is expected, that the impact mea-
sures relate simply to the risk measures. Therefore, we present Figs 5 and 6 which show that
a large impact on biomass, or size structure, implies a low basic reproduction ratio (recovery
potential) and also a low resilience. From this fact we concluded that it is important to preserve
size structure and biomass in order to preserve stability of the population, and that impact on
biomass and impact on size structure work as warning signals for a collapse.

From Figs. 5 and 6 it is clear that the relations between the four measures of conservation
are not simple. This is clearest from Fig. 6 (a) and (c) representing the stage model; resilience
can vastly differ from the other measures by increasing with harvest pressure for some har-
vesting strategies. This phenomena, which bears resemblances to the paradox of enrichment
(Rosenzweig 1971; Rip and McCann 2011), deserves attention since it is very strong in the
stage model under equal harvesting, but not present at all under adult harvesting. This thus
provides a substantial argument in favour of equal harvesting. Using an alternative resilience
measure, we give further illustrations and explanations of this behaviour of the stage model in
the Appendix, see Figs. A 11 and A 12.

Comparing resilience simulations in Figs. 2 (c) and 3 (c) we conclude that harvesting of only
adults is among the best strategies in the age model, while such strategy is among the worst
using the stage model (considering resilience only). The resilience in the stage model instead
suggest equal harvesting rates. This is because in the age model, the population will return
fast to the equilibrium when harvesting only adults, after a given perturbation. In the stage
model however, the population returns very slowly when harvesting only adults, compared to
the case of equal harvesting. Hence, transient behavior, and therefore the resilience, behaves
different in the models.

Concepts of stability are numerous in ecology (McCann 2000), and how the different stability
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measures relate to one another is considered a timely and important question (Donohue et al.
2013). Indeed, measures of stability in ecological systems is today an active research area,
see e.g. Neubert and Caswell (1997) for alternatives to resilience, Nimmo et al. (2015) for
discussions of resistance and resilience, and Isbell et al. (2015) as well as Dunne et al. (2002)
for stability and its relations to biodiversity. Importantly, our model suggests that our different
conservation measures covary, and may be usefully assessed through changes in biomass and
size structure.

Motivations of our choice of conservation measures

As our results may depend on our chosen conservation measures, we consider here additional
motivations and discussions concerning this topic. First, the measures impact on biomass and
impact on size structure are important to consider simply since they can be measured in reality.
Second, these measures are natural, simple and easy to interpret and a large impact on biomass
would certainly imply impact on the surrounding ecosystem. Moreover, in the subsection
Importance of preserving population size structure, we further motivated the impact on size
structure as a central measure, based on the fact that population size structure is important to
preserve from both an ecological and evolutionary point of view.

To motivate the basic reproduction ratio and the recovery potential as a risk measure, we
note that, as already mentioned in the methods section, these measures are directly linked to the
probability of surviving a period of low population abundance during which random drift caused
by demographic stochasticity can lead to extinction. To see this, consider a small population
in a pristine environment in which all individuals are, for simplicity, assumed to be identical.
In this case, the basic reproduction ratio (or the recovery potential) is simply the ratio between
birth-rate b and death-rate d, that is Θ = b/d. As proved by Grimmett and Stirzaker (1992,
page 272), the probability of avoiding extinction through random drift is given by 1 − 1/Θ if
Θ > 1, and zero if Θ ≤ 1. Hence, there is a direct link between the basic reproduction ratio
(recovery potential) and the probability of surviving a period of low population abundance;
a high basic reproduction ratio (recovery potential) ensures a high probability of surviving.
To justify the investigation of the effects of large disturbances that bring the population to
small numbers, so that density dependence can be ignored, placing individuals in a pristine
environment, we mention mass mortality events (Fey et al. 2015), drastic climate variability
such as heat waves, storms, and floods (Reusch et al. 2005), and heavily exploited ecosystems
(Jones and Schmitz 2009).

To motivate our choice of resilience as a risk measure we first note that, when dealing
with nonlinear models, many works considers only local stability and local resilience measures
(based on eigenvalues of the Jacobian matrix). However, such approach gives only information
arbitrarily close to the equilibrium, saying little about the basin of attraction (the set of initial
conditions attracted by the equilibrium). If the equilibrium is locally stable but the basin of
attraction is small, then even a small perturbation can force the dynamics to jump to another
attractor, having possibly dangerous behaviour. A large and convex basin of attraction, with
the equilibrium in the middle, ensures that the population recovers a perturbation with a
high probability. Therefore, it is natural to use both the size and the shape of the basin
of attraction as stability/risk measures (Lundström and Aidanpää 2007, Menck et al. 2013,
Lundström 2018). However, such “nonlocal” stability measure does not deliver any information
in our case because for both models the equilibrium is the unique globally stable attractor (The
basin of attraction is the whole positive space, see Methods). We proceed toward a nonlocal
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resilience measure by invoking the next natural candidate, the return time to equilibrium given
a perturbation, and define resilience as the reciprocal of the expected time needed for the
population to retain the equilibrium (see Methods). In contrary to many works on resilience,
our nonlocal approach can invoke effects from small as well as from large perturbations which
is in line with classical definitions of ecological resilience (Walker et al. 1969, Holling 1973).
Our resilience measure estimates the population’s expected rate of return, given a random
perturbation. In the Appendix we present an alternative nonlocal resilience measure, the basin-
time resilience, which is based on the size of a subset of the basin of attraction from which
trajectories return fast. Basin-time resilience estimates the probability that the population
recovers the equilibrium within a time limit. Results from this measure strengthen our previous
conclusions and are illustrated in Appendix Figs. A 11 and A 12.

In general, our approach to resilience is applicable to advanced nonlinear models (with
complicated dynamics involving multiple attractors) as well as to simple linear models with
one unique stable equilibrium. We have chosen to impose perturbations by random sampling
from a uniform distribution, but any set of perturbations may be considered, e.g. normally
distributed from equilibrium or a deterministic choice. One may also consider perturbations
only in the juvenile-, adult- or the resource dimension. Our resilience measures link the widely
used local approach (analyzed through eigenvalues) with the nonlocal one that is usually con-
sidered relevant by ecologists (accounting for basins of attraction and large disturbances) as
we may consider various ranges of disturbances. We refer the reader to Lundström (2018) for
further discussions and constructions of nonlocal stability and resilience measures as well as
their relations to local measures. For discussion on the use of local resilience in ecology and
the fact that it can be difficult to assess from an empirical point of view, see Haegeman et al.
(2016).

Topics for future research

In both the age model and the stage model we considered individuals in only two stages, as
juveniles or as adults. We then considered harvesting strategies that allow for different mortality
rates in these two stages. Using slightly generalized versions of the age model and the stage
model, many more possible harvesting strategies can be explored. A natural first step is to
consider harvesting on a size interval, and this can later be extended to include several size
intervals as well as more realistic descriptions of harvesting mortality as a function of size.
Classical works of Beverton and Holt (1957) and Holt (1958) consider separate harvesting rates
on each year/size class and show that given a fixed harvesting effort, the yield is maximized if
fish are caught at the size or age where cohort biomass is maximum. Extending our modeling
to allow for different harvesting rates on each year/size class would allow for evaluating such
result with respect to our suggested measures of conservation.

We point out that even though the stage model is purely deterministic, one strength of our
work is to tackle, through the nonlocal resilience measure and the recovery potential, how the
population recover from small as well as large stochastic perturbations, and how the population
may survive demographic stochasticity at low density levels. To account for more stochastic
effects, a possible direction would be to expand the modeling towards demographic and envi-
ronmental stochasticity, since the interplay between stochasticity of demographic parameters
and deterministic nonlinearity is important (Sugihara et al. 2011). A study in this direction by
Engen et al. (2018) has found that adding environmental stochasticity may change predictions
of which harvesting strategy (adult, juvenile, or mixed harvesting) that gives the highest yield.
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They show that even when a deterministic model gave the highest yield from adult or juve-
nile harvesting, adding environmental stochasticity caused mixed harvesting to give the highest
yield in many cases. This indicates that our result “equal harvesting is often a good strategy”
might be further strengthened when environmental stochasticity is given further account.

Another promising extension of the work presented here is to move beyond single-species
management towards ecosystem-based management. We believe in a trend from single-objective
towards multi-objective approaches (i.e. optimizing for yield and conservation, not only yield),
strengthened by the present paper. This trend may evolve towards multi-objective approaches
using multi-species population models, that is, towards ecosystem management. Studies in this
direction already exists, see e.g. White et al. (2012), Tromeur and Loeuille (2017) and Jacobsen
et al. (2017). Our four measures of conservation can be extended to more general multi-
species settings, and the present method using Pareto frontiers to find sustainable harvesting
strategies can then be applied also in such general settings. For example, harvesting on a set of
k species in a food web with respective harvesting rates (F1, F2, ..., Fk), we can for any desired
yield determine the harvesting strategy that offers the highest conservation benefits. Hence,
the methods presented here open a door for reconciling economic and conservation issues in
ecosystem management and can be extended to more complex scenarios including for example
management of multiple fisheries and maintaining species diversity.

A concept which has attracted considerable attention recently is balanced harvesting (see e.g.
Garcia et al., 2012), see also the beginning of Discussion. Balanced harvesting strategies should
preserve ecosystems’ relative size and species composition, and thus harvesting rates may need
to be adjusted in proportion to the productivity of individuals. As productivity differs among
species, and also within a single species, a balanced harvesting strategy is probably selective
and nontrivial to find and implement. Law et al. (2015) argue that switching from size-at-entry
regulations to balanced harvesting can increase both yield and conservation. Noting that equal
harvesting is a more balanced strategy than adult harvesting, their result is in line with the
present paper. As our approach can potentially be extended to a general multi-species settings
it can also be applied to evaluate general balanced harvesting strategies in the framework of
advanced population models.

Appendix–supporting research for the manuscript

Meeting yield and conservation objectives by harvesting

of both juveniles and adults

The appendix gives additional motivations, explanations and details on the main manuscript,
as well as additional numerical and analytical results which strengthen the main findings of the
main text. We begin by motivating parameter values as well as investigating robustness with
respect to variations of parameter values in the age model, and proceed with a similar section
for the stage model. Next, we describe our resilience measure in detail and give some additional
resilience investigations of the stage model using an alternative resilience measure. We end by
deriving the analytical expression for the basic reproduction ratio for the age model.
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Motivations and variations of parameter values in the age

model

Concerning the parametrization of the age model, we have used

R0 = smax = c = 1, amax = 100, K = 0.23, a0 = −2, (A1)

amature = 8, h = 0.7, S = 0.8, σu = 0,

as default values in the main text, and we have considered substantial variations from these par-
ticular values. When varying parameter values in the age model, we have seen that the prefer-
able harvesting strategies depend on the parametrization in a way that can be well-explained
by Fig. 4 in the main text. That is, the suggested harvesting strategy (when comparing adult
harvesting, equal harvesting and juvenile harvesting) depends on the survival from natural
mortality, S, as well as on the fraction of juveniles in the unharvested case, J∗

u/(J
∗

u +A∗

u). The
results in Fig. 4 seem to be robust whenever parameters take on values in the wide intervals

K ∈ [0.1, 1], a0 ∈ [−3,−0.2], amature ∈ [3, 15], h ∈ [0.3, 0.9], σu ∈ [0, 0.5]. (A2)

Indeed, we have varied each parameter at a time, keeping the others at the values given in (A1)
and tested at least 10 values in each interval. Further parameter combinations in the above
intervals have also been tested.

In the following we will give motivations for the parameter values in (A1) as well as for the
considered intervals in (A2). We will also give some explanations of how and why our results
depend, or not depend, on the parameter values. Finally, we present additional trade-off curves
(similar to those in Fig. 2 in the main text) but for parametrizations corresponding to points
P1 − P8 in Fig. 4 in the main text. These curves are given in Figs. A 2, A 4, A 5 and A 6.
Careful reading of these figures should convince the reader that our main findings are robust
with respect to variations of parameter values. We do not present additional versions of main
text Fig. 5 (showing relation between measures). However, the correlation can be seen from
the trade-off figures by first focusing on the MSY point and then follow curves, for different
measures, in the direction of either increasing or decreasing harvesting pressure.

Reduction of parameters

We begin by motivating that without loss of generality we can choose R0 = smax = c = 1, as
well as amax = 100, and we will therefore not consider variations of these parameter values. In
particular, by careful investigation of the equations in the main text we see that if we divide
fa = csa in eq. (1) by c, eq. (2) by smax and eq. (4) by R0, then R0, smax, c, sa, Et, Rt and Na,t

can be considered as non-dimensional. We obtain non-dimensional equations, similar to the old
once but with R0 = smax = c = 1. This shows why these parameters can be set to 1 without
loss of generality. Indeed, the results for arbitrary R0 and smax can be obtained by multiplying
the yield obtained for R0 = smax = 1, given by main text eq. (11), by arbitrary values of
these parameters. The parameter R0 scales the number of individuals in the population, per
unit volume, while smax scales the mass of each individual. The constant c sets the number
of eggs per individual, and the assumed Beverton-Holt recruitment relation (A3), giving the
relation between egg production and offspring, saturates in relation to the number of eggs at
the unharvested equilibrium. As our results are independent of the number of eggs in the lake,
the value of the constant c is unimportant. This explains also that we can take ma = 1/2 in
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place of ma = 1 and consider half the population as adults; that would only correspond to
considering half the number of eggs per individual, i.e. c = 1/2.

Finally, we will take the maximum age of an individual to be so large that it only cut away
a negligible amount of biomass, i.e., very old fish. For our needs, amax = 100 is enough.

Steepness h in the Beverton-Holt recruitment, points P1 and P2

We recall the assumed Beverton-Holt recruitment

Rt+1 =
Et

α + βEt
exp

(

ut −
σ2
u

2

)

, (A3)

in which ut are independent and normally distributed random variables with mean 0 and stan-
dard deviation σu. The parameters α and β are given by

α =
E0

R0

(

1−
h− 0.2

0.8h

)

, β =
h− 0.2

0.8hR0
,

where E0 and R0 are, respectively, the average egg production and recruitment at equilibrium
in the absence of harvesting mortality. The parameter h is the steepness which sets the sensi-
tivity of recruitment with respect to egg production and may take values between 0.2 and 1.
The steepness is defined as the ratio of recruitment when egg production equals 20% of E0 to
recruitment at E0 (Mace and Doonan 1988; Hilborn 2010).

The relation between E0 and R0 yields

E0 = R0

amax
∑

a=0

mafaS
a. (A4)

To derive this relation, put Rt = R0 and γa−1 = 0 in main text eq. (4). It then follows that
numbers of individuals at equilibrium, in the absence of harvesting, are

N0,t = R0, N1,t = R0S, N2,t = R0S
2, . . . , Namax,t = R0S

amax.

By summing up these individuals total egg production (recall main text eq. (3)) we obtain
relation (A4).

We have already chosen R0 = 1 and the value of E0 follows from ma, fa, sa via (A4).
Moreover, by numerical investigations we have convinced ourselves that there is little effect of
varying σu. Therefore, in the following we focus on the steepness parameter h.

Myers et al. (1999) reviewed the steepness of 244 stocks of fish and found that steepness
values varies mainly in the range from 0.3 and 0.9. An intermediate value of 0.7 and slightly
greater steepness values are common (Myers et al. 1999, Table 1). We have considered variations
of steepness in the range h ∈ [0.3, 0.9], and to clarify the dependence of steepness we present
additional trade-off curves in Fig. A 2 for h = 0.5 (point P1 in Fig. 4) and h = 0.9 (point P2

in Fig. 4). It turns out that our main results are not sensitive to the steepness. We can see
in Fig. A 2 that (i) our conclusion that PGY allows large conservation benefits becomes more
clear when steepness increases, and that (ii) equal harvesting performs well rather independent
of steepness.

To understand why (i) and (ii) should hold in general, and how our conservation measures
depend on the steepness, we proceed by noting the following. If h = 1 then α = 0, β = 1/R0
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Figure A 1: Recruitment as functions of egg production following (A3) for different values of
the steepness parameter h. When h = 0.2 then recruitment is proportional to egg production,
and when h = 1 then recruitment is constant, independent of egg production. Remaining
parameters are as in (A1).

and Rt = R0 (constant recruitment). If h = 0.2 then α = E0/R0, β = 0 and Rt = Et · R0/E0
(proportional recruitment), see Fig. A 1. Thus, populations with high steepness values can
be assigned heavy harvesting pressures, implying small abundances, and still give high yield
because the reproduction stays high also for small egg production. To explain this, we note
that at unharvested equilibrium we have Rt = R0 and Et = E0, i.e. where all curves intersect in
Fig. A 1. Imposing harvesting on the population will reduce the population biomass, and hence
reduce the total egg production, and we therefore move to the left of the point of intersection in
Fig. A 1. If steepness is high (close to 1), then recruitment is still close to R0, but if steepness
is low (close to 0.2), then recruitment decrease linearly. From this reasoning we realize that
high steepness and high harvesting pressure give a situation with (relatively) high reproduction,
high harvesting mortality and high yield. Therefore, young individuals should be dominating,
and hence the impact on size structure and the impact on biomass will be high. Moreover, the
basic reproduction ratio as well as the resilience will be high. These phenomena can be seen in
Fig. A 2.

From the above reasoning we also realize that (i) should hold in general. In fact, when
steepness increases PGY can be obtained for wider ranges of harvesting strategies, giving more
possibilities to chose harvesting strategies (giving high yield) from. See Hilborn (2010) for more
on this.

To understand why (ii) should hold in general, we recall that at the unharvested equilibrium
we have Rt = R0 and Et = E0 independent of the steepness h. Hence, the fraction of juveniles
at the unharvested equilibrium, J∗

u/(J
∗

u + A∗

u), as well as the location of the parametrization
in Fig. 4 in the main text, are also independent of the steepness. As the suggested harvesting
strategy mainly depends on J∗

u/(J
∗

u +A∗

u) and S, it follows that it should be rather independent
of the steepness h.
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Figure A 2: Age model for h = 0.5 (thin curves) giving point P1 in Fig. 4 and h = 0.9 (thick
curves) giving point P2. Juvenile harvesting (blue, dashed), equal harvesting (black, solid),
adult harvesting (red, dash-dot). Remaining parameters are as in (A1) and yield is normalized
as in Fig. 2 in the main text.
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Figure A 3: Growth of an individual as functions of age following the von Bertalanffy growth
curves (A5) for different values of the parameters a0 and K. (a) variation of a0, (b) variation
of K. Remaining parameters are as in (A1).

Parameters a0 and K in the von Bertalanffy growth, points P3 and P4

We have assumed von Bertalanffy (1957) growth to describe individual length as a function of
age, and that individual mass is proportional to the cube of individual length, i.e.

sa = smax

(

1− e−K(a−a0)
)3

, (A5)

where sa is the mass of an individual at age a, smax is the asymptotic maximum body mass, K
is a growth rate parameter and a0 is the hypothetical negative age at which the individual has
zero length. We have already motivated smax = 1. Punt et al. (1995, page 290) studying the
albacore (Thunnus alalunga, Scombridae) motivate us to take a0 = −1 and K = 0.23. However,
the value of a0 may be decreased to −2 as well since the age model is discrete and calculates the
size of all individuals in the beginning of the year, but harvesting and egg production naturally
occur continuously during the year. We have considered variations in the ranges a0 ∈ [−3,−0.2]
and K ∈ [0.1, 1]. Figure A 3 shows the corresponding growth curves for some values of a0 and
K.

We present additional trade-off curves in Fig. A 4 for a0 = −3 (point P3 in Fig. 4) and
a0 = −1 (point P4 in Fig. 4). When a0 = −1 then especially young individuals will have lower
biomass and therefore the fraction of juveniles in the population will be small, J∗

u/(J
∗

u +A∗

u) ≈
53%. As a result, adult harvesting performs better, with respect to all conservation measures,
than equal harvesting and juvenile harvesting. When a0 = −3 then especially young individuals
will be of more biomass and therefore the fraction of juveniles in the population will be larger,
J∗

u/(J
∗

u + A∗

u) ≈ 66%. In this case equal harvesting is on the Pareto front within the range of
PGY for impact on biomass and resilience, and, therefore we recommend equal harvesting.

Considering variations in the growth parameter K gives a similar effect: A large K implies
that individuals grow fast and this affects especially young individuals. If K = 1 then J∗

u/(J
∗

u +
A∗

u) ≈ 81% and juvenile harvesting is the only strategy on the Pareto front, in the range of
PGY, for all conservation measures. If K = 0.1 then J∗

u/(J
∗

u +A∗

u) ≈ 41% and adult harvesting
is the only strategy on the Pareto front, in the range of PGY, for all conservation measures.
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Figure A 4: Age model for a0 = −3 (thin curves) giving point P3 in Fig. 4, and a0 = −1
(thick curves) giving point P4. Remaining description is as in Fig. A 2.
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Figure A 5: Age model for amature = 5 (thin curves) giving point P5 in Fig. 4, and amature = 11
(thick curves) giving point P6. Remaining description is as in Fig. A 2.

Age at maturity amature, point P5 and P6

The quotient of length of first maturity to maximum length of fish may vary in the wide
range from 0.2 to 1, but most species seem to be in the range 0.3 to 0.9 (Fishbase Fig. 43,
http://www.fishbase.org/manual). Recalling the von Bertalanffy growth curves in Fig. A
3, we realize that it is satisfactory that our results hold for age at maturity in the interval
amature ∈ [3, 15].

We present additional trade-off curves in Fig. A 5 for amature = 5 (point P5 in Fig. 4)
and amature = 11 (point P6 in Fig. 4). If amature = 5 then J∗

u/(J
∗

u + A∗

u) ≈ 35% and adult
harvesting is the only strategy on the Pareto front, in the range of PGY, for all conservation
measures. If amature = 11 then J∗

u/(J
∗

u + A∗

u) ≈ 78% and we are at the border where equal
harvesting and juvenile harvesting perform rather equally. Thus, amature has a large effect on
the fraction of juveniles in the population, and, therefore, a large impact on the preferable
harvesting strategies.
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Figure A 6: Age model for S = 0.65 (thin curves) giving point P7 in Fig. 4, and S = 0.9
(thick curves) giving point P8. Remaining description is as in Fig. A 2.

Survival from natural mortality S, points P7 and P8

Motivated by e.g. Mills et al. (2002) we used the default value S = 0.8 for the survival from
natural mortality. We have seen that results from the age model are rather dependent of S,
and this dependence has been investigated and presented in Fig. 4 in the main text. Fig. A 6
shows additional trade-off curves for S = 0.65 (point P7 in Fig. 4) and S = 0.9 (point P8 in
Fig. 4). If S = 0.65 then J∗

u/(J
∗

u +A∗

u) ≈ 88% and we are at the border where equal harvesting
and juvenile harvesting perform rather equally. If S = 0.9 then J∗

u/(J
∗

u +A∗

u) ≈ 32% and adult
harvesting is the only strategy on the Pareto front, in the range of PGY, for all conservation
measures.
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Motivations and variations of parameter values in the

stage model

We adopt the following values of the model parameters,

H = T = r = 1, Rmax = 2, σ = 0.5, Imax = 10, M = 0.1, z = 0.01, q = 0.85. (A6)

These values may be considered as archetypal, and motivations can be found in de Roos et al.
(2008). However, these values were derived in the Roos et al. (2008) using not only data on
fish species. To ensure the validity of results in the setting of fisheries, we give below a rather
lengthy section concerning motivations and sensitivity of our results with respect to parameter
values.

First, we recall that we have considered substantial variations of these values and concluded,
by numerically calculating trade-off curves, that our results from the stage model are robust
for the wide ranges of parameter values given by

M ∈ [0, 0.5], z ∈ [0.0001, 0.2], σImax ∈ [3, 100], q ∈ [0.6, 2], Rmax ∈ [0.5, 100]. (A7)

Indeed, we varied each parameter at a time, keeping the others at the values given in (A6)
and tested at least 10 values in each interval. Several further parameter combinations have
also been tested, e.g. letting each parameter take on values at the boundary of the intervals in
(A7). The upper bound of 100 on the intervals for Rmax and σImax does not seem necessary;
the structures of the population, relevant for our study, seem to remain for much larger values
as well. The lower limits of these intervals ensure that the population has a positive stable
equilibrium.

In the following we will give, in addition to the motivations in de Roos et al. (2008),
discussions and motivations for the parameter values in (A6) as well as for the considered
intervals in (A7). We will also give some explanations of how and why our results depend, or
not depend, on the parameter values. Finally, we present additional trade-off curves (similar to
those in Fig. 3 in the main text) but for other parametrizations. These curves are given in Figs.
A 8, A 9 and A 10. Careful reading of these figures should convince the reader that our main
findings are robust with respect to variations of parameter values. We do not present additional
versions of main text Fig. 6 (showing relation between measures). However, the correlation can
be seen from the trade-off figures by first focusing on the MSY point and then follow curves,
for different measures, in the direction of either increasing or decreasing harvesting pressure.

Reduction of parameters

We begin by motivating that we can take H = T = 1 without loss of generality. The half-
saturation constantH represents a resource density and is measured in biomass per unit volume.
Changing its value can be considered as changes in the volume in which we express the densities
R, J and A. Without loss of generality we can choose H = 1. This fixes the environmental
volume in which the population is assumed to live and thus scales the biomass densities R,
J and A. Mathematically, we rescale the stage model by introducing the new dimensionless
variables J ′ = J/H , A′ = A/H , R′ = R/H and R′

max = R′

max/H , resulting in that H goes
away from the set of equations. We also rescale the time variable t with the mass-specific
metabolic rate parameter T , measured per unit of time, by introducing the dimensionless time
t′ = tT and expressing the dynamics of the resource and the consumers as functions of this
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new time variable. Moreover, we introduce the new dimensionless rate parameters r′ = r/T ,
I ′max = Imax/T , M

′ = M/T , F ′

J = FJ/T and F ′

A = FA/T , resulting in that T goes away from
the set of equations. This shows that we can choose H = T = 1 without loss of generality,
and that results for other values of the parameters H and T can be obtained by multiplications
from the results for H = T = 1. We therefore omit further investigations in H and T and put
focus on the remaining parameters. For simplicity, we will omit the “prime”-notation in the
following even though we work with the dimensionless quantities. The rescaled stage model
equations are identical to main text eqs. (8) but with H = T = 1. In particular,

dJ

dt
= (wJ(R)− v(wJ(R))−M − FJ)J + wA(R)A, (A8)

dA

dt
= v(wJ(R))J − (M + FA)A,

dR

dt
= r(Rmax − R)− Imax

R

1 +R
(J + qA) ,

where the net biomass production by a juvenile and an adult are, respectively,

wJ(R) = max

{

0, σImax
R

1 +R
− 1

}

and wA(R) = max

{

0, σqImax
R

1 +R
− 1

}

, (A9)

and the maturation is given by

v(x) =
x−M − FJ

1− z1−(M+FJ)/x
, (A10)

for x 6= M + FJ and v(M + FJ) = −(M + FJ)/ log(z).
For clarity we plot the net biomass production functions for juveniles and adults, wJ(R)

and wA(R), as well as the maturation function v(wJ(R)), in Fig. A 7. All functions are
zero (juveniles and adults do not produce biomass, and juveniles do not mature) until energy
intake is sufficient to cover maintenance requirements, after which they increase with resource
abundance.

Resource parameters r and Rmax

Numerical investigations strongly indicate that our results are very robust with respect to
variations of the resource parameters r and Rmax. We will now give a theoretical explanation
of this. Let J∗, A∗ and R∗ denote the juvenile, adult and resource biomass at equilibrium,
respectively. Let also J∗

u , A
∗

u and R∗

u denote these quantities in case of no harvesting pressure,
i.e. when FJ = FA = 0. Setting derivatives to zero in the stage model (A8) and solving the
corresponding set of equations for equilibria we find that

J∗ =
r(Rmax − R∗)(1 +R∗)(M + FA)

ImaxR∗(M + FA + qv(wJ(R∗)))
, A∗ =

r(Rmax − R∗)(1 +R∗)v(wJ(R
∗))

ImaxR∗(M + FA + qv(wJ(R∗)))
, (A11)

where R∗ is given as the unique root of the equation

wA(R
∗)v(wJ(R

∗))

(M + FA)[v(wJ(R∗))− wJ(R∗) +M + FJ]
= 1. (A12)

33



0 0.5 1 1.5 2
Resource, R

0

0.5

1

1.5

2

2.5
Biomass production functions

wJ(R)

wA(R)

v(wJ(R))

v(wJ(R))

Figure A 7: Biomass production function for juveniles, wJ(R), and for adults, wA(R). The
maturation function v(wJ(R)) for M + FJ = 0.1 (blue, dashed) and for M + FJ = 1 (green,
dotted). Remaining parameters are as in (A6).

From (A12) we note that the root R∗ will be independent of both r and Rmax, and from (A11)
we see that both the juvenile and adult biomass, J∗ and A∗, increase linearly with both r and
Rmax, and so is the yield. Moreover, from the expressions in (A11) we see that

J∗

J∗ + A∗
=

M + FA

M + FA + v(wJ(R∗))
and (A13)

Impact on size-structure =
M + FA

M + FA + v(wJ(R∗))

[

M

M + v(wJ(R∗

u))

]

−1

− 1.

Therefore, the fraction of juveniles in the population, as well as the population size structure, are
independent of r and Rmax (because R∗ is). We can also conclude, from the expressions for the
recovery potential and the impact on biomass given in the main text, that both these measures
are independent of r. We may also note that the recovery potential becomes independent of
Rmax as Rmax becomes very large as the ingestion for a single individual saturates for very large
resource densities.

These arguments clarifies why our results are more or less independent of r and Rmax

(whenever these parameters take on values giving a non-extinct population at equilibrium).
Therefore, we feel comfortable with letting r = 1 and Rmax = 2 and put focus on the remaining
parameters.

Ingestion parameters σ and Imax

Numerical investigations strongly indicate that our results are very robust with respect to
variations of the ingestion parameters σ and Imax. To understand why this is the case, we
expand on the above analytical reasoning and prove that at equilibrium, the fraction of juvenile
biomass in the population and the impact on size structure, see (A13), as well as wA(R

∗),
wJ(R

∗) and v(wJ(R
∗)) are in fact independent of r, Rmax, σ and Imax. Indeed, they depend

only on the parameters M +FJ, M +FA, q, and z. To prove this, consider equation (A12) from
which we solve the resource equilibrium biomass. In this equation, R∗, σ and Imax appear only
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implicitly in the functions wA(R
∗) and wJ(R

∗), see expressions (A9). Thus, by setting

α∗ = σImax
R∗

1 +R∗

we can solve (A12) for α∗, independent of the parameters σ and Imax. Therefore, varying σ
and Imax will not change wA(R

∗), wJ(R
∗) and v(wJ(R

∗)), and thus not change the fraction of
juvenile biomass in the population nor the impact on size structure. This shows why our results
are very robust with respect to σ and Imax, and from here we fix σ = 0.5 and Imax = 10 and
focus on the remaining parameters.

Ratio of size at birth to maximum size z

De Roos et al. (2008) use the value z = 0.01 for the ratio of size at birth to maximum size,
z = sborn/smax. To further motivate this value in a fisheries context, we note that Punt et
al. (1995, page 290) studying the albacore (Thunnus alalunga, Scombridae) use K = 0.23 and
a0 = −1 in the von Bertalanffy growth growth curves, recall Fig. A 3. This gives a value of
z ≈ 0.009 which is very close to 0.01. (Changing a0 to −3 gives z ≈ 0.12, and a0 = −0.2 gives
z ≈ 0.00009.)

By numerically calculating trade-off curves as those in Fig. 3 in the main text, we have seen
that our results are robust with respect to variations of z in the wide interval z ∈ [0.0001, 0.2].
Indeed, results from the stage model suggest that equal harvesting performs well rather inde-
pendent of z as long as it takes on reasonable values. We present additional trade-off curves in
Fig. A 8 for the values z = 0.001 and z = 0.1. Here, we clearly see that the value of z has little
effect on how juvenile-, adult- and equal harvesting performs.

Difference in ingestion between juveniles and adults q

It seems hard to motivate a specific value for the parameter q describing the difference in
ingestion rates between juveniles and adults: “An estimate for this parameter can hardly be
derived from experimental data as it is only a phenomenological representation of stage-specific
differences in resource availability and resource use between juveniles and adults.” (De Roos
et al. 2008). By substantial numerical investigations we have seen that our results hold at
least as long as q ∈ [0.6, 2]. We present additional trade-off curves in Fig. A 9 for q = 0.6
and q = 1.5, showing that our main findings hold for these parametrizations as well. The
conservation measures stays rather stable also when q is goes out of the bounds 0.6 and 2, but
then the difference in yield between the harvesting strategies increase. Indeed, smaller q implies
that adult harvesting is better, and larger q implies that juvenile harvesting is better.

Natural mortality rate M

Following De Roos et al. (2008) we have adopted the default value of M = 0.1 for the natural
mortality rate. Fig. A 10 shows additional trade-off curves for the values M = 0.05 and
M = 0.4. The main structure of the curves remains and thus our main results are robust also
to changes in M . Let us note that M is simply added to the harvesting rates FJ and FA in
the stage model, recall (A8). Therefore, an increase in M should force the trade-off curves for
juvenile harvesting and adult harvesting toward the trade-off curves for equal harvesting (if M
is high, then there is then always high mortality on both juveniles and adults). This can be
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Figure A 8: Stage model for z = 0.001 (thin curves) and z = 0.1 (thick curves). Juvenile
harvesting (blue, dashed), equal harvesting (black, solid), adult harvesting (red, dash-dot).
Remaining parameters are as in (A6) and yield is normalized as in Fig. 3 in the main text.
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Figure A 9: Stage model for q = 0.6 (thin curves) and q = 1.5 (thick curves), remaining
description is as in Fig. A 8.
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Figure A 10: Stage model for M = 0.05 (thin curves) and M = 0.4 (thick curves), remaining
description is as in Fig. A 8.

observed in Fig. A 10. We can also see that the impact on size structure is much smaller for
higher M , which may be understood by the fact that now the unharvested state already has a
high death rate. We can also observe the expected decrease in yield when death rate increases
from M = 0.05 to M = 0.4.

Detailed description of our resilience measure

We have considered resilience of the population by measuring the reciprocal of the time needed
for the population to recover the positive equilibrium given a random perturbation. To describe
the procedure in detail, let (J∗, A∗, R∗) denote the equilibrium of biomass in the stage model,
and let N∗

a , a = 0, 1, 2, . . . , amax denote the equilibrium of number of individuals in the age
model. For a given constant κ > 0 that scales the maximum displacement of the population
from the equilibrium, we start a trajectory from a random point uniformly distributed in the
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cube

(0, κJ∗)× (0, κA∗)× (0, κR∗) (stage model), (A14)

(0, κN∗

0 )× (0, κN∗

1 )× (0, κN∗

2 )× · · · × (0, κN∗

amax
) (age model).

We then find the return time as the time needed for this trajectory to be close enough to the
equilibrium in the sense that

{

(

J∗ − J(t)

J∗

)2

+

(

A∗ −A(t)

A∗

)2

+

(

R∗ − R(t)

R∗

)2
}1/2

≤ ǫ (stage model), (A15)

{

amax
∑

a=0

(

N∗

a −Na,t

N∗

a

)2
}1/2

≤ ǫ (age model),

for some small ǫ > 0. After repeating this procedure n times we find the resilience, as a function
of the harvesting rates FJ and FA, by taking the reciprocal of the average of the corresponding
return times, i.e.

Resilience =
1

Average of the n return times
.

Our resilience measure estimates the population’s expected rate of return, given a random
perturbation. We have used the parameter values κ = 2, ǫ = 0.01 and n = 100 as default
values, but main results are not very sensitive to the magnitude of the imposed perturbations
(κ) nor the size of the small neighborhood (ǫ) as long as κ >> ǫ take on reasonable values.
We present some results on κ = 1 in Fig. A 12 below, which means that we consider only
perturbations that remove biomass.

It is worth noting that when implementing our approach to resilience, one tests the model
for a large number of initial conditions. Therefore, one may find out if the system is bistable,
i.e. if other attractors (e.g. stable states or periodic solutions) are present, which is valuable
information. Indeed, if this is the case, a tested initial condition may produce a trajectory that
never return to the equilibrium. This will be revealed by our simulation procedure. If applying
our approach to bistable systems, one should define another stopping criteria for the other
attractors. The resilience can then be defined as the average of the reciprocal of the return
times, setting the reciprocal to zero whenever an initial condition reached another attractor.
In that way initial conditions (perturbations) that escape to another states contributes with
resilience zero, c.f. measure R in Lundström (2018).

Basin-time resilience and further investigations of the stage

model

From our results on the stage model we have seen that resilience, in contrary to the other con-
servation measures, may vastly increase with harvesting pressure for some harvesting strategies.
This is true for equal harvesting and juvenile harvesting, but not at all for adult harvesting,
recall Fig. 3 in the main text as well as Figs. A 8, A 9 and A 10. Indeed, adult harvesting
gives the worst resilience while equal harvesting gives the best resilience (which can be up to
20 times higher in the range of PGY). As this phenomenon provides a substantial argument in
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favour of equal harvesting compared to adult harvesting, we investigate it further here in order
to increase the credibility of our results.

Each dot in Figs. A 11 (a)-(c) show an imposed perturbation as an initial condition from
which we integrated the trajectory until it reached the small neighborhood of the equilibrium
given by (A15) with ǫ = 0.1. Tested initial conditions are distributed uniformly in (0, κJ∗) ×
(0, κA∗) with R = R∗ and κ = 2. Grey dots return to the equilibrium within a time limit
which we set to t ≤ 5, while red dots need more time to recover the equilibrium. There is
no harvesting pressure in Fig. A 11 (a), adult harvesting FJ = 0, FA = 35 in (b) and equal
harvesting FJ = FA = 0.8 in (c). The harvesting strategies in (b) and (c) give similar yields
(close to the maximum possible yield). The fraction of grey dots is largest in case of equal
harvesting, while it is smallest in case of adult harvesting, which means that the population
returns fast from more perturbations (initial conditions) in case of equal harvesting than for
adult harvesting. This reflects the higher resilience in case of equal harvesting. Indeed, the
fraction of grey dots estimates the probability that the population recover the equilibrium in
a time limit, given a random perturbation, and constitutes a natural candidate for measuring
resilience.

In general, let basin-time be a subset of the basin of attraction from which trajectories
return to (a small neighborhood of) the attractor within a time limit, t ≤ τ . A large and convex
basin-time set should then reflect high resilience. Therefore, both the size and the shape of the
basin-time constitute natural candidates for measuring resilience (Lundström 2018). We will
consider the size of the basin-time set as a resilience measure. To do so we impose perturbations
as described in (A14) and integrate each trajectory until it reaches the neighborhood defined
by (A15). We further let N τ

return denote the number of initial conditions from which trajectories
return in time τ , and Ntot denote the total number of tested initial conditions. We measure
resilience as the size of the basin-time set through the estimate

Basin-time resilience =
N τ

return

Ntot
.

Figure A 11 (d) shows trade-off curves between basin-time resilience and yield. (parameters
are κ = 2, n = 1000, ǫ = 0.1 and τ = 5.) It is clear that also the basin-time resilience measure
strengthen the result of the stage model saying that equal harvesting performs best while adult
harvesting gives the worst resilience; these trade-off curves are very similar to those in Fig. 3
(c) in the main text.

Figs. A 11 (a), (b) and (c) may indicate that the higher resilience in case of equal harvesting
is due to fast return of trajectories starting at high biomass. Indeed, the basin-time, estimated
by the fraction of grey dots, is largest in Fig. A 11 (c) and includes all points corresponding
to larger initial biomass than at equilibrium. Therefore, we complement the given resilience
estimations by a simulation in which we consider only perturbations that remove biomass. In
particular, we take κ = 1 and reproduce the trade-off curves between resilience (both measures)
and yield, see Fig. A 12. We can observe that equal harvesting is now challenged by juvenile
harvesting, but both resilience measures still agree on the result that equal harvesting is much
better than adult harvesting.

In addition to the above resilience estimations, we have also considered normally distributed
perturbations (centered at the equilibrium) as well as the “standard” local resilience measure
given by the real part of the eigenvalue of the Jacobian matrix at equilibrium with largest real
part. Results from these investigations also agree very well with our findings.

For further ideas on how to use the basin of attraction, the basin-time as well as the return
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Figure A 11: (a)-(c): Population recover fast from most perturbations in case of equal harvesting
(c) and from fewest perturbations in case of adult harvesting (b). The grey dots represent initial
conditions that return to the equilibrium within time 5, while the red dots need more time to
recover the equilibrium. There is no harvesting pressure in (a). (d): Trade-off between basin-
time resilience and yield. Juvenile harvesting (blue, dashed), equal harvesting (black, solid),
adult harvesting (red, dash-dot). Model parameters are as in (A6) and yield is normalized as
in Fig. 3 in the main text.
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Figure A 12: Trade-off between yield and resilience considering κ = 1, i.e. perturbations
only remove population and resource biomass. (a) basin-time resilience and (b) the resilience
measure used in the main text. Remaining descriptions are as in Fig. A 11.

time to measure stability and resilience, we refer the reader to Lundström (2018) and references
therein.

Derivation of the basic reproduction ratio for the age

model

The basic reproduction ratio represents the average number of offsprings produced over the
lifetime of an individual in the absence of density-dependent competition. We consider an indi-
vidual satisfying the dynamics of the age model and calculate an expression for this individuals
expected offsprings during its lifetime. For this purpose, we let Ẽt denote the egg production
and R̃t the recruitment from this individual, at time t. That no density-dependent competition
is present lead us to assume that the Beverton-Holt recruitment is completely unsaturated.
Such situation is achieved by taking β = 0 (or R0 = ∞) in (A3), giving

R̃t+1 =
Ẽt

α
exp

(

ut −
σ2
u

2

)

in which α =

(

1−
h− 0.2

0.8h

) amax
∑

a=0

mafaS
a, (A16)

where we used relation (A4) to find the expression for α. Now, since ut − σ2
u/2 is normally dis-

tributed with mean −σ2
u/2 and standard deviation σu, we obtain, where E denotes expectation,

E

{

exp

(

ut −
σ2
u

2

)}

= 1.

Therefore, the expected number of offsprings in year t becomes

E
{

R̃t+1

}

=
Ẽt

α
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and hence the expected total number of offsprings from the single individual during its lifetime,
i.e. the basic reproduction ratio R̃0(FJ, FA), becomes

R̃0(FJ, FA) = E

{

amax
∑

t=0

R̃t+1

}

=
amax
∑

t=0

E
{

R̃t+1

}

=
1

α

amax
∑

t=0

Ẽt, (A17)

where α is given in (A16).
It remains to calculate the total number of eggs produced, i.e. the sum in the right hand

side of (A17). Indeed, following (3) and (4) in the main text we conclude that

amax
∑

t=0

Ẽt = m0f0 +m1f1S(1− γ0) +m2f2S
2(1− γ0)(1− γ1) + . . .

= m0f0 +
amax
∑

a=1

mafaS
a
a−1
∏

i=0

(1− γi).

By the expression for ma in (1) in the main text and by γa in (5) in the main text we find that
the above expression yields

amax
∑

t=0

Ẽt = m0f0 +
amax
∑

a=1

mafaS
a
a−1
∏

i=0

(1− γi) =
amax
∑

a=amature+1

faS
a
a−1
∏

i=0

(1− γi)

= (1− FJ)
amature ×

amax
∑

a=amature+1

faS
a (1− FA)

a−amature .

We next use the relation fa = csa given in (1) in the main text to derive

amax
∑

t=0

Ẽt = c (1− FJ)
amature ×

amax
∑

a=amature+1

sa S
a (1− FA)

a−amature .

Using (1) in the main text once more we see that α can be written

α = c

(

1−
h− 0.2

0.8h

) amax
∑

a=amature+1

sa S
a. (A18)

Inserting main text eq. (3) and (A18) into (A17) and simplifying yield

R̃0(FJ, FA) =
(1− FJ)

amature ×
∑amax

a=amature+1 sa S
a (1− FA)

a−amature

(

1− h−0.2
0.8h

)

×
∑amax

a=amature+1 sa S
a

.

This expression is identical to eq. (10) in the main text which gives the basic reproduction
ratio for the age model.
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