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7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05,
France.

Abstract

A two-component interaction model is introduced herein, which al-
lows to describe macroscopic miscibility with various modes of tunable
micro-segregation, ranging from phase separation to micro-segregation,
and in excellent agreement for structural quantities obtained from sim-
ulations and the liquid state hypernetted-chain like integral equation
theory. The model is based on the conjecture that the many-body
correlation bridge function term in the closure relation can be divided
into one part representing the segregation effects, which are modeled
herein, and the usual part representing random many body fluctua-
tions. Furthermore, the model allows to fully neglect these second con-
tributions, thus increasing the agreement between the simulations and
the theory. The analysis of the retained part of the many body correla-
tions gives important clues about how to model the many body bridge
functions for more realistic systems exhibiting micro-segregation, such
as aqueous mixtures.

1 Introduction

One of the central problem in statistical mechanics of liquids and mixtures
is to understand both qualitatively and quantitatively the role of many-body
effects on pair correlations[1, 2]. In its current state of development and
application, liquid state integral equation theory (IET) is mostly a theory
formulated in terms of pair interactions and pair correlations[1, 2, 3] , even
though higher order correlations are incorporated implicitly by the formalism
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itself and explicitly through the so-called bridge term. Neglecting this term
or using approximations involving only pair correlations, leads to the usual
strategies to generate approximate IET[1, 2, 3]. By comparing pair correla-
tions obtained from such approximate IET to those obtained from computer
simulations, one generally finds a rather good agreement for various types
of simple liquids[4], which in turn suggests that the contribution from ex-
plicit many body correlations remains quantitatively small, although being
qualitatively important. This agreement breaks down in the vicinity of phase
transition, such as the gas-liquid phase separation for one component liquids,
or demixing transitions for mixtures. This breakdown is intuitively under-
stood from the paramount importance of fluctuations through the Renor-
malisation Group theory approach for liquids[5, 6], indicating that many
body correlations become essential in such cases, although they globally re-
main quantitatively small[6]. Interestingly, approximate IET also break down
when considering realistic liquids which exhibit micro-structure[7]. Such liq-
uids, which we call complex liquids, encompass associating liquids, such as
water and other hydrogen bonding liquids, and mixtures which show micro-
segregation, the latter for which it is often impossible to solve IET[7, 8].

From these observations it is tempting to postulate that the breakdown
of approximate IET is always caused by special types of spatial fluctuations,
such as critical ones or those related to spatial heterogeneity, which reflects
the importance of very specific types of many body correlations, and which
cannot be described by the usual approximations for IET. To be more spe-
cific, approximate IET may be able to solve for micro-segregated systems,
but not with the required accuracy or quite simply fail beyond a certain
point, precisely because very specific forms of the many-body contributions
are required. It is these specific contributions, we propose to consider as an
effective interaction. Remaining correlations are considered as contributions
from random fluctuations, whose importance is similar to those in simple liq-
uids, and therefore can be neglected in approximate integral equation meth-
ods, since the principal many body effects from non-random fluctuations are
already captured through the effective interactions.

The method of choice to investigate this approach is the hyper-netted
chain (HNC) approximation, which precisely consists in neglecting contribu-
tions from high order correlation through the bridge term[9, 10, 11]. Inter-
estingly, HNC is well known for having spurious tendency to fail for the type
of complex liquids mentioned above, which lesser approximate IET do not
have, although these do not necessarily provide solutions in agreement with
the expected ones[12, 13]. This failure is the starting point for the proposal
in this work, which consists in conjecturing that this shortcoming of HNC
is the signature that particular forms of the bridge function are required to
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describe such systems.
Assuming these assumptions holds, it remain to find which particular

form of the bridge functions are required. Searching for clues, we first note
that HNC can handle fluctuations in several typical cases. The first case
concerns simple liquids and mixtures, such as Lennard-Jonesiums or weakly
polar liquids, for which there is no particular local order. For such systems,
the HNC approximation is fairly good[4], and it is for this type of systems
that more accurate alternative empirical approximations have been devel-
oped, such as the Verlet bridge[14] and many other methods[4, 15, 16, 17].
The second case concerns classes of liquids which present a strong local order
which dominates the typical disorder of the liquid state. One such example
concerns ionic melts, such a molten NaCl for example, which are characterised
by charge order[18, 19, 20, 21], where positive and negative charges are dis-
posed in quasi-alternate fashion. HNC is often found to describe the structure
of such liquids very accurately, even to extremely high couplings[22]. With
these two considerations in mind, we note that all micro-segregating systems
are governed by strong Coulomb interactions, and it is precisely these inter-
actions that produce the segregation[30]. Therefore, if HNC is very good for
some Coulomb systems and not for others, it means that the bridge function
of the latter systems must have a very specific form and role, confirming
the ideas developped above. Another example concerns the so-called core-
softened interactions[23, 24, 25], which aim to describe particular forms of
local order, such as that found in globular clustering[23] or in water[24].
Among this category, the repulsive core-softened interaction is particularly
well described by the HNC approximation and in excellent agreement with
simulations, both for pattern formations[26] or water-like models[27]. Since
these models concerns non-ionic systems, They give an indirect clue about
the type of pseudo-interactions which could mimic local order similar to that
induced by Coulomb interactions, without having to explicitly take them into
account. This can be achieved through the closure relation, as shown in the
next section.

In this work, we wish to test these ideas through simple isotropic pair in-
teractions, but which contain the bridge part which concerns the formation of
micro-structure. If we formulate properly the effective pair interactions, that
is the concerned bridge part, we should able to describe the whole expected
scenario of micro-structure, as seen from various experimental conditions. In
addition, a proper formulation should allow to neglect contributions from
random fluctuations, and in such case the HNC approximation should be
highly reliable. The several cases we wish to model concern the type of
micro-segregation found in aqueous mixtures. For example, aqueous mix-
tures of small amphiphile molecules such as alcohols, are known to produce
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micro-segregation[28, 29, 30], which induces large pre-peaks in atom-atom
structure factors[30]. IET are generally unable to provide solutions for such
mixtures (as in water-1propanol) [31], or when they can, the description of
the structure is very poor (as in water-methanol)[7]. In addition to the pre-
peak witnessing domain-domain correlations, the k = 0 behaviour of the
structure factor is equally critical. For example, a large value would indicate
large domain fluctuations, and not necessarily an underlying phase separa-
tion. These examples further support the idea that micro-heterogeneity is a
different form of fluctuation than those which control phase transitions.

In the next section, we reformulate the conjecture in a more formal way,
and we explain the modeling and computational details. In section III, we
show the results of various modeling strategies, which allow to extract key
features of the effective interactions. In the last section, we will discuss how
these results can be extended to more realistic case, before we conclude.

2 Theoretical and computational details

2.1 From many body correlations to effective interac-
tions

To be more specific about the statements of the Introduction, let us con-
sider the most general form[3, 4] of the pair distribution function gab(r) for
a mixture of atomic sites, interacting through spherically symmetric pair
interaction vab(r):

gab(r) = exp (−βvab(r) + hab(r)− cab(r) + bab(r)) (1)

where the index a and b designate atomic species in the mixture, hab(r) =
gab(r)−1, cab(r) is the pair direct correlation function, and β = 1/kBT is the
Boltzmann factor (with kB the Boltzmann constant and T the temperature).
The last function bab(r) is the so-called bridge function[9, 11] which contains
all the many body higher order correlations, namely through the introduction
of n-body direct correlation functions c(n)a1a2...an

(~r1, ~r2, ..., ~rn), where the index
ai is a species index, (n) designating the rank or order of correlations and ~ri
designating the position of particle i of species ai:

bab(r) =
∑
m≥3

1

m!
b
(m)
ab (r) (2)

with

b
(m)
ab (r) =

m∑
k≥3

1

k!

∑
s1...sk

(
k∏
l=1

ρsl

)
T

(k)
ab s1...sk

(r) (3)
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and

T
(k)
ab s1...sk

(r) =

ˆ
d~r13

ˆ
d~r14...

ˆ
d~r1k

(
k∏
l=1

hask(r1k)

)
c
(k+1)
bs1...sn

(~r2, ~r3, ..., ~rk)

(4)
where we have used the isotropy and translational invariance in macroscop-
ically homogeneous liquid mixtures, with r = |~r12| , rij = |~rij| = |~rj − ~ri|.
This simplification has been omitted in the argument of the n-body direct
correlation function, in order to avoid explicitly counting all combinations of
rij, but it is obviously implied.

There is a striking complexity level difference between Eq.(1) and those
defining bab(r). Tentative to compute low order contributions to bab(r), either
through Mayer bond[10] or directly from Eqs.(2-4) by approximating the
function c(3) [32], have indicated that the density expansion is diverging. This
has been directly confirmed by the exact computation of series expansion for
the case of 1-dimensional hard sphere fluid. It is therefore hopeless to evaluate
bab(r) term by term, and one should model this term directly by some general
guiding rules. This is what approaches such as the Verlet bridge[14] and all its
descendants[4, 15, 16, 17] have tried to do. In the present work, we propose
a different route, based on the existence of the two categories of local order
described in the Introduction.

The conjecture formulated in the Introduction can be written as:

bab(r) = b
(LF )
ab (r) + b

(RF )
ab (r) (5)

where b
(LF )
ab (r) corresponds to many-body contributions to the local fluctu-

ations (LF), while b
(RF )
ab (r) corresponds to random fluctuations (RF). For

simple liquids one has

bab(r) ≈ b
(RF )
ab (r) simple liquids (6)

and it is this term that are usually approximated in methods designated to
improve IET.

The lowest approximation level in the diagrammatic expansion in bab(r)
consist in setting bab(r) = 0, which is known as the hypernetted-chain ap-
proximation (HNC)

gab(r) = exp (−βvab(r) + hab(r)− cab(r)) (7)

Other levels of approximation involved further manipulation of the HNC
closure (such as the PY or MSA approximations[3]), or adhoc functional
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expression for bab(r) which are based on various empirical basis (such as the
Verlet approximation and the large number of variants based on it). Since
the HNC closure represents the lowest approximation level based on the
rigorous developments, we will exclusively consider this approximation below,
deliberating neglecting various other approximations which are sometimes
considered as more accurate from various types of empirical considerations.

In cases where complex local order is present, that is when particles tend
to form local patterns (such as chaining in the case of dipolar molecules[33],

for example), we postulate that the influence of the b
(LF )
ab (r) term cannot be

neglected, and, therefore, the HNC approximation is inappropriate. This is
true in particular for aqueous mixtures which exhibit micro-segregation. In
order to account for such local order, one must guess a functional form for
the b

(LF )
ab (r) term, while the b

(RF )
ab (r) term can be neglected in a first approx-

imation. We postulate that b
(LF )
ab (r) must have generic functional forms, and

can be modeled properly if such forms are known. With this idea in mind,
the new form of the HNC approximation can be rewritten as

gab(r) = exp (−βṽab(r) + hab(r)− cab(r)) (8)

where
βṽab(r) = βvab(r)− b(LF )

ab (r) (9)

represents the effective interaction which accounts for the local order. One
justification for this rewriting is the success of some core-soft models, for
which we consider that the second outer core is in fact a representation
of −b(LF )

ab (r). Another class of models which justify the rewriting concerns
the so-called SALR 1-component models[2, 3, 4, 5] (SALR stands for short
range attraction, long range repulsion), where the long range repulsion part

accounts for the −b(LF )
ab (r) and which helps stabilize the local clustering in

these models.

2.2 From effective interactions to the b(LF )(r) bridge
function

In this part, we propose to determine the b
(LF )
ab (r) term by using pseudo-

potentials instead of the original interactions which produce the micro-segregation
and the relevant complex disorder. In order to do that, we first observe that
complex disorder is invariably produced by strong orientational interactions,
and more particularly hydrogen bonding interactions for the cases we are
concerned with. In the classical force field approach, hydrogen bonding is
described through Coulomb pairing interactions and partial charges za on
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selected atomic sites a, such as oxygen, hydrogen and nitrogen atoms, for ex-
ample. Typical classical force field used in computer simulation of molecular
liquids are of the form:

vab(r) = v
(LJ)
ab (r) + v

(C)
ab (r) (10)

where v(LJ)(r) = 4εab
[
(σab/r)

12 − (σab/r)
6
]

is the standard (12-6) Lennard-

Jones pair interaction, and v
(C)
ab (r) = zazbe

2/r is the Coulomb pair interac-
tion.

From the statistical theory of liquids, it is well known that the pair di-
rect correlation functions is related to the pair interaction vab(r) at large
separations, through the exact relation[3]:

lim
r→∞

cab(r) = −βvab(r) (11)

This relation is used to handle numerically the long range part of the Coulomb
interaction v

(C)
ab (r) in a convenient way[22], by separating out the short range

part c
(SR)
ab (r) of cab(r) from a long range part which is handled analytically

through an error function[22]:

cab(r) = c
(SR)
ab (r)− Aab

erf(αabr)

r
(12)

where Aab = −zazbβe2 (where zi is the valence of atom i and e is the ele-
mentary charge), and αab is chosen such that it is smaller than the particle
diameter σab. This latter point is very important since it means that, for dis-
tances larger than αab , r > αab, the error function part of cab(r) in Eq.(12)

exactly cancels the corresponding Coulomb interaction v
(C)
ab (r) in the clo-

sure relation Eq.(1). This implies that the closure equation can be exactly
rewritten as:

gab(r) = exp
(
−βv(LJ)ab (r) + hab(r)− c(SR)

ab (r) + bab(r)
)

(13)

where only the short range interactions remain. While this might be a useful
trick[22], the closure in Eq.(13) is rigorously equivalent to Eq.(1) for distances
outside particles overlap such that gab(r) 6= 0. Eq.(13) is very interesting in
our case because it allows to understand the role played by the bridge term
bab(r). Indeed, if we consider a system interacting solely through LJ type
interactions, then Eq.(13) indicates that, whatever the features attesting the
existence of micro-segregation in the pair correlation functions gab(r), hab(r)

and c
(SR)
ab (r), these features can arise only through the term bab(r), which now

plays the role of an supplementary pseudo potential. If we remove this term,
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then we are back to simple disordered LJ liquids where no micro-segregation
or clustering can appear. Eq.(13) is the formal proof that one could consider
pair distribution functions gab(r) taken from a micro-segregated system and
find bab(r) which will produce the same pair correlations for the effective

interaction ṽab(r) = v
(LJ)
ab (r)− bab(r)/kBT , now defined in terms of the non-

Coulomb part of the pair interaction. Conversely, if the appropriate bab(r)
are injected as pseudo-interactions in an ordinary LJ mixture, it will turn it
into a micro-segregating mixture, with the same pair distribution functions
gab(r). In this perspective, Eq.(13) now becomes a strict HNC closure, which
can be solved in conjunction with the Ornstein-Zernike (OZ) equation[3] for
the pseudo-system. Obviously, the corresponding direct correlation cab(r)
will differ from the solution of the original system, since it does not obey the
same OZ equation which involves the full Coulomb interactions.

We can use the above equivalence to our advantage to extract the b
(LF )
ab (r)

term which we seek. We can use toy interactions which produce clustering
and micro-segregation in a model mixture, which produces pair distribution
functions gab(r) similar to those found in realistic mixtures, and we can solve
HNC for such models and see how well we reproduce the desired features in
gab(r). The pseudo potential is supposed to contain a standard repulsion-

attraction part v
(0)
ab (r), which handles the core and the dispersive parts of

the interactions, and a supplementary part v
(S)
ab (r) which accounts for the

complexity (clustering, micro-segregation):

ṽab(r) = v0
ab(r) + v

(S)
ab (r) (14)

The results above suggest that bab(r) = −βv(S)ab (r) is the bridge term we seek.
In practice however, the HNC solution for the pseudo-system may not ex-
actly match that of the simulated pseudo-system, because of the bridge term
related to the pseudo-system itself. The key assumption of this paper is that
the most appropriate analytical form of pseudo-potential v

(S)
ab (r) would match

the local fluctuation part of the bridge function b
(LF )
ab (r) introduced in Eq.(5),

even though it may not match the full bridge function. The differences be-
tween the gab(r) obtained from HNC and the real model system would then

be attributable to either incorrect modeling of the pseudo-potential v
(S)
ab (r),

or to the physical importance of the random fluctuation part of the bridge
function b

(RF )
ab (r) in Eqs.(5,6). This can be tested only through trial and

error, as shown in the Results section.
We can now reformulate the expression for the bridge function we seek

as:

b
(LF )
ab (r) = −βv(S)ab (r) (15)

8



which, together with Eq.(14) is the principal result of this paper.
Summarising our strategy, instead of considering the full model, which

creates a specific form of local order, we mimic such system by projecting
the many-body −b(LF )

ab (r) term into the effective interaction. This way, using
the HNC approximation in Eq.(8), we freeze the local ordering by imposing
it directly into the pair interactions, and expect that we can neglect the
contributions of the random fluctuations by setting b

(RF )
ab (r) = 0 . It is

important to realise that, when adopting this attitude, the usual control
parameters such as the temperature and the density do not have the same
meaning. Indeed, the effective interaction term −b(LF )

ab (r) is supposed to
depend on such parameters, and change when these are varied. Instead,
one should adapt newer forms of the full effective interaction ṽab(r) to the
expected local order which depends on different temperatures and densities.

2.3 Structure factors

We monitor the desired forms of order by looking at their manifestations in
the pair correlation functions gab(r) as well as in the corresponding structure
factors Sab(k)

Sab(k) = δab + ρ
√
xaxb

ˆ
d~r [gab(r)− 1] (16)

We emphasize that, at this stage of the exploration, it is not essential to com-
pute thermo-physical properties, nor to expect that these would agree well
with the expected values (as obtained from computed from simulations, for
example). Indeed, these would still depend on the magnitude of the neglected

b
(RF )
ab (r) terms. For these reasons, we will focus solely on comparing gab(r)

and Sab(k) with the corresponding values computed through the computer
simulations. Furthermore, in order to appreciate the relation between local
order and b

(LF )
ab (r), we will try as much as possible to minimize the b

(RF )
ab (r).

In other words, we wish to model ṽab(r) in such a way that the HNC approx-
imation is quasi-exact for the corresponding model system. In this way, we
expect to find universal forms of the bridge functions with account for the
micro-segregation in more realistic models. Indeed, it is important to note
that the present formulation considers atomic sites, but does not specify if
these belong to molecules or not. For example, in the site-site formulation of
molecular liquids[34], the closure relation Eq.(1) does not contain any refer-
ence to the molecular nature. It is only at the level of the Ornstein-Zernike
(OZ) equation that the molecular shape is introduced, for example through
the W-matrix in the site-site OZ equation[34, 1]. From this point of view,
the present formulation is perfectly general, and should be able to describe
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molecular liquids as well, and in particular associating hydrogen bonding
liquids.

In addition to the structure factors in Eq.(16), which represent species-
species density correlations Sab(k) =< ρa;kρb;−k >, where ρc;k is the Fourier
transform of the instantaneous microscopic density of species c, we monitor
the so-called Bathia-Thornton (BT) structure factors[6] which represent the
correlations between total microscopic density ρN ;k = ρ1;k +ρ2;kand “concen-
tration” density ρC;k = x2ρ1;k − x1ρ2;k. The resulting BT structure factors
are related to the previous structure factors, the most interesting relations
being:

SNN(k) =
1

2
[S11(k) + S22(k)] + S12(k) (17)

SCC(k) = x22S11(k) + x21S22(k)− 2x1x2S12(k) (18)

These structure factors are helpful in the way they allow the interpret k-
dependent fluctuations in terms of global density variables instead of species
related variables, hence reflecting the global heterogeneity of the system.
SNN(k) is the equivalent of an effective 1-component structure factor for
the mixture, while SCC(k) reflects the relative heterogeneity between the 2
components. This way, the BT representation allows to separate the homo-
geneous and heterogeneous components from the Sab(k) structure factors.

2.4 Models of the effective interactions

As stated in the Introduction, micro-heterogeneity in realistic systems is
produced principally through Coulomb interactions, which tend to create a
strong local order, which necessitates explicit contributions from high order
correlations. In this work, we do not wish to address directly the problem by
explicitly taking into account Coulomb interactions. Yet, we would like to
capture the corresponding local heterogeneity. To be more precise, we would
like to capture the specific heterogeneity which cannot be addressed by HNC
in the realistic case. The central idea is to consider that the realistic sys-
tem itself introduces the specific many-body correlations, in addition to the
realistic interactions that creates the micro-heterogeneity. This is somewhat
similar to going from the atomic representation of a molecule to the molecu-
lar representation as an aggregate of atoms. The specific bridge term b(LF )(r)
are considered here to play the role of an “intra-aggregate” interaction. This
way, we intend to reduce the initial problem to that of considering only this
reduced interaction.
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In order to model such pseudo-interactions, we rely on previous inves-
tigations, such as the SALR interactions mentioned previously, which are
known to produce micro-segregation effects. In addition, we search for other
similar forms, but with the idea in mind that HNC should be sufficient to
describe the system, in other words b(RF )(r) ≈ 0. This way, we can com-
pare the results of HNC with those of computer simulations of systems with
substituted interactions, in place of the realistic ones. The task of testing
the forms of the b

(LF )
ab (r) for different types of realistic interactions showing

micro-segregation, is relegated to subsequent investigations.
The SALR one-component model, mentioned above, consists of the usual

short range repulsion and a long range attraction, both of which ensuring
a condensed liquid phase, followed by a weak long range repulsion, which
controls the formation of local aggregation in restricted parts of the phase
diagram. Such types of models have been intensely investigated in the past[2,
3, 4, 5]. The standard SALR model contains 2 exponential in order to model
the short range attraction and the long range repulsion, and has the same
form as Eq(14):

ṽ(r) = v0(r)− ε1σ
exp [−(r − σ)/κ1]

r
+ ε2σ

exp [−(r − σ)/κ2]

r
(19)

where v0(r) is a bare interaction terms, which takes into account the parti-
cle core and any dispersive interaction. This could be a Lennard-Jones (LJ)
interaction, or a soft sphere 1/r12 interaction. In the remaining two other
contributions, all the εα parameters are positive and have the dimension of
an energy, and σ is the diameter of the particle. The first Yukawa interaction
helps aggregate particles, while the second Yukawa helps segregate the aggre-
gates formed by the first. Unfortunately, the one-component model neglects
the crucial role of the solvent in the auto-organisation process which enforces
the aggregation of the solute. For example, this is one of the essential feature
behind the hydrophobic effect[25] .

In the present work, we propose to extend this model to a 2 component
system, which consists in of both mono-atomic solvent, labeled 1, and a
solute, labelled 2, interacting through the usual short range repulsion. We
will consider only models where both the solvent and the solute have the
same size with a common diameter σ11 = σ22 = σ. The cross diameter
σ12was initially left free, as to consider non-additivity, but the final retained
choice was also σ12 = σ. Tests for σ22 > σ11 did not alter the main conclusion
of this work as far as the working hypothesis behind Eq.(5) is concerned,
and will be reported elsewhere. The key feature is in the cross-interaction
modeling. The interactions are as follows
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ṽ11(r) = ṽ22(r) = v0(r) (20)

ṽ12(r) = v
(0)
12 (r) + v

(rep)
12 (r) + v

(att)
12 (r) (21)

The cross-species interaction ṽ12(r) contains, in addition to the v
(0)
12 (r) term,

two additional contribution, the first v
(rep)
12 (r) which repel particles of differ-

ent species, hence leading to macroscopic demixion, and the second v
(att)
12 (r)

which controls this demixing tendency, leading to micro-segregation. This
is very different from the SALR model, since it is exactly the opposite ten-
dency. We propose to call this new model SRLA, by analogy with SALR. An
alternate model to SRLA would have been to implement the SALR mecha-
nism for the solvent and the solute separately, leaving the cross interaction
neutral. However, this would require more adjustable parameters, with no
clear justification as how one would choose to control the relative balance
between repulsion and attraction for each of the components. The SRLA
model is the minimal model for the purpose defined herein.

The desired bridge function b
(LF )
12 (r) is then given by Eq.(15):

b
(LF )
12 (r) = −βv(rep)

12 (r)− βv(att)
12 (r) (22)

while the like-bridge terms are set to zero: b
(LF )
11 = b

(LF )
22 = 0, since in the

present formulation, the micro-segregation is supported only by the cross
interactions.

2.5 Integral equation theory

This theory consists in solving the Ornstein-Zernike and a closure equation,
for which we use here the HNC closure of Eq.(8), in order to solve for the pair
correlation functions gab(r) and the associated direct correlation functions
cab(r) are used to study these binary mixtures. For a mixture with n number
of components, the OZ equation can be written and a n×n functional matrix
equation:

SM = I (23)

with Sab = Sab(k) as defined by Eq.(16) and Mab defined as

Mab(k) = δab − ρ
√
xaxbc̃ab(k) (24)

where c̃ab(k) is the Fourier transforms direct correlation functions cab(r).
In our case we consider binary mixtures with n = 2. hence we solve for

the functions g11(r), g12(r) and g22(r), where 1 designates the first component
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(the solvent) and 2 the second component (the solute). In the usual practice,
these functions are discretized over an array of 2048 points, with a distance
step of δr = 0.02σ. This allows to use fast Fourier transformation techniques
to obtain the structure factors. We use a standard iterative technique to
obtain the solutions of the 2 equations.

2.6 Computer simulations

We have used an in-house Monte Carlo code to perform Canonical ensemble
simulations, with constant NVT. All simulations were made for an equimo-
lar mixture of N=4000 particles. For each system, 50000 equilibration moves
were initially done starting from a random mixture, and followed by 50000
sampling runs for statistical properties. This last step corresponds, in the
usual formulation, to 200 millions Monte Carlo statistics per state points.
The pair correlation functions obtained from such statistics are smooth enough
to be directly compared with the corresponding quantities obtained from the
IET techniques described above. We emphasize that the gab(r) obtained in
these simulations require a shift of their asymptote to the expected value
1, since it is now well known[7, 8] that finite size effects irremediably affect
these asymptotes by a shift factor εab/N , where N is the number of par-
ticle in the box and εab is related to the concentration fluctuations within
the box. We obtain the shifting factor empirically by enforcing the running
integral Gab(r) = 4π

´ r
0
u2du

[
g
(s)
ab (u)− 1

]
to reach a flat asymptote, where

g
(s)
ab (r) = gab(r)/(1 − εab/N) is the function corrected for the shift. Even

though the functions obtained in this work tend to oscillate at long range due
to domain correlations, the quantities Gab(r) usually tend to curve downward
(for like correlations) or upward (for unlike correlation). This is corrected
empirically through the factor εab adjusted to straighten these asymptotes.
For the type of models studied herein, in several cases, the shift was found
to be negligibly small, and in such cases the procedure was ignored.

3 Results

The most important feature we would like to reproduce is the micro-segregation
of the solvent and the solute, and the consequences of such micro-segregation
on the structural properties, which are i) out-of-phase long range domain os-
cillations between like correlations g11(r), g22(r) and cross correlations g12(r),
ii ) subsequent domain pre-peaks in the structure factors Sab(k), which are
positive for S11(k) and S22(k) and negative for S12(k). These latter signs
are direct mathematical consequence of the fact that cross interaction leads
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to depletion of species of opposite type, hence small short range correlations
for g12(r) around the contact region. We wish to emphasize that correla-
tion functions and structure factors of micro-structured systems have these
features which are absent from the same quantities in simple liquids and
mixtures. These features are essentially due to many body correlations, and
approximate IET are not able to reproduce them, precisely because they lack
contributions from such correlations.

Since the hypothesis behind Eq.(5) is to separate “frozen” many body
correlations from random ones, it is important to appreciate the relative
balance between these 2 terms. The guiding factor behind our investigation
is the known fact, stated in the Introduction, that HNC is less accurate
for core-softened models with an attractive part than with purely repulsive
ones. The rationale behind this finding is that the second core tends to
order particles around the central one by depleting their numbers, and the
attractive component in the interaction tends to counter this depletion effect,
leading to increase the probability of finding more particles around the central
one, hence increasing the number of possibilities. Translated in terms of
Eq.(5), the influence of attractive interactions is to increase the importance

of b
(RF )
ab (r), when we would prefer to reduce it, in order to appreciate the

importance of b
(LF )
ab (r).

In the next first two subsections we study previous categories of models,
such as the SALR model or the non-additive model, both of which have been
used to model micro-segregation. We demonstrate that none of these models
allows to satisfactorily satisfy the hypothesis behind this work; namely to
allows to fully neglect the random fluctuations contributions from many body
correlations.

3.1 Unsuccessful model: the Y-SRLA

A first natural idea was to follow the SALR pathway and use Yukawa inter-

actions for v
(rep)
12 (r) and v

(att)
12 (r) in Eq.(21) The resulting model we named

Y-SRLA (with the Y for Yukawa), leading to

v0(r) = v
(0)
12 (r) = 4ε0

(
σ

r

)12

(25)

v
(rep)
12 (r) = ε1σ

exp [−(r − σ)/κ1]

r
(26)

v
(att)
12 (r) = −ε2σ

exp [−(r − σ)/κ2]

r
(27)
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It turned out that this model could not produce satisfactory domain segre-
gation, such as to produce wide oscillatory domain correlations in the long
range. In addition the agreement between theory and simulation was quite
weak, and specially more so when we tried to increase the domain correla-
tions. The reason for this problem can be tracked to an important feature
of this Yukawa interaction, which lead us to a change in strategy. The prob-
lem is the existence of the range parameters κi, which in fact introduce an
additional length scale into the problem, in addition to the slow exponential
decay. It turns out that what seems required for domain oscillation is a not
a range+decay, but a localisation of the interaction. We found this out by
substituting a Gaussian to the second exponential. We believe that this is
an important information concerning the nature of the frozen many body
correlations. They cannot be properly modeled by screened Coulomb inter-
actions which do not localize the particles very well. In particular, it would
seem that the second attractive interaction requires to be localized such as a
Gaussian.

3.2 Unsuccessful model: the non-additive SRLA

With the failure of the previous model, we turned our attention to non-
additive interactions (hence the name NA-SRLA). However, since non-additivity
is more toy model than one suited to describe realistic systems, we have
tested models where is is the cross interaction dispersive interaction range
which controls the long range re-mixing. In this context, the non-additivity

is brought by the short range repulsion ṽ
(rep)
12 (r). The interaction considered

in this section are of the form:

v0(r) = 4ε0

[(
σ

r

)12

− λ0
(
σ

r

)6
]

(28)

and the generic form for the cross interaction becomes:

ṽ12(r) = 4ε12

[(
σ12
r

)12

− λ
(
σ12
r

)6
]

+ ε2 exp
[
−(r − α1)

2/κ21
]

(29)

With this form, the extension of the repulsive part covers both first terms in
Eq.(21)

Fig.1(a-b) shows one such typical trial for the following parameters,ε0 = 1,
λ0 = 1, ε12 = 2.8, λ = 1, ε1 = 40, α1 = 0.75, κ1 = 0.2582, and for state
parameters temperature T = 1 and packing fraction η = (π/6)ρ = 0.4. The
pair interactions shown in the inset of Fig.1a shows how the repulsive part

15



of the cross interaction installs a pseudo non-additivity, while at the same
time allowing for a long range attraction through the depth controlled by the
large value of ε12.

In this figure, we can see that the domain oscillations do not develop very
well, although the corresponding positive and negative pre-peaks at kσ1 ≈ 2
are quite apparent in Fig.1b. In addition, the agreement with simulation re-
mains qualitative, much like the one found for the Y-SRLA model mentioned
in the previous section. The BT structure factors shown in the lower inset of
Fig.1b indicate that the SNN(k) looks very much as a 1-component structure
factor of ordinary LJ liquid, while the SCC(k) shows a prominent pre-peak
corresponding to those of S11(k) and S22(k), hence witness the clustering
induced heterogeneity in the system, as expected from the input pair inter-
action. This inset provides a direct illustrated of the separation, mentioned
in Section 2.1, of the homogeneous and heterogeneous components of the
Sab(k) structure factors, into SNN(k) and SCC(k),respectively. It also shows
that while the former is well reproduced by HNC, it is quite inaccurate in
the latter, as shown by the larger pre-peak HNC predicts.

In a second example in Fig.2(a-b), we considered purely repulsive first
term, in order to get rid of the fluctuations associated to the short range
attraction in the like interaction part, with the expectation to get a better
agreement between simulations and IET. Fig.2(a-b) illustrate the results with
parameters ε0 = 1, λ0 = 0, ε12 = 1, λ = 1, ε1 = 4, α1 = 0.85, κ1 = 0.4663, and
for state parameters temperature T = 1 and packing fraction η = (π/6)ρ =
0.4

One important draw back of this model is that it was impossible to get
into the regime where the k = 0 values where large, with smaller pre-peaks,
that were in good agreement with simulations. This is crucial to describe
near-demixing situations, where the cross LJ attraction is too small com-
pared to the short range repulsion which guides the demixing. It would seem
that, when we neared such conditions, the differences between the (exact)
simulation results and the theory started to differ. This situation reminds
what happens in simple liquids near demixing transitions, where the contri-
bution of fluctuations do not allow the theory to work well. We traced back
this situation to the fact of keeping a LJ interaction for the first part, a form
which is remisniscent of the simple liquids, for which the theory is not so
good. The upper inset of Fig.2b, as well as the BT structure factors in the
lower inset show that HNC overestimates the heterogeneity in the SCC(k)
pre-peak as compared with simulations.

From the perspective of the conjecture formulated herein, the form of
the pseudo-potential proposed in Eq.(29) seems to leave a rather large part
of the many body correlation description into the b(R)(r) part mentioned
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in Eq.(5), as witnessed by the inappropriate reproduction of the pre-peak
feature. Hence, it makes this form not suitable for proper modeling of the
heterogeneity bridge function.

3.3 Successful model: the G-SRLA

In the final form, we settled for using Gaussian for both terms v
(rep)
12 (r) and

v
(att)
12 (r), which turned out to be the correct choice. It confirms the hints

provided in sub-section 3.1, where the localisation seems to be the keyword.
The exact forms of the interactions used for this study are:

v11(r) = v22(r) = 4ε0

(
σ12
r

)12

(30)

ṽ12(r) = 4ε12

(
σ

r

)12

+ ε1 exp
[
−(r − α1)

2/κ21
]
− ε2 exp

[
−(r − α2)

2/κ22
]

(31)

with generic parameters ε0 = ε12 = 1, and for state parameter temperature
T = 3 and packing fraction η = (π/6)ρ = 0.4. The parameters of the first
Gaussian have been fixed at ε1 = 0.5, α1 = 1.5, κ1 = 0.41, and for the second
Gaussian, we fixed the parameters α2 = 3, κ2 = 0.41 and varies the depth ε2
of the attraction to describe various cases. It is this depth which controls the
segregation. In the following figures, we illustrate how this form allows to
describe the 3 typical situations, ranging from near demixing to full domain
segregation, particularly visible in the shape of the structure factors in the
small-k region.

Fig.3(a-b) show the near demixing, with large k = 0 values for the struc-
ture factors. Demixing is enhanced when ε2 = 0, since there are only repulsive
cross interactions. We start with a small ε2 parameter, namely ε2 = 0.015, in
order to see how much it helps re-entrant mixing. It is seen that this is yet
not similar to the usual demixing in simple liquids, since the cross term is
negative. It is seen that, although the agreement between the calculated and
simulated correlations are in close agreement in the short to medium range
part, there is a small difference in the long range part, which leads to struc-
ture factors that differ quite strongly near k = 0. This is probably due to the
hidden influence of the random fluctuation part b(RF )(r), which we totally
neglect in the HNC theory. This disagreement reveals that we cannot expect
the HNC theory to describe properly systems close to true phase transitions,
for the lack of knowing how critical fluctuations influence correlations. Nev-
ertheless, the agreement is much better than in the 2 previous cases. The BT
structure factors in Fig.3b show that the small-k raise is not due to critical
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fluctuation, in which case it would appear in SNN(k),but to the heterogeneity,
since it appears in SCC(k). This is an interesting demonstration that large
heterogeneity can be mistaken for critical concentration fluctuation, and that
the BT transformation can help figure out such cases. On the other hand, it
is clear that, when ε2 → 0 in Eq.(31) then true critical demixing will occur
because of the purely repulsive cross interactions. Hence, Fig.3(a-b) appears
as a show case for many realistic aqueous mixtures, such as water-acetonitrile
for example, which show both considerable heterogeneity and demixing-like
behaviour[9, 10].

Fig.4(a-b) shows an intermediate case, for the parameter ε2 = 0.030,
which corresponds to increasing the depth of the attractive interaction with
respect to the previous case in Fig.3. This is a very interesting case from
physical point of view, since it concerns a system which hesitates between
demixing and micro-segregation. This is usually called a Lifshitz point[11],
and our model is capable of describing this physical situation in excellent
agreement with simulations. The Lifshitz point appears in many circum-
stances in the context of micro-emulsions, where there is a triple coexistence
between two homogeneous and a layered phase[5, 11]. But, in the present
case, it describes the turning point between segregated phase and a micro-
segregated phase. Such phase was found in a realistic mixture of water and
diols in a previous study.

Fig.5(a-b) illustrates the case with full micro-segregation and domain
ordering. It corresponds to the parameter ε2 = 0.12. We note the quasi
perfect agreement between HNC and simulations both in the correlation and
structure factors, particularly for the BT ones.

Finally, Fig.6(a-b) described a case where we vary the Gaussian width pa-
rameter in order to increase the region of micro-segregation. It corresponds
to parameters ε2 = 0.025 but we also modify κ2 = 4.47. This particular ex-
ample shows very clearly how domain oscillations appear in conjunction with
a growth of the pre-peaks in the structure factors witnessing domain-domain
correlations. These features look very similar to those we have reported in
several types of aqueous mixtures[30, 31]. Similar results are equally obtained
when ε2 is kept fixed while varying κ2. This shows that the model is very
flexible, in terms both height and width of the second Gaussian, and more
importantly allows to control the extinction of the second bridge term bRFab (r),
thus making HNC an exact relation in terms of the effective interaction.

From the results above, we propose that the cross bridge term for real
clustering and micro-segregated system may be efficiently modeled as a sum
of two Gaussians:
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b
(LF )
12 (r) = −βε1 exp

[
−(r − α1)

2/κ21
]

+ βε2 exp
[
−(r − α2)

2/κ22
]

(32)

The application of the above expression for realistic systems remains to
be tested for various cases. We expect that the insertion of the above expres-
sion in the pair correlation function between the principal hydrogen bonding
atoms of different species will to take into account the main feature of the
micro-segregation, and allow HNC to be finally solve for such systems.

4 Discussion

In order to formulate the existence of the separation in Eq.(5) we have im-
plicitly accepted the existence of domain correlations in complex liquids,
in particular aqueous mixtures , and more importantly that such domains
emerge a new form of interaction, which can be captured through the bridge
terms b(LF )(r), the lack of which will not permit to find numerical solution
with the HNC IET . Insights into such correlations are obtained from our
own previous investigations into these systems. Long range domain oscilla-
tions were observed from computer simulations of aqueous-1propanol[31] and
also ethanol-benzene mixtures[8]. These oscillations simply reflect the local
segregation into nano-domains of each species.

In view of the fact that previous models such as SALR models have
been designed to mimic aggregates in pseudo-one component systems, our
approach provides a link between the domain segregation observed in com-
plex mixtures and the models such as SALR models. In Section 2.2 we have
demonstrated that such effective models which capture the complexity of
the disorder (clustering, self-segregation, and others), are in fact formulating
explicit expressions for the many body correlation bridge terms, in partic-
ular those related to local fluctuations b

(LF )
ab (r). In section 3, we have used

this property of effective models to provide explicit expressions for the cross
species bridge term b

(LF )
12 (r).

The study provided in Section 3.3 clearly indicates that the k = 0 raise
in the structure factor cannot be solely attributed to random fluctuations
such as those appearing near spinodal lines or critical points. This is a very
important point, and a hint to this problem has been previously provided in
the study of such system in the two-dimensional cases[12].

The previous point does not exclude the fact that the k = 0 raise observed
for simple liquids in the vicinity of mechanical instability remains of point
delicate to investigate through the IET methodology. This means that sys-
tems which tend to organise locally and which are submitted to large random
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fluctuations, will not be well described by the methodology employed here.
Indeed, in both such cases, the form of the b

(RF )
ab (r) is important, and this

term cannot obviously be neglected. We have no clue as to how to address
situation where random fluctuations are important part of the physics of the
system, and this remains an important subject for investigations in the IET
methodology.

The separation of the many body correlations into contributions from
frozen fluctuations and those random fluctuations should generally allow to
reproduce the correlations complex soft-matter systems. For example, micro-
emulsions, with the formation of micelles is a first target for extending IET
techniques into soft matter liquids.

5 Conclusion

The results shown herein demonstrate that one could extend the HNC IET
in a reliable way deep into the strongly micro-heterogeneous mixtures. This
is accomplished by taking into account specific correlations which produce
this micro-heterogeneity directly into the pair-interaction. In this work, we
have explicitly designed simplified systems, which incorporate directly into
the pair interactions the features which produce the micro-heterogeneity,
which is why we could solve the IET for such systems. The search for such
simplified models indicate that taking into account the fluctuations which
produce the heterogeneity gives important insights into the nature of the
underlying many body correlations. The division into frozen and fluctuating
contribution, allows to both test the accuracy of the HNC closure, and also
appreciate the role of fluctuations in this closure. The extension of this
methodology to realistic mixtures is the next step. Although the approach
remains empirical, we expect that some general schemes would emerge, in
particular for mixtures involving hydrogen bonding molecules. While the
principal challenge remains to capture the frozen fluctuations which produce
the micro-heterogeneity, the role of the random fluctuations would assess
the reliability of the IET and the HNC approximation. Our expectation
is that, far from phase transition, this methodology should produce good
results since random part of fluctuations are supposed to be small. In any
case, this approach will certainly help to appreciate the relative importance
of both these types of many body correlations.
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Figure captions

Fig.1 Pair correlation functions (a) and corresponding structure factors
(b) for the model NA-SRLA, for parameters ε0 = 1, λ0 = 1,
ε12 = 2.8, λ = 1, ε1 = 40, α1 = 0.75, κ1 = 0.2582, and for a
temperature of T = 1 and packing fraction η = 0.4. HNC results
in full lines (blue for 11 component pair and dark green for 12)
and simulation in dashed (cyan for 11 component pair and green
for 12). The inset in (a) represents the effective pair interactions
with full lines for 11 (blue) and 12 (red) and the details for 12
are shown in dotted lines( LJ part in magenta and Gaussian part
in cyan). The inset in (b) represents the BT structure factors
(HNC results for SNN(k) and SCC(k) in full blue and dark green
lines, respectively, simulations results in dashed cyan and green
lines, respectively)

Fig.2 Same as Fig.1, but the repulsive interaction for 11 components
and for parameters ε0 = 1, λ0 = 0, ε12 = 1, λ = 1, ε1 = 4,
α1 = 0.85, κ1 = 0.4663 and same state parameters as in Fig.1.
(upper inset in (b) is a zoom on the pre-peak area).

Fig.3 Pair correlation functions (a) and corresponding structure factors
(b) for the model G-SRLA, for parameters ε0 = ε12 = 1, ε1 = 0.5,
α1 = 1.5, κ1 = 0.41,α2 = 3, κ2 = 0.41. The lines and color codes
are as in Fig.1

Fig.4 Pair correlation functions (a) and corresponding structure factors
(b) for the model G-SRLA, for the same interaction parameters
as in Fig.3, except for ε2 = 0.030. The lines and color codes are
as in Fig.1

Fig.5 Pair correlation functions (a) and corresponding structure factors
(b) for the model G-SRLA, for the same interaction parameters
as in Fig.3, except for ε2 = 0.12. The lines and color codes are as
in Fig.1

Fig.6 Pair correlation functions (a) and corresponding structure factors
(b) for the model G-SRLA, for for the same interaction parame-
ters as in Fig.3, except for ε2 = 0.025 and κ2 = 4.47. The lines
and color codes are as in Fig.1. (upper inset in (b) is a zoom on
the pre-peak area).
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Fig.1 - Pair correlation functions (a) and corresponding structure factors

(b) for the model NA-SRLA, for parameters ε0 = 1, λ0 = 1, ε12 = 2.8, λ = 1,
ε1 = 40, α1 = 0.75, κ1 = 0.2582, and for a temperature of T = 1 and packing
fraction η = 0.4. HNC results in full lines (blue for 11 component pair and
dark green for 12) and simulation in dashed (cyan for 11 component pair
and green for 12). The inset in (a) represents the effective pair interactions
with full lines for 11 (blue) and 12 (red) and the details for 12 are shown in
dotted lines( LJ part in magenta and Gaussian part in cyan). The inset in
(b) represents the BT structure factors (HNC results for SNN(k) and SCC(k)
in full blue and dark green lines, respectively, simulations results in dashed
cyan and green lines, respectively)

.

25



.

.
Fig.2 - Same as Fig.1, but the repulsive interaction for 11 components

and for parameters ε0 = 1, λ0 = 0, ε12 = 1, λ = 1, ε1 = 4, α1 = 0.85,
κ1 = 0.4663 and same state parameters as in Fig.1. (upper inset in (b) is a
zoom on the pre-peak area)

.
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Fig.3 - Pair correlation functions (a) and corresponding structure factors

(b) for the model G-SRLA, for parameters ε0 = ε12 = 1, ε1 = 0.5, α1 = 1.5,
κ1 = 0.41,α2 = 3, κ2 = 0.41. The lines and color codes are as in Fig.1

.
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Fig.4 - Pair correlation functions (a) and corresponding structure factors

(b) for the model G-SRLA, for the same interaction parameters as in Fig.3,
except for ε2 = 0.030. The lines and color codes are as in Fig.1

.
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Fig.5 - Pair correlation functions (a) and corresponding structure factors

(b) for the model G-SRLA, for the same interaction parameters as in Fig.3,
except for ε2 = 0.12. The lines and color codes are as in Fig.1

.
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Fig.6 - Pair correlation functions (a) and corresponding structure factors

(b) for the model G-SRLA, for for the(upper inset in (b) is a zoom on the
pre-peak area) same interaction parameters as in Fig.3, except for ε2 = 0.025
and κ2 = 4.47. The lines and color codes are as in Fig.1.

.
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