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ABSTRACT 
In this work, we present a numerical model to deal with the fracture of damaged materials 

within the framework of the finite fracture mechanics (FFM). Continuum damage mechanics 
combined with the regularization techniques is first applied to determine the damage field. The 
transition from continuous damage field to discontinuous crack occurs when the coupled criterion 
(CC) is fulfilled. Special numerical algorithms were developed in crack path tracking and crack 
creation for the analysis of the entire failure process from damage development to crack creation. 
Both initiation and growth of one or multiple cracks can reasonably be simulated and efficiency 
and accuracy of the approach are illustrated through several numerical examples. 

KEYWORDS: Finite Fracture Mechanics; Coupled criterion; Crack initiation and growth; Brittle or 
quasi-brittle materials; Fracture; Damage 

1. INTRODUCTION 

Failure of quasi-brittle materials is characterized by the development of both diffused 
damage and macro-cracks. The final fracture in these materials is often preceded by the 
development of a process zone in which deformations localize, diffused damage such as micro-
cracks or micro-cavities arises and accumulates. Fracture mechanics and continuum damage 
mechanics are the conventional tools used to tackle this class of problems although linear elastic 
fracture mechanics is not capable to describe the damage-induced nonlinear behavior of quasi-
brittle materials. The most popular approach to remedy this shortcoming is to introduce the 
process zone concept into fracture mechanics analyses by using cohesive zone models 
(Barenblatt, 1962; Dugdale, 1960; Xu and Needleman, 1994). However, these models cannot 
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adequately capture diffuse degradation. Unlike the fracture mechanics approaches, another 
approach is based on continuum damage mechanics analyses, which can reasonably represent 
diffuse degradation (Lemaitre and Chaboche,1990) but it deteriorates in the final stage of failure 
due to spurious damage growth as the models are unable to represent discrete failure surfaces 
(Needleman and Tvergaard, 1984).  

In quasi-brittle materials, and even in some brittle materials like ceramics, diffused damage 
before final fracture can be observed and cannot be neglected (Yousef et al., 2006). In this case, 
macro-cracks initiate and propagate in weakly damaged materials (Zimmermann et al., 2001). 
But neither pure fracture mechanics nor pure continuum damage mechanics is appropriate to 
describe correctly the entire failure process.    

It is clear that the ideal approach is to combine the two descriptions to achieve a better 
characterization of failure as suggested in Janson and Hult (1977). To this end, efforts were made 
by coupling continuum damage to discontinuous models (Simone et al., 2003; Comi et al., 2007; 
Cazes et al., 2009). In general, it is assumed that when the damage parameter exceeds a 
predefined critical value, a traction-free crack or a cohesive crack is introduced in order to 
describe the final stages of failure. In most of these analyses, only crack growth problems were 
considered, while the crack initiation in damaged media has not been well assessed so far.  

Recently, the coupled criterion (CC) was proposed as a finite fracture mechanics (FFM) 
approach to fulfil the need in fracture prediction of brittle materials. In studying the crack onset 
from the root of a sharp V-notch, Leguillon (2002) noticed that application of a single 
conventional fracture criterion, namely the Griffith energy criterion or the stress criterion, is not 
suitable and often leads to paradoxical predictions. It was concluded that when fracture occurs, 
both criteria have to be fulfilled simultaneously, even if one often predominates over the other. 
Application of this coupled criterion to crack onset predictions at a V-notch root shows 
remarkably satisfactory agreements with respect to experimental results. Afterward, the CC gets 
increasing popularity in fracture prediction of brittle or quasi-brittle materials. A large number of 
cases were studied by using this criterion (Nguyen et al. 2012; Mantic, 2009; Martin et al. 2010; 
Leguillon, 2011; Leguillon and Yosibash, 2003; Tran et al., 2012 among others).  

The CC was further implemented into a finite element numerical model for simulating bi-
dimensional cracking process in brittle materials (Li and Leguillon, 2018). Special numerical 
approaches were developed in drawing correctly the potential crack paths and to minimize the 
potential energy with respect to all predicted crack paths. This numerical model permits to 
consider more complex fracture problems in engineering applications (Li et al. 2018). 

It is desirable to extend the CC to cracking prediction of damageable materials. Leguillon 
and Yosibash (2018) proposed such a coupling between the CC and a damage law but for a 
damage law exclusively dedicated to a V-notch root modeling. In the present work, we will 
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present a numerical scheme allowing applications of the CC to general 2D damage-fracture 
analyses. In this numerical scheme, continuous damage field is first evaluated by using the 
continuum damage mechanics theory enhanced by nonlocal regularization models. Then 
discontinuous cracks are created in damaged material according to the CC. This numerical 
scheme was implemented into a finite element code. A special algorithm was developed to 
simulate the crack nucleation and propagation. By carrying out numerical simulations on some 
well-studied structures, we illustrate the parameter identification of the damage-fracture model 
and the energy decomposition during the damage-fracture process. The ability and accuracy of 
the proposed model are also studied. It is shown that through the introduction of the CC in a 
nonlocal damage model, a more complete and realistic description of the entire failure process, 
from diffuse micro-cracking to macroscopic cracks, can be achieved.  

2. MODEL DESCRIPTION 

The failure of a quasi-brittle material is assumed to undergo damage before cracking. In 

general, damage and strain are localized in the most loaded area of the solid. Along the loci of the 

damage/strain concentration, cracks may appear and grow, leading to failure. Our main objective 

is to simulate numerically the entire damage-cracking process by using the CC.  

2.1. Damage evolution laws 

Among the numerous damage laws, the exponential law proposed by Mazars and Pijaudier-

Cabot (1989) is widely applied to concretes. In this damage law, the damage scalar is defined as a 

function of the effective strain level:  
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where α and β are two parameters of the model, ε0 is the threshold for damage initiation 

and dc is the maximal damage value before cracking. The equivalent strain εe in Eq. (1) can be 

expressed through the modified von Mises definition (Vree et al., 1995):  
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where ν  is the Poisson ratio; k is the ratio of the tensile  and compressive strength;  I1 and 

J2 are the first invariant of the strain tensor and the second invariant of the deviatoric part of the 

strain tensor: 
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where ε1, ε2 and ε3 are the first, second and third principal stresses respectively.  In practice, 

the nonlocal concept is often used in order to guarantee the mesh-independence of the damage 

model and to regularize the singularity-induced spurious damage localization. The damage 

driving quantity in this model, namely the nonlocal equivalent strain εe , can be calculated by 

using either the integral or the differential approaches. The integral approach calculates a 

weighted average of the equivalent strain (Pijaudier-Cabot and Bazant, 1997): 

( ) ( )e e
V

x y y dy= −∫ε ϕ ε
 (4) 

where ( )x y−ϕ  is a weighting function which describes the non-local interaction. 

Mathematically, the normalization condition ( ) 1
V

y dy =∫ϕ  is required. Hereafter we adopt the 

following weighting function in 2 :  
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where l is the length scale parameter and 2l represents the radius of the nonlocal influence 

area. The differential approach consists in resolving a modified Helmholtz equation with the 

equivalent strain εe as the source term (Peerlings  et al., 2001): 
2ε ε ε− ∆ =e e el  (6) 

which, together with the homogeneous natural boundary condition 

. 0ε∇ =e n  (7) 
complete the coupled system of equations.  It was shown that these two approaches are 

mathematically equivalent (Peerlings  et al., 2001). The selection of one or the other approach 

depends on the type of the problem to be solved. Generally speaking, the differential approach is 

suitable for homogeneous materials. When the material embeds several phases, the integral 
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approach is more appropriate as the nonlocal equivalent strain can easily be evaluated separately 

in each phase.  

Once the nonlocal equivalent strain field is obtained, the damage field can be evaluated by 

substituting εe by εe in Eq. (1).   

The constitutive equation is simply written as: 

( )1 := − dσ D ε  (8) 
Another damage law (Geers et al. 1998) may be more suitable for brittle materials in which 

cracking occurs in weak damage conditions: 
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In this damage law, ε0 is the threshold for damage initiation and 1ε  represents the value of 

eε  for which damage reaches its limit value. The parameters of the model α and β influence the 

slope and the shape of the softening curve, respectively. In practice, the equivalent strain eε  

should be replaced by its nonlocal counter-part εe in order to guarantee the mesh-independence of 

the damage model. 

2.2. The coupled criterion for damaged materials 

Within a plane elasticity framework, Leguillon (2002) states that a new crack is created if 

and only if both the stress and energy conditions are verified, i.e., the stress criterion is satisfied 

at all points along the presupposed crack path, and the energy balance is fulfilled with the 

corresponding crack path. These two conditions form the so-called coupled criterion (CC). It was 

widely presented in the literature (see the review paper by Weissgraeber et al., 2016), thus 

hereafter we very briefly recall the bases and highlight the changes to bring when damage 

develops prior to cracking.  

Consider the initial state of a loaded solid just before cracking and the final state of the 

same solid after the creation of a new crack or the growth of an existing one. The incremental 

energy balance between these two states writes: 

( ) ( ) ( ), , , 0∆ + ∆ + ∆ ∆ + ∆ =ext strain crack c kineticU U d U S G Uf u ε  (10) 
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where f, u and ε represent the external force, the displacement field and the strain field 

respectively. extU∆  and strainU∆  are the incremental potential energy of external force and the 

incremental strain energy of the solid. crackU∆ is the incremental energy consumed by the crack 

growth.  kineticU∆  includes the other energy dissipated during the cracking process, essentially the 

kinetic energy. ∆S  is the surface of the crack increment. It is clear that strainU∆  depends not only 

on the strain state but also on the damage state of the solid.  

The energy consumed by the crack growth leads to the definition of the critical fracture 

energy rate, as follows: 

crack
c

UG
S

∆
=

∆  (11) 
By defining the incremental energy release rate incG as follows 

inc ext strainU UG
S S

∆ + ∆ ∆Π
= − = −

∆ ∆  (12) 
where ext strainU U∆ + ∆ = ∆Π  is the variation of the total potential energy. The energy 

condition states that the crack creation occurs when 
inc

cG G≥   (13) 
In general, the kinetic and other dissipated energy is not nil. Its variation can be calculated 

according to equations (10-12): 

( )inc
kinetic cU G G S∆ = − ∆  (14) 

This energy criterion is not sufficient since it depends on the newly created surface S∆  (up 

to now unknown). In order to remedy this shortcoming, the CC suggests to add the stress 

condition. The general form of the stress criterion writes: 

σ σ≥e c   all over the surface ΔS prior to fracture (15) 
where σ e  and cσ  are respectively the nominal driving stress and the ultimate stress for a 

undamaged material. Solving the two inequalities makes it possible to determine ΔS and then the 

failure load. 

For damaged materials, this stress criterion cannot be directly applied due to the stress 

softening. In this case, the nominal stress has to be replaced by its effective value ( )1e d−σ . In 

these conditions Eqn. (15) can be rewritten: 

 e c(1 )dσ σ≥ −   (16) 
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This implies that the damage, which softens the material behavior, also reduces its tensile 

strength in the same proportion. Under these conditions, the “local” (or “damaged”) Irwin length 

becomes: 

 

local c Irwin
Irwin 2

c(1 ) 1
EG ll

d dσ
= =

− −  (17)  
where E, Gc, σc and lIrwin are data of the sound material and d is the damage parameter. For a pure 

mode-I crack, the Irwin length lIrwin represents the distance between the crack tip and the point 

where the circumferential tensile stress is σc. According to the CC, the crack jump length is 

proportional to the Irwin length, therefore the crack jump is likely to be longer in the damaged 

area than in the sound material. However, caution should be taken in this statement because the 

damage field d is not uniform in the solid. 

Moreover, this stress-based criterion can equivalently be replaced by the strain-based 

criterion, namely: 

d c≤ε ε  (18) 
where dε  and cε  are respectively the driving strain and its critical value at fracture. For 

example, if the first principal stress is taken as the driving stress in brittle or quasi-brittle 

materials, the stress criterion (16) in damageable isotropic material becomes, in a 3D setting: 
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Therefore, the strain criterion (18) is applicable by taking 

( )1 2 32
1

1d = + +  −
ε ε ν ε ε

ν
 (20) 

Thus the strain-based fracture criterion (18) can directly be applied. 

One of the main advantages of the CC is its ability to predict both the crack initiation and 

crack growth. Its numerical implementation is easy by adopting efficient crack path tracking 

technics. 

According to the above analyses, the energy decomposition during the crack creation can 

easily be performed by using the following formulas:   

Total strain energy: ( )0
:strainU d d

Ω
= Ω∫ ∫

ε
σ ε  (21) 

Elastic strain energy: 1
2elasticU d

Ω
= Ω∫ σ : ε  (22) 
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Total dissipated energy: dissip strain elasticU U U= −  (23) 

Increment of the fracture energy: crack cU G S∆ = ∆  (24) 

Damage energy : damage dissip crack kineticU U U U= − −  (25) 

In Eq. (25), the total fracture energy crackU  and the total kinetic energy kineticU can be 

calculated by accumulation according to (24) and (14), respectively. 

2.3. Crack tracking 

The coupled criterion cannot be correctly applied without knowledge on the crack path. In 

Li and Leguillon (2018), a crack tracking method has been proposed for 2D linear elastic solids. 

Hereafter we just summarize briefly this technique, its detailed description can be found in the 

original paper.  

The crack path is assumed to be perpendicular to the maximal principal stress. The crack 

tracking procedure is divided into 2 steps.  

The first step is to find all the zones in which the driving strain dε  is larger than its critical 

value by using a so-called watershed flooding technique, whose description was given in Li and 

Leguillon (2018). Such zones contain a local maximum of dε  from which a potential crack can 

be created.  

The second step consists in finding the actual crack path among all potential crack paths in 

each zone where d c≥ε ε . Here we assume that the newly created crack is perpendicular to the 

first principal stress. This criterion permits to draw a principal stress trajectory from each local 

maximum of dε . Simultaneously, the length of the crack path is calculated. 

In order to determine which potential crack path becomes a real crack, we active 

successively all the potential cracks (index i) paths and calculate their incremental energy release 

rate inc
iG . If the maximum of inc

iG fulfills the Griffith criterion max inc
i cG G≥ ,  a real crack will be 

created accordingly.  

For the creation of new cracks, different approaches exist in the finite element method. 

Herein the element elimination technique (Li et al., 2015) is used for the sake of simplicity. We 

find all elements in interception with the predicted crack paths, and then remove them from the 

finite element model. According to the theoretical and numerical studies of Pandolfi and Ortiz 
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(2012), this element erosion method converges to the Griffith fracture with infinitesimal mesh 

sizes and does not exhibit spurious mesh dependencies. 

The coupled criterion for damaged materials together with the crack tracking method were 

implemented into a dedicated finite element code in order to perform bi-dimensional  simulations.  

2.4. Overall algorithm 

The external loads are applied incrementally by imposing displacements on the boundaries 

of the solid up to a prefixed level. A full Newton–Raphson procedure has been used to trace the 

response in the non-linear regime. Hereafter we describe briefly the global algorithm used in the 

finite element implementation of the damage-fracture model in the form of pseudo-code: 

Algorithm 

Require: Displacement, stress, strain and damage fields at time tn 

1. Set time to tn+1, update the external loads; 

2. Equilibrate nonlinear field of the damageable elastic solid and calculate  Π0; 

3. Find N zones in which d c≤ε ε ; 

4. for each zone i=1 to N do 

5.     Determine the crack path, evaluate the crack length increment ∆li ; 

6.     Activate this crack, equilibrate nonlinear field and calculate Πi; 

7.     Calculate  ( )0
inc
i i iG l= − Π − Π ∆ ; 

8.     Deactivate this crack;  

9. end for 

10. Find ( )max maxinc inc
iG G= ; 

11. if  max
inc

cG G≥ then 

12.     Create the corresponding crack, go to 2; 

13. else 

14.     go to 1; 

15. end if  

 

Note that the above-described algorithm assumes that the damage evolution and the crack 

creation are sequential events in numerical simulations. Equilibrium has to be achieved after 
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damage increment and crack creation in each loading step. Therefore, numerical implementation 

of the CC is independent of choice of the damage law and can always be applied if convergence 

can be attained in damage calculation.  

3. MODEL CALIBRATION AND NUMERICAL EXAMPLES 

In the following, the CC based damage-fracture model is applied to resolve some fracture 

problems in brittle or quasi-brittle materials. The simulation results are compared to well-known 

solutions in order to verify the performance of the proposed model. In the following, the 3-node 

triangle elements are used.  

3.1 crack propagation in a PMMA plate 

PMMA is generally considered as a brittle material. Therefore, the damage evolution is 

often neglected in its fracture modeling. However, Ravi-Chandar and Yang (1997) showed that 

diffused damage can develop in the form of micro-cracks ahead the main crack tip. Therefore, 

introducing the damage phenomenon in the crack growth modeling may physically be more 

realistic.  

In numerical simulations, Eq. (9) is selected as the damage evolution law. The values of the 

elasticity constants are Young’s modulus E = 3000 MPa and Poisson’s ratio ν = 0.28. By fitting 

the constitutive law (Eqs. 8-9 in 1D) with the stress-strain curve of previous tensile tests (Li and 

Zhang, 2006), we identify the material parameters: ε0=0.005; ε1=0.5; α =5; β =0.1; cd =0.9. The 

critical strain is set to 0.041c =ε , corresponding to an ultimate stress 73 MPacσ ≈ . The 

comparison between the theoretical stress-strain curve and the experimental data is shown in 

Figure 1. It is worth mentioning that the viscosity of the material is not considered in this model 

and the only source of non-linearity is assumed to be the damage effect. 
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Figure 1. Parameter identification by fitting the model to the experimental data (Li and 

Zhang, 2006). 

A PMMA plate of dimension 2H × 2W containing a central crack of length 2a is subjected 

to a mode-I tensile loading, H = 5 mm is the half height and W = 5 mm is the half width of the 

plate. The apparent critical energy release rate of PMMA is about apparent
cG  = 0.29 MPa mm (Li 

and Zhang, 2006). This energy dissipation value includes both the damage-induced dissipation 

and the fracture energy. Therefore, the critical energy release rate for the only crack growth 
crack
cG  should be smaller than this value. Using numerical results, the calibrated value is crack

cG  = 

0.13 MPa mm for the main crack propagation.  The difference between apparent
cG  and crack

cG results 

from the dissipation due to damage.  
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Figure 2. Plate with a central crack and the near tip mesh (half structure is presented due to the 

symmetry)                                                                      

The differential non-local model (6) is used to evaluate the non-local effective strain with 

the length scale parameter l = 0.01 mm and we evaluate the critical remote loads for crack growth 

with an initial central crack of different sizes, namely a/W = 0, 0.03, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 

0.4 and 0.5, here a = 0 corresponds to the plate without crack. In order to investigate the 

influence of the mesh size, different element sizes near the crack tip and along the crack path are 

used in the simulations, d = 0.003, 0.005 and 0.01mm, where d is the average edge length of the 

triangular elements. A uniaxial tension along the normal direction to the crack was applied at the 

ends of the plate prescribing incrementally increasing displacements. The remote load at fracture 

is defined as the peak value of the load-displacement curve. 

The predicted critical remote stress ∞σ  at crack propagation is now used to calculate the 

stress intensity factor K with the help of the handbook of stress intensity factors (Sih, 1973). By 

comparing the stress intensity factors to the critical value apparent apparent
c cK EG= , we can evaluate 

the accuracy of the method for crack growth prediction. The values of apparent
cK K at crack growth 

for different crack lengths are shown in Figure 2, where the ratios c
∞σ σ are also plotted.  
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From this figure, we can observe that for sufficiently long cracks (a/W > 0.05), the 

normalized stress intensity factor 1apparent
cK K ≈ . Therefore, the stress intensity factors at fracture 

evaluated using the CC equal correctly the measured material toughness. This simulation also 

shows that the calibration of such a damage-fracture model is feasible even though it is more 

complicated than that for a pure fracture model or a pure damage model. 

We can also remark that the proposed model is weakly mesh-sensitive when sufficiently 

refined meshes are used. The element size with d = 0.01mm represents quite a coarse mesh, the 

numerical calculations with this mesh density induce errors smaller than 10% on apparent
cK K . The 

calculations with finer meshes, e.g. d = 0.003mm and 0.005mm, provide very close values for 

remote loads at fracture. The predicted crack path should contain sufficient number of elements 

in order to guarantee a good accuracy on the stress and energy calculations.  In the present 

example, the results with d = 0.003mm are shown.  

  

 

 

Figure 2. Normalized stress intensity factor apparent
cK K and normalized remote stress cσ σ∞  at 

failure as a function of the normalized semi-crack length a/W for mode-I loaded cracks. 
 

Next, we consider the energy evolution during the propagation of a crack with a = 1 mm. 

Under displacement-imposed loading, the damage distributions of the early stage crack growth, 

calculated with two different mesh densities d=0.003mm and d=0.01mm, are shown in Figure 3. 
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As expected, a thin damage band is created around the crack path. We can also remark that the 

damage distribution obtained with a quite coarse mesh, even though less regular, is close to that 

obtained with a refined mesh.   

In order to analyze the energy consumed during the crack growth, we plot the evolution of 

the different dissipated energies as a function of crack extension in Figure 4. This figure shows 

that, under displacement controlled loading, the total strain energy attains a critical value when 

the crack begins to grow, then increases as the crack go on growing and finally remains 

unchanged regardless of the crack growth. The elastic strain energy decreases while the total 

energy dissipation increases as the crack grows. The latter is the sum of the energies consumed in 

new crack creation, in diffused damage and in waves propagation (kinetic energy kineticU , see 

Eq.10) respectively.  Pracically, as it is difficult to separate the energies dissipated by damage 

and by crack growth in a mechanical test, the critical energy release rate is experimentally 

measured by means of their sum according to ( )apparent
c damage crackG U U S= ∆ + ∆ ∆ . The energy 

decomposition method used in the present work can help to identify the true energy release rate 

dedicated exclusively to the crack formation.  

Figure 5 illustrates the variation of the apparent energy release rate as function of the crack 

propagation. We observe a globally increasing trend of apparent
cG as crack grows. This trend was 

largely reported in the literature and named as the R-curve effect (Heyer, 1973). According to the 

present results, the increase of the apparent energy release rate is essentially due to the increase of 

the diffused damage area ahead the crack tip, as shown in Figure 3.  

Figure 3 brings into evidence the intermittent mechanism governing the crack growth. It 

can be explained as follows: (i) in a first step damage develops near the crack tip where there is a 

strong stress concentration, (ii) in a second step, according to the CC, the crack jumps a given 

length, (iii) and then it grows toward a less damaged zone with higher Young’s modulus (Eqn. 

(8)) and tensile strength (Eqn. (16)). Then, again damage develops at the new crack tip and so on. 

It seems that this mechanism tends to reach a steady state as can be observed in Figure 3 on the 

right. 
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This damage-cracking sequence was supported by previous experiments (Ravi-Chandar and 

Balzano, 1988; Ravi-Chandar and Yang, 1997). Their clearly showed that in some amorphous 

materials such as the PMMA, crack propagation occurs by a mechanism of nucleation, growth 

and coalescence of microcracks. The microcracks are first formed ahead of the main crack, then 

their number and size increase and they finally coalesce with the main crack. This damage-

cracking process results in a periodic morphology of the crack surface, especially for a fast-

growing crack. As pointed in Ravi-Chandar and Yang (1997), the size of the fracture process 

zone increases as the stress intensity factor increases. This experimental observation agrees with 

the sequential damage-craking scenario shown here. 

 

(a) d=0.003mm   (b) d=0.01mm 

Figure 3. Damage distributions around the crack path obtained with two mesh sizes for a 

PMMA plate with a central crack subjected to traction 
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Figure 4. Energy decomposition during the crack growth  

 

Figure 5. Variation of apparent energy release rate as function of crack growth 

3.2: Crack initiation in a PMMA plate 

The CC can be used also for crack initiation prediction. To illustrate this capacity, we 

consider a rectangular PMMA plate subjected to a uniaxial tensile loading. In order to ensure that 

the fracture occurs in the central part of the plate, its width is slightly reduced in the middle, as 
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shown in Figure 6. The same mechanical parameters have been used as in the previous example. 

In Figure 7, we plot the comparison of the remote stress-strain curves issued from numerical 

simulations and experimental results reported in Li and Zhang (2006). The non-linear behavior of 

PMMA is approached by the emergence and development of damage in the material. The remote 

stress at fracture found from the simulation is slightly smaller than that of the mechanical test due 

to the slight geometrical reduction in the middle in order to trigger a stress concentration. Figure 

6 shows the crack path and the damage distribution throughout the plate. A similar mechanism of 

intermittency (Section 3.1) seems to develop in this case but with different features. Damage 

develops first, more or less homogeneously as can be seen on Figure 6a, the necking being small 

enough to avoid strong stress concentrations. As a consequence, prior to any crack appearance 

the material is already damaged with d ≈ 0.4, then, according to (17), the Irwin length is larger 

and the crack jump at onset is larger as well. The crack nucleates in the middle of the left edge 

where there is still a small stress concentration. As previously described, the crack grows toward 

a less damaged zone where Young’s modulus and tensile strength are larger and then stops. 

Following, damage increases at the crack tip before a new crack jump. Comparing Figures 3 and 

6, it is clear that the pseudo-periodicity of the intermittency is far larger in the second case due to 

the uniformly damaged material prior to the appearance of a crack. Note that the color scales 

differ on the left and right part of Figure 6 in order to highlight the nearly homogeneous damage 

distribution prior to the crack onset. 

It is also necessary to note that the inertial effects are not taken into account in the present 

analysis, even though the fracture process is very rapid (Li and Zhang, 2006).  
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Figure 6. (a) Damage distribution before cracking; (b) Damage distribution and crack path  

at final failure in the PMMA plate 
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Crack growths 



19 
 

 

Figure 7. Remote stress-strain curves issued from simulation and experiment 

3.3. Crack initiation and growth in concrete beams 

It is commonly admitted that concrete is a quasi-brittle material. Very high level damage 

can be reached before crack creation or crack growth.  Therefore, neglecting the diffused damage 

in fracture process or neglecting the cracking in damage evolution will both lead to unphysical 

description of the concrete failure. The CC combined with damage modeling permits to remove 

this shortcoming.  

In order to illustrate the capacity of the present model in dealing with the fracture behavior 

of concrete structures, we simulated some experimental results reported in the literature 

(Kozlowski et al., 2015). Foamed concrete beams with notches were tested under 3-point bending. 

Geometry and loading conditions are illustrated in Figure 8. Four different concrete mixtures 

resulting in varying densities were used in the experiments (Kozlowski et al., 2015). 

  

0

10

20

30

40

50

60

70

80

0 0.01 0.02 0.03 0.04 0.05

N
om

in
al

 st
re

ss
 (M

Pa
)

Strain

simulation

test



20 
 

 

 

 

 

 

 

Figure 8. Geometry and loads of a 3-point concrete beam 

In numerical simulations, the damage evolution law Eq. (1), together with the nonlocal 
scheme Eq. (6) was used. The mechanical parameters used are listed in Table 1. The principal 
mechanical characteristics, namely ε0 and Gc were estimated according to the data provided by 
Kozlowski et al. (2015). Here we fixed ν = 0.2, α = 1, εc = 5ε0 , dc = 1,  k =10 and l = 2 mm. The 
others parameters, namely E and β, were adjusted according to the experimental load-deflection 
curves. 

Table 1.Material parameters for foamed concretes 
         

 

The comparison between the simulated and measured global load-deflection responses are 

plotted in Figure 9. These curves show that the present damage-fracture model describes well the 

quasi-brittle fracture behavior of the different foamed concrete beams.  

 E(Mpa) ν α β ε0 εc Gc(MPa mm) dc k l(mm) 

Beam A 950 0.2 1 220 0.001 0.005 0.0060 1 10 2 
Beam B 600 0..2 1 380 0.00125 0.00625 0.0018 1 10 2 
Beam C 450 0.2 1 450 0.00123 0.00615 0.0009 1 10 2 
Beam D 270 0.2 1 600 0.00064 0.0032 0.0004 1 10 2 
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Figure 9. Comparison between simulation and experimental responses of 3-point loaded 

foamed beams 

Figure 10 illustrates the decomposition of the strain energy as a function of the deflection 

of beam A. This figure shows the evolution of the different parts of energy consumed during the 

damage-fracture process. It indicates especially the important amount of energy dissipated by the 

diffused damage, which is a noticeable feature of quasi-brittle materials.  Here again, the energy 

decomposition method can help to separate the fracture energy from the damage energy in 

experimental tests. 
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Figure 10. Energy decomposition as function of deflection (Beam A) 

In order to compare the present model with the pure damage model, we also carried out 

simulations by using the damage model alone for beam A. As pointed in Simone  et al. (2003),  

the damage laws used in the damage-fracture model is necessarily different from that used in the 

pure damage model and requires a re-assessment.  The parameters in the pure damage model are 

ε0 = 0.0001 and β = 280, the other parameters being identical to those used in the damage-

fracture model. In Figure 11, we display the load-deflection responses provided by the two 

models and compared with the experimental results. The comparison shows that both models are 

able to describe the global behavior of the beam. 

In Figure 12, we present the damage zones obtained by using these two models in beam A. 

As expected, the damage develops along the middle ligament of the beam. Nevertheless a real 

crack is created in the damage-fracture model with a smaller damage zone and lower damage 

level compared to the pure damage model. It is clear that the failure description of the damage-

fracture model avoids any over estimation of the damaged zone. 
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Figure 11. Load-deflection responses obtained by using the pure damage model and 

damage-fracture model compared with the experimental result 

     

(a)          (b) 

Figure 12. (a) Damage distribution and crack path in damage-fracture model, (b) damage 
distribution in pure damage model 

3.4. Crack path tracking 

In order to illustrate the ability of the proposed model in tracking the crack path, we 

consider a notched concrete beam under mixed mode loading, according to Galvez et al. (1998) 

tests. The geometry and loading conditions of one of these beams are displayed in Figure 13. 

Stable tests were achieved by applying load through a servo-controlled testing machine running 
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under CMOD (crack mouth opening displacement) control. The principal aim of numerical 

simulations on these experiments is to examine the crack path tracking ability of the present 

damage-fracture model by comparing the numerical and experimental results. The material 

parameters used in the simulations are (partially) given in [34], namely E = 38 GPa, ν = 0.2; εc = 

0.0000789, Gc = 0.02 MPa mm. Here the value of the critical energy release rate is smaller than 

the apparent value 𝐺𝐺𝑐𝑐
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= 0.069 MPa.mm given in Galvez et al. (1998), which includes the 

damage-dissipated energy. The other damage parameters used in Eq. 1 and Eq. 6 are: α = 0.92; β 

= 300; dc = 0.8, l = 2 mm.  

 

 

 

 

 

 

Figure 13. Geometry and boundary conditions of a mixed-mode-loaded beam 

In Figure 14, we compare the simulated crack path with the experimental records. The 

crack path obtained by using the classical maximal tensile stress (MTS) criterion of LEFM 

(Galvez, 1998) is also plotted for comparison. This figure shows that the crack path predicted by 

the current model agrees well with the experimental observation and gives even a better fit than 

the classical LEFM theory. 
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Figure 14. Crack paths obtained by using the damage-fracture model and the MTS criterion 

compared with the experiment records 

3.5. Multi-cracking simulation 

The present numerical approach permits to handle initiation and growth of several cracks 

and especially the cracking process in heterogeneous media. In fact, all the possible new crack 

loci are examined by applying the CC and the best combination of them that makes the total 

potential energy minimal is selected as the next crack extensions. In the following, we illustrate 

this feature by considering a composite plate made of three phases: matrix, inclusions and 

interphase. The dimension of the composite plate is 50 × 50 mm². The circular inclusions are 

randomly distributed in the plate and their diameter is varying from 4 to 10 mm. The interphase 

between matrix and inclusion is represented by a thin layer of material with a thickness of 0.3 

mm. The inclusions are assumed to be undamageable and unbreakable. The volume ratio of the 

inclusion+interphase is 55%.  Eq. (1) is used as the damage evolution law for matrix and 

interphase. The non-local effective strains are calculated in each phase separately. It is therefore 

more convenient to apply the integral non-local approach, i.e. Eq. (4). The mechanical properties 

of the constituents are listed in Table 2.  
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Table 2. Material parameters for composite plate with inclusions 

 

We simulate the damage and cracking process of the heterogeneous plate under uniaxial 

tension. Figure 15 shows the global strain-stress response. Figure 16 presents the crack patterns at 

the load peak and at the final fracture stage. As the interphase between matrix and inclusions is 

the weakest part of the composite, multiple crack initiations occur first along the interphase. Then 

these cracks propagate in the matrix and coalesce to form predominant macro-cracks. This 

scenario describes faithfully the fracture mechanism in concrete or in some composites in which 

the interface exhibits a weaker mechanical resistance.    

 

Figure 15. Simulated stress-strain response of a composite plate under tensile loading  
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(a)      (b) 

 
(a)      (b) 

Figure 16.  Damage distributions and crack patterns in the composite plate. (a)(b): at load 

peak (c)(d): at final fracture 

4. CONCLUDING REMARKS 

In this paper, a numerical model for fracture of damaged materials has been proposed on 

the basis of the coupled criterion and implemented into a finite element code for simulating a 

two-dimensional damage-fracture process.  The reliability and accuracy of the model have been 

illustrated by numerous examples for which solutions are well-known or well-studied in the 

Crack initiations 
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literature. This numerical model presents several advantages, including the possibility of 

describing the entire damage-fracture process, predicting both crack initiation and crack growth 

and considering multi-cracking problems. The coupled criterion is conceptually simple and 

physically reasonable. This work shows that it can also be applied to fracture prediction of 

damaged materials. Its numerical implementation opens a new way to describe the cracking 

process in solids. We believe that many other complex problems in fracture evaluations can be 

treated by developing more operational numerical tools. 
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