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In this work, we present a numerical model to deal with the fracture of damaged materials within the framework of the finite fracture mechanics (FFM). Continuum damage mechanics combined with the regularization techniques is first applied to determine the damage field. The transition from continuous damage field to discontinuous crack occurs when the coupled criterion (CC) is fulfilled. Special numerical algorithms were developed in crack path tracking and crack creation for the analysis of the entire failure process from damage development to crack creation.

Both initiation and growth of one or multiple cracks can reasonably be simulated and efficiency and accuracy of the approach are illustrated through several numerical examples.

INTRODUCTION

Failure of quasi-brittle materials is characterized by the development of both diffused damage and macro-cracks. The final fracture in these materials is often preceded by the development of a process zone in which deformations localize, diffused damage such as microcracks or micro-cavities arises and accumulates. Fracture mechanics and continuum damage mechanics are the conventional tools used to tackle this class of problems although linear elastic fracture mechanics is not capable to describe the damage-induced nonlinear behavior of quasibrittle materials. The most popular approach to remedy this shortcoming is to introduce the process zone concept into fracture mechanics analyses by using cohesive zone models [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Xu | Numerical Simulation of Fast Crack Growth in Brittle Solids[END_REF]. However, these models cannot adequately capture diffuse degradation. Unlike the fracture mechanics approaches, another approach is based on continuum damage mechanics analyses, which can reasonably represent diffuse degradation (Lemaitre and Chaboche,1990) but it deteriorates in the final stage of failure due to spurious damage growth as the models are unable to represent discrete failure surfaces [START_REF] Needleman | Finite element analysis of localization in plasticity[END_REF].

In quasi-brittle materials, and even in some brittle materials like ceramics, diffused damage before final fracture can be observed and cannot be neglected (Yousef et al., 2006). In this case, macro-cracks initiate and propagate in weakly damaged materials [START_REF] Zimmermann | Damage evolution during microcracking of brittle Solids[END_REF].

But neither pure fracture mechanics nor pure continuum damage mechanics is appropriate to describe correctly the entire failure process.

It is clear that the ideal approach is to combine the two descriptions to achieve a better characterization of failure as suggested in [START_REF] Janson | Fracture mechanics and damage mechanics-a combined approach[END_REF]. To this end, efforts were made by coupling continuum damage to discontinuous models [START_REF] Simone | From continuous to discontinuous failure in a gradient-enhanced continuum damage model[END_REF][START_REF] Comi | An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation[END_REF][START_REF] Cazes | A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model[END_REF]. In general, it is assumed that when the damage parameter exceeds a predefined critical value, a traction-free crack or a cohesive crack is introduced in order to describe the final stages of failure. In most of these analyses, only crack growth problems were considered, while the crack initiation in damaged media has not been well assessed so far.

Recently, the coupled criterion (CC) was proposed as a finite fracture mechanics (FFM) approach to fulfil the need in fracture prediction of brittle materials. In studying the crack onset from the root of a sharp V-notch, [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF] noticed that application of a single conventional fracture criterion, namely the Griffith energy criterion or the stress criterion, is not suitable and often leads to paradoxical predictions. It was concluded that when fracture occurs, both criteria have to be fulfilled simultaneously, even if one often predominates over the other.

Application of this coupled criterion to crack onset predictions at a V-notch root shows remarkably satisfactory agreements with respect to experimental results. Afterward, the CC gets increasing popularity in fracture prediction of brittle or quasi-brittle materials. A large number of cases were studied by using this criterion [START_REF] Nguyen | Bond failure of a SiC/SiC brazed assembly[END_REF]Mantic, 2009;[START_REF] Martin | A twofold strength and toughness criterion for the onset of free-edge shear delamination in angle-ply laminates[END_REF][START_REF] Leguillon | Determination of the length of a short crack at a v-notch from a full field measurement[END_REF][START_REF] Leguillon | Crack onset at a V-notch. Influence of the notch tip radius[END_REF]Tran et al., 2012 among others).

The CC was further implemented into a finite element numerical model for simulating bidimensional cracking process in brittle materials (Li and Leguillon, 2018). Special numerical approaches were developed in drawing correctly the potential crack paths and to minimize the potential energy with respect to all predicted crack paths. This numerical model permits to consider more complex fracture problems in engineering applications (Li et al. 2018).

It is desirable to extend the CC to cracking prediction of damageable materials. Leguillon and Yosibash (2018) proposed such a coupling between the CC and a damage law but for a damage law exclusively dedicated to a V-notch root modeling. In the present work, we will present a numerical scheme allowing applications of the CC to general 2D damage-fracture analyses. In this numerical scheme, continuous damage field is first evaluated by using the continuum damage mechanics theory enhanced by nonlocal regularization models. Then discontinuous cracks are created in damaged material according to the CC. This numerical scheme was implemented into a finite element code. A special algorithm was developed to simulate the crack nucleation and propagation. By carrying out numerical simulations on some well-studied structures, we illustrate the parameter identification of the damage-fracture model and the energy decomposition during the damage-fracture process. The ability and accuracy of the proposed model are also studied. It is shown that through the introduction of the CC in a nonlocal damage model, a more complete and realistic description of the entire failure process, from diffuse micro-cracking to macroscopic cracks, can be achieved.

MODEL DESCRIPTION

The failure of a quasi-brittle material is assumed to undergo damage before cracking. In general, damage and strain are localized in the most loaded area of the solid. Along the loci of the damage/strain concentration, cracks may appear and grow, leading to failure. Our main objective is to simulate numerically the entire damage-cracking process by using the CC.

Damage evolution laws

Among the numerous damage laws, the exponential law proposed by [START_REF] Mazars | Continuum damage theory--application to concrete[END_REF] is widely applied to concretes. In this damage law, the damage scalar is defined as a function of the effective strain level:
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where α and β are two parameters of the model, ε0 is the threshold for damage initiation and dc is the maximal damage value before cracking. The equivalent strain εe in Eq. ( 1) can be expressed through the modified von Mises definition (Vree et al., 1995):
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where ν is the Poisson ratio; k is the ratio of the tensile and compressive strength; I1 and J2 are the first invariant of the strain tensor and the second invariant of the deviatoric part of the strain tensor:
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where ε1, ε2 and ε3 are the first, second and third principal stresses respectively. In practice, the nonlocal concept is often used in order to guarantee the mesh-independence of the damage model and to regularize the singularity-induced spurious damage localization. The damage driving quantity in this model, namely the nonlocal equivalent strain ε e , can be calculated by using either the integral or the differential approaches. The integral approach calculates a weighted average of the equivalent strain (Pijaudier-Cabot and Bazant, 1997):
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where ( )

x y -ϕ is a weighting function which describes the non-local interaction.

Mathematically, the normalization condition

( ) 1 V y dy = ∫ ϕ
is required. Hereafter we adopt the following weighting function in 2  :
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where l is the length scale parameter and 2l represents the radius of the nonlocal influence area. The differential approach consists in resolving a modified Helmholtz equation with the equivalent strain εe as the source term [START_REF] Peerlings | A critical comparison of non-local and gradient-enhanced softing continua[END_REF]: (7) complete the coupled system of equations. It was shown that these two approaches are mathematically equivalent [START_REF] Peerlings | A critical comparison of non-local and gradient-enhanced softing continua[END_REF]. The selection of one or the other approach depends on the type of the problem to be solved. Generally speaking, the differential approach is suitable for homogeneous materials. When the material embeds several phases, the integral approach is more appropriate as the nonlocal equivalent strain can easily be evaluated separately in each phase.
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Once the nonlocal equivalent strain field is obtained, the damage field can be evaluated by substituting εe by ε e in Eq. (1).

The constitutive equation is simply written as:

(

) [START_REF] Geers | Strain-based transient-gradient damage model for failure analyses[END_REF]) may be more suitable for brittle materials in which cracking occurs in weak damage conditions:
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In this damage law, ε0 is the threshold for damage initiation and 1 ε represents the value of e ε for which damage reaches its limit value. The parameters of the model α and β influence the slope and the shape of the softening curve, respectively. In practice, the equivalent strain e ε should be replaced by its nonlocal counter-part ε e in order to guarantee the mesh-independence of the damage model.

The coupled criterion for damaged materials

Within a plane elasticity framework, [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF] states that a new crack is created if and only if both the stress and energy conditions are verified, i.e., the stress criterion is satisfied at all points along the presupposed crack path, and the energy balance is fulfilled with the corresponding crack path. These two conditions form the so-called coupled criterion (CC). It was widely presented in the literature (see the review paper by [START_REF] Weissgraeber | A review of Finite Fracture Mechanics: Crack initiation at singular and non-singular stress-raisers[END_REF], thus hereafter we very briefly recall the bases and highlight the changes to bring when damage develops prior to cracking.

Consider the initial state of a loaded solid just before cracking and the final state of the same solid after the creation of a new crack or the growth of an existing one. The incremental energy balance between these two states writes:
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where f, u and ε represent the external force, the displacement field and the strain field respectively. depends not only on the strain state but also on the damage state of the solid.

The energy consumed by the crack growth leads to the definition of the critical fracture energy rate, as follows: ( ) where σ e and c σ are respectively the nominal driving stress and the ultimate stress for a undamaged material. Solving the two inequalities makes it possible to determine ΔS and then the failure load.
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For damaged materials, this stress criterion cannot be directly applied due to the stress softening. In this case, the nominal stress has to be replaced by its effective value ( )
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This implies that the damage, which softens the material behavior, also reduces its tensile strength in the same proportion. Under these conditions, the "local" (or "damaged") Irwin length becomes:
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where E, Gc, σc and lIrwin are data of the sound material and d is the damage parameter. For a pure mode-I crack, the Irwin length lIrwin represents the distance between the crack tip and the point where the circumferential tensile stress is σc. According to the CC, the crack jump length is proportional to the Irwin length, therefore the crack jump is likely to be longer in the damaged area than in the sound material. However, caution should be taken in this statement because the damage field d is not uniform in the solid.

Moreover, this stress-based criterion can equivalently be replaced by the strain-based criterion, namely:
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where d ε and c ε are respectively the driving strain and its critical value at fracture. For example, if the first principal stress is taken as the driving stress in brittle or quasi-brittle materials, the stress criterion ( 16) in damageable isotropic material becomes, in a 3D setting:
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Therefore, the strain criterion (18) is applicable by taking ( )
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Thus the strain-based fracture criterion (18) can directly be applied.

One of the main advantages of the CC is its ability to predict both the crack initiation and crack growth. Its numerical implementation is easy by adopting efficient crack path tracking technics.

According to the above analyses, the energy decomposition during the crack creation can easily be performed by using the following formulas: Total strain energy:
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Increment of the fracture energy:
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Damage energy :
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In Eq. ( 25), the total fracture energy crack U and the total kinetic energy kinetic U can be calculated by accumulation according to ( 24) and ( 14), respectively.

Crack tracking

The coupled criterion cannot be correctly applied without knowledge on the crack path. In Li and Leguillon (2018), a crack tracking method has been proposed for 2D linear elastic solids.

Hereafter we just summarize briefly this technique, its detailed description can be found in the original paper.

The crack path is assumed to be perpendicular to the maximal principal stress. The crack tracking procedure is divided into 2 steps.

The first step is to find all the zones in which the driving strain d ε is larger than its critical value by using a so-called watershed flooding technique, whose description was given in Li and Leguillon (2018). Such zones contain a local maximum of d ε from which a potential crack can be created.

The second step consists in finding the actual crack path among all potential crack paths in each zone where d c ≥ ε ε . Here we assume that the newly created crack is perpendicular to the first principal stress. This criterion permits to draw a principal stress trajectory from each local maximum of d ε . Simultaneously, the length of the crack path is calculated.

In order to determine which potential crack path becomes a real crack, we active successively all the potential cracks (index i) paths and calculate their incremental energy release

rate inc i G . If the maximum of inc i G fulfills the Griffith criterion max inc i c
G G ≥ , a real crack will be created accordingly.

For the creation of new cracks, different approaches exist in the finite element method.

Herein the element elimination technique [START_REF] Li | A non-local approach to crack process modeling in ceramic materials subjected to thermal shock[END_REF] is used for the sake of simplicity. We find all elements in interception with the predicted crack paths, and then remove them from the finite element model. According to the theoretical and numerical studies of [START_REF] Pandolfi | An eigenerosion approach to brittle fracture[END_REF], this element erosion method converges to the Griffith fracture with infinitesimal mesh sizes and does not exhibit spurious mesh dependencies.

The coupled criterion for damaged materials together with the crack tracking method were implemented into a dedicated finite element code in order to perform bi-dimensional simulations.

Overall algorithm

The external loads are applied incrementally by imposing displacements on the boundaries Determine the crack path, evaluate the crack length increment ∆li ;

6. Activate this crack, equilibrate nonlinear field and calculate Πi;

7. Calculate ( )

0 inc i i i G l = -Π -Π ∆ ; 8.
Deactivate this crack;

9. end for 10. Find ( )

max max inc inc i G G = ; 11. if max inc c G G ≥ then
12. Create the corresponding crack, go to 2; 13. else 14. go to 1;

end if

Note that the above-described algorithm assumes that the damage evolution and the crack creation are sequential events in numerical simulations. Equilibrium has to be achieved after damage increment and crack creation in each loading step. Therefore, numerical implementation of the CC is independent of choice of the damage law and can always be applied if convergence can be attained in damage calculation.

MODEL CALIBRATION AND NUMERICAL EXAMPLES

In the following, the CC based damage-fracture model is applied to resolve some fracture problems in brittle or quasi-brittle materials. The simulation results are compared to well-known solutions in order to verify the performance of the proposed model. In the following, the 3-node triangle elements are used.

crack propagation in a PMMA plate

PMMA is generally considered as a brittle material. Therefore, the damage evolution is often neglected in its fracture modeling. However, Ravi-Chandar and Yang (1997) showed that diffused damage can develop in the form of micro-cracks ahead the main crack tip. Therefore, introducing the damage phenomenon in the crack growth modeling may physically be more realistic.

In numerical simulations, Eq. ( 9) is selected as the damage evolution law. The values of the elasticity constants are Young's modulus E = 3000 MPa and Poisson's ratio ν = 0.28. By fitting the constitutive law (Eqs. 8-9 in 1D) with the stress-strain curve of previous tensile tests [START_REF] Li | A criterion study for non-singular stress concentrations in brittle or quasibrittle materials[END_REF] The differential non-local model ( 6) is used to evaluate the non-local effective strain with the length scale parameter l = 0.01 mm and we evaluate the critical remote loads for crack growth with an initial central crack of different sizes, namely a/W = 0, 0.03, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4 and 0.5, here a = 0 corresponds to the plate without crack. In order to investigate the influence of the mesh size, different element sizes near the crack tip and along the crack path are used in the simulations, d = 0.003, 0.005 and 0.01mm, where d is the average edge length of the triangular elements. A uniaxial tension along the normal direction to the crack was applied at the ends of the plate prescribing incrementally increasing displacements. The remote load at fracture is defined as the peak value of the load-displacement curve.

The predicted critical remote stress ∞ σ at crack propagation is now used to calculate the stress intensity factor K with the help of the handbook of stress intensity factors [START_REF] Sih | Handbook of stress-intensity factors[END_REF]. By From this figure, we can observe that for sufficiently long cracks (a/W > 0.05), the normalized stress intensity factor 1 apparent c K K ≈ . Therefore, the stress intensity factors at fracture evaluated using the CC equal correctly the measured material toughness. This simulation also

shows that the calibration of such a damage-fracture model is feasible even though it is more complicated than that for a pure fracture model or a pure damage model.

We can also remark that the proposed model is weakly mesh-sensitive when sufficiently refined meshes are used. The element size with d = 0.01mm represents quite a coarse mesh, the numerical calculations with this mesh density induce errors smaller than 10% on As expected, a thin damage band is created around the crack path. We can also remark that the damage distribution obtained with a quite coarse mesh, even though less regular, is close to that obtained with a refined mesh.

In order to analyze the energy consumed during the crack growth, we plot the evolution of the different dissipated energies as a function of crack extension in Figure 4. This figure shows that, under displacement controlled loading, the total strain energy attains a critical value when the crack begins to grow, then increases as the crack go on growing and finally remains unchanged regardless of the crack growth. The elastic strain energy decreases while the total energy dissipation increases as the crack grows. The latter is the sum of the energies consumed in new crack creation, in diffused damage and in waves propagation (kinetic energy kinetic U , see Eq.10) respectively. Pracically, as it is difficult to separate the energies dissipated by damage and by crack growth in a mechanical test, the critical energy release rate is experimentally measured by means of their sum according to ( )
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The energy decomposition method used in the present work can help to identify the true energy release rate dedicated exclusively to the crack formation.

Figure 5 illustrates the variation of the apparent energy release rate as function of the crack propagation. We observe a globally increasing trend of apparent c G as crack grows. This trend was largely reported in the literature and named as the R-curve effect [START_REF] Heyer | Crack growth resistance curves (R-curves)-literature review, in Fracture toughness evaluation by R-curve methods[END_REF]. According to the present results, the increase of the apparent energy release rate is essentially due to the increase of the diffused damage area ahead the crack tip, as shown in Figure 3.

Figure 3 brings into evidence the intermittent mechanism governing the crack growth. It can be explained as follows: (i) in a first step damage develops near the crack tip where there is a strong stress concentration, (ii) in a second step, according to the CC, the crack jumps a given length, (iii) and then it grows toward a less damaged zone with higher Young's modulus (Eqn.

(8)) and tensile strength (Eqn. ( 16)). Then, again damage develops at the new crack tip and so on.

It seems that this mechanism tends to reach a steady state as can be observed in Figure 3 on the right.

This damage-cracking sequence was supported by previous experiments [START_REF] Ravi-Chandar | On the mechanics and mechanisms of crack growth in polymeric materials[END_REF][START_REF] Ravi-Chandar | On the role of microcracks in the dynamic fracture of brittle materials[END_REF]. Their clearly showed that in some amorphous materials such as the PMMA, crack propagation occurs by a mechanism of nucleation, growth and coalescence of microcracks. The microcracks are first formed ahead of the main crack, then their number and size increase and they finally coalesce with the main crack. This damagecracking process results in a periodic morphology of the crack surface, especially for a fast- The CC can be used also for crack initiation prediction. To illustrate this capacity, we consider a rectangular PMMA plate subjected to a uniaxial tensile loading. In order to ensure that the fracture occurs in the central part of the plate, its width is slightly reduced in the middle, as shown in Figure 6. The same mechanical parameters have been used as in the previous example.

In Figure 7, we plot the comparison of the remote stress-strain curves issued from numerical simulations and experimental results reported in [START_REF] Li | A criterion study for non-singular stress concentrations in brittle or quasibrittle materials[END_REF]. The non-linear behavior of PMMA is approached by the emergence and development of damage in the material. The remote stress at fracture found from the simulation is slightly smaller than that of the mechanical test due to the slight geometrical reduction in the middle in order to trigger a stress concentration. Figure 6 shows the crack path and the damage distribution throughout the plate. A similar mechanism of intermittency (Section 3.1) seems to develop in this case but with different features. Damage develops first, more or less homogeneously as can be seen on Figure 6a, the necking being small enough to avoid strong stress concentrations. As a consequence, prior to any crack appearance the material is already damaged with d ≈ 0.4, then, according to (17), the Irwin length is larger and the crack jump at onset is larger as well. The crack nucleates in the middle of the left edge where there is still a small stress concentration. As previously described, the crack grows toward a less damaged zone where Young's modulus and tensile strength are larger and then stops.

Following, damage increases at the crack tip before a new crack jump. Comparing Figures 3 and6, it is clear that the pseudo-periodicity of the intermittency is far larger in the second case due to the uniformly damaged material prior to the appearance of a crack. Note that the color scales differ on the left and right part of Figure 6 in order to highlight the nearly homogeneous damage distribution prior to the crack onset.

It is also necessary to note that the inertial effects are not taken into account in the present analysis, even though the fracture process is very rapid [START_REF] Li | A criterion study for non-singular stress concentrations in brittle or quasibrittle materials[END_REF]. 

Crack initiation and growth in concrete beams

It is commonly admitted that concrete is a quasi-brittle material. Very high level damage can be reached before crack creation or crack growth. Therefore, neglecting the diffused damage in fracture process or neglecting the cracking in damage evolution will both lead to unphysical description of the concrete failure. The CC combined with damage modeling permits to remove this shortcoming.

In order to illustrate the capacity of the present model in dealing with the fracture behavior of concrete structures, we simulated some experimental results reported in the literature (Kozlowski et al., 2015). Foamed concrete beams with notches were tested under 3-point bending.

Geometry and loading conditions are illustrated in Figure 8. Four different concrete mixtures resulting in varying densities were used in the experiments (Kozlowski et al., 2015). In numerical simulations, the damage evolution law Eq. ( 1), together with the nonlocal scheme Eq. ( 6) was used. The mechanical parameters used are listed in Table 1. The principal mechanical characteristics, namely ε0 and Gc were estimated according to the data provided by Kozlowski et al. (2015). Here we fixed ν = 0.2, α = 1, εc = 5ε0 , dc = 1, k =10 and l = 2 mm. The others parameters, namely E and β, were adjusted according to the experimental load-deflection curves.

Table 1.Material parameters for foamed concretes

The comparison between the simulated and measured global load-deflection responses are plotted in Figure 9. These curves show that the present damage-fracture model describes well the quasi-brittle fracture behavior of the different foamed concrete beams. In Figure 12, we present the damage zones obtained by using these two models in beam A.

As expected, the damage develops along the middle ligament of the beam. Nevertheless a real crack is created in the damage-fracture model with a smaller damage zone and lower damage level compared to the pure damage model. It is clear that the failure description of the damagefracture model avoids any over estimation of the damaged zone. The present numerical approach permits to handle initiation and growth of several cracks and especially the cracking process in heterogeneous media. In fact, all the possible new crack loci are examined by applying the CC and the best combination of them that makes the total potential energy minimal is selected as the next crack extensions. In the following, we illustrate this feature by considering a composite plate made of three phases: matrix, inclusions and interphase. The dimension of the composite plate is 50 × 50 mm². The circular inclusions are randomly distributed in the plate and their diameter is varying from 4 to 10 mm. The interphase between matrix and inclusion is represented by a thin layer of material with a thickness of 0.3 mm. The inclusions are assumed to be undamageable and unbreakable. The volume ratio of the inclusion+interphase is 55%. Eq. ( 1) is used as the damage evolution law for matrix and interphase. The non-local effective strains are calculated in each phase separately. It is therefore more convenient to apply the integral non-local approach, i.e. Eq. ( 4). The mechanical properties of the constituents are listed in Table 2.

Table 2. Material parameters for composite plate with inclusions

We simulate the damage and cracking process of the heterogeneous plate under uniaxial tension. Figure 15 shows the global strain-stress response. Figure 16 presents the crack patterns at the load peak and at the final fracture stage. As the interphase between matrix and inclusions is the weakest part of the composite, multiple crack initiations occur first along the interphase. Then these cracks propagate in the matrix and coalesce to form predominant macro-cracks. This scenario describes faithfully the fracture mechanism in concrete or in some composites in which the interface exhibits a weaker mechanical resistance. literature. This numerical model presents several advantages, including the possibility of describing the entire damage-fracture process, predicting both crack initiation and crack growth and considering multi-cracking problems. The coupled criterion is conceptually simple and physically reasonable. This work shows that it can also be applied to fracture prediction of damaged materials. Its numerical implementation opens a new way to describe the cracking process in solids. We believe that many other complex problems in fracture evaluations can be treated by developing more operational numerical tools.
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  Figure1. It is worth mentioning that the viscosity of the material is not considered in this model and the only source of non-linearity is assumed to be the damage effect.
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