G. Auclair, Y. Fouquet, and M. Bohn, Distributions of selenium in high-temperature 659 hydrothermal sulfide deposits at, Can. Mineral, vol.25, pp.577-588, 1987.

R. Baumgartner, M. Fiorentini, J. Lorand, D. Baratoux, F. Zaccarini et al., , p.661

K. Sener, The role of sulfides in the fractionation of highly siderophile and chalcophile 662 elements during the formation of martian shergottite meteorites, Geochim. Cosmochim. Acta, vol.663, pp.1-24, 2017.

H. L. Barnes, Solubilities of ore minerals, «Geochemistry of Hydrothermal Ore deposits» 665, pp.404-460, 1979.

H. L. Barnes, Hydrothermal processes. Geochem. Persp. 4, pp.1-93, 2015.

P. B. Barton, Sulfide petrology, Mineral. Soc. Amer. Special paper, vol.3, pp.187-198, 1970.

P. Beck, A. Pommerol, L. Remusat, B. Zanda, J. Lorand et al., , p.669

E. Lewin, E. Quirico, B. Schmitt, G. Montes-hernandez, . Garenne et al., , p.670

J. L. Hazemann and V. C. Chevrier, Hydration of the dark meteorite and the red planet? 671, Earth Planet. Sci. Lett, vol.427, pp.104-111, 2015.

J. J. Bellucci, A. A. Nemchin, M. J. Whitehouse, M. Humayun, R. Hewins et al., Pb-673 isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett, vol.410, pp.34-41, 2015.

J. J. Bellucci, M. J. Whitehouse, T. John, A. A. Nemchin, J. F. Snape et al., , p.675

G. K. , Halogen and Cl isotopic systematics in Martian phosphates: Implications for the 676, 2017.

, Cl cycle and surface halogen reservoirs on Mars, Earth Planet. Sci. Lett, vol.458, pp.192-202

J. M. Brenan, D. J. Cherniak, and L. A. Rose, Diffusion of osmium in pyrrhotite and pyrite: 679 implications forclosure of the Re-Os isotopic system, Earth Planet. Sci. Lett, vol.180, pp.399-413, 2000.

J. M. Brenan, R. B. Neil, and Z. Zajacz, Chalcophile and platinum-group element 724 distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, vol.725, 2015.

C. Ontario, Implications for post-cumulus re-equilibration of the ore and the use of 726 pyrite compositions in exploration, J. Geoch. Exp, vol.158, pp.223-242

M. T. Einaudi, J. W. Hedenquist, E. Inan, and E. , Sulfidation State of Fluids in Active and 729, 2003.

, Extinct Hydrothermal Systems: Transitions from Porphyry to Epithermal Environments 730

, Special, vol.731

A. J. Findlay, A. Gartman, T. J. Shaw, and G. W. Luther, III (2015) Trace metal concentration and 734 partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: 735 TAG, Snakepit, and Rainbow, Chem. Geol, vol.412, pp.117-131

M. Fischer-gödde, H. Becker, and F. Wombacher, Rhodium gold and other highly siderophile 738 element abundances in chondritic meteorites, Geochim. Cosmochim. Acta, vol.74, pp.356-379, 2010.

C. Funk, F. Wormbacher, H. Becker, D. Bischoff, D. Günther et al., Sulfur, Se 740 and Te abundances in chondrites and their components, 2015.

D. Genna and D. Gaboury, Deciphering the hydrothermal evolution of a VMS system by 742, 2015.

, LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod Deposits, p.743

C. Abitibi, and implications for exploration, Econ. Geol, vol.110, pp.2087-2108

F. Gibert, M. L. Pascal, and M. Pichavant, Gold solubility and speciation in hydrothermal 745 solutions; experimental study of the stability of hydrosulphide complex of gold (AuHS)° at 746 350 to 450° and 500 bars, Geochim. Cosmochim. Acta, vol.62, pp.2931-2947, 1998.

S. Goderis, F. Paquay, and C. Ph, Projectile identification in terrestrial impact structures and ejecta material, Impact cratering: processes and products, 2012.

M. D. Hannington, P. M. Herzig, S. Scott, G. Thompson, and P. Rona, Comparative mineralogy 763 and geochemistry of gold-bearing sulfide deposits on the mid ocean ridges, Marine Geology, vol.764, pp.217-248, 1991.

M. D. Hannington, P. M. Herzig, and J. C. Alt, The distribution of gold in sub-seafloor 766 stockwork mineralization from DSDP hole 504B and the Agrokipia B deposit, 1990.

, J. Earth Sci, vol.27, pp.1409-1417

D. Harries, T. Berg, F. Langenhorst, and H. Palme, Structural clues to the origin of refractory 769 metal alloys as condensates of the solar nebula, Met. Planet. Sci, vol.47, pp.2148-2159, 2012.

H. Helgeson, A chemical and thermodynamic model of ore deposition in hydrothermal 771 systems, Mineral. Soc. Amer. Special paper, vol.3, pp.155-186, 1970.

R. H. Hewins, B. Zanda, M. Humayun, J. Lorand, D. Deldicque et al., , p.773

M. Grange, A. Kennedy, C. Göpel, and E. Lewin, Petrology of NWA 7533: formation 774 by impacts on ancient martian crust. 76th Ann, Meet. Meteorit. Soc, 2013.

, Planet. Sci, vol.5252

R. H. Hewins, B. Zanda, M. Humayun, A. Nemchin, J. Lorand et al., , p.777

J. J. Bellucci, M. Whitehouse, P. Beck, D. Deldicque, C. Göpel et al., , p.778

A. Pommerol, Ancient meteorite breccias from Mars. 77th Ann. Meet, 2014.

. Casablanca, Morocco. Met. Planet. Sci, vol.5338

R. H. Hewins, M. Bourot-denise, B. Zanda, H. Leroux, J. Barrat et al., , p.782

R. C. Greenwood, I. A. Franchi, S. Pont, J. Lorand, C. Cournède et al., , p.783

M. Kugak, Y. Marrocchi, and B. Marty, The Paris meteorite, the least altered CM 784 chondrite so far, Geochim. Cosmochim. Acta, vol.124, pp.190-222, 2014.

R. H. Hewins, B. Zanda, M. Humayun, J. Lorand, and S. Pont, Impact melt rocks and 786 pristine clasts in Northwest Africa 7533, Lunar Planet. Sci. Conf. 45, abstract #1416, 2014.

R. H. Hewins, B. Zanda, M. Humayun, A. Nemchin, J. Lorand et al., Mineralogy and petrology 790 with implications for early Mars, vol.7533, pp.89-124, 2017.

M. Humayun, A. Nemchin, B. Zanda, R. H. Hewins, M. Grange et al., Origin and age of the earliest Martian crust 793 from meteorite NWA7533, Nature, vol.503, pp.513-517, 2013.

M. Humayun, R. H. Hewins, J. Lorand, and B. Zanda, Weathering and impact melting 795 determined the mineralogy of the early Martian crust preserved in Northwest Africa 7533, 2014.

, Lunar Planetary Institute, Houston. XLV #1880 (abstr

D. L. Huston, S. H. Sie, G. F. Suter, D. R. Cooke, and R. A. Both, Trace elements in sulfide 799 minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton-800 microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, selenium levels in 801 pyrite; comparison with ? 34 S values and implications for the source of sulfur in 802 volcanogenic hydrothermal systems, Econ. Geol, vol.90, pp.1167-1196, 1995.

A. Kaasalainen, A. Stefánsson, N. Giroud, and S. Arnórsson, The geochemistry of trace 805 elements in geothermal fluids, Iceland. Appl. Geochem, vol.62, pp.207-223, 2015.

M. Keith, K. M. Haase, R. Klem, S. Krumm, and H. Strauss, Systematic variations of trace 808 element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa 809 volcanic-hosted massive sulfide deposit, Troodos ophiolite, Chem. Geol, vol.423, pp.7-18, 2016.

F. M. Mccubbin, J. W. Boyce, T. Novák-szabó, A. R. Santos, R. Tartese et al., , p.855

J. Vazquez, L. P. Keller, D. E. Moser, D. J. Jerolmack, C. K. Shearer et al., , p.856

Z. Rahman, M. Anand, T. Delhaye, and C. B. Agee, Geologic history of Martian regolith 857, 2016.

, Evidence for hydrothermal activity and lithologic diversity in 858 the Martian crust, breccia Northwest Africa, vol.7034

J. B. Murowchick and H. L. Barnes, Marcasite precipitation from hydrothermal solutions, 1986.

, Geochim. Cosmochim. Acta, vol.50, pp.2615-2629

J. B. Murowchick and H. L. Barnes, Effect of temperature and degree of supersaturation on 863 pyrite morphology, Amer. Mineral, vol.72, pp.1241-1250, 1987.

N. Muttik, F. M. Mccubbin, L. P. Keller, A. S. Santos, M. C. Mccutcheon et al., Inventory of H 2 O in the ancient Martian 866 regolith from Northwest Africa 7034: The important rôle of Fe oxides, Geoph. Res. Lett, vol.41, pp.8235-8244, 2014.

N. Li, N. Deng, J. Yang, L. Q. Goldfarb, R. J. Zhang et al., , vol.870

H. , Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the 871, 2014.

W. Yangshan-gold-belt and . Qinling, China. Mineral. Dep, vol.49, pp.27-449

A. Nemchin, M. Humayun, M. J. Whitehouse, R. H. Hewins, J. Lorand et al., , p.874

B. Zanda, C. Fieni, and D. Deldicque, Record of the ancient martian hydrosphere and 875 atmosphere preserved in zircon from a martian meteorite, Nature Geoscience, vol.7, pp.638-642, 2014.

B. O'driscoll and J. M. González-jiménez, Petrogenesis of the Platinum-Group Minerals 877, Rev. Mineral. Geochem, vol.81, pp.489-578, 2016.

P. Pagé, S. Barnes, J. H. Bedard, and M. L. Zientek, In-situ determination of Os, Ir, and Ru 880 in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite 881 control of Os, Ir and Ru during partial melting and crystal fractionation, Chem. Geol, vol.302, pp.3-882, 2012.

H. Palme and F. Wlotzka, A metal particle from a Ca-Al-rich inclusion for the meteorite 884, 1976.

, Allende, and condensation of refractorysiderophile elements, Earth Planet. Sci. Lett, vol.33, p.45

H. Palme and H. S. O'neill, Cosmochemical estimates of mantle composition, Treatise of Geochemistry. 2 nd edition, 2014.

C. Mantle, , vol.2, pp.1-38

C. G. Patten, I. K. Pitcairn, D. A. Teagle, and M. Harris, Sulphide mineral evolution and 890 metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D, 2016.

, Geochim. Cosmochim. Acta, vol.193, pp.132-159

R. Piña, F. Gervilla, S. Barnes, L. Ortega, and R. Lunar, Platinum-group elements-bearing 893 pyrite from the Aguablanca Ni-Cu sulphide deposit, 2013.

, European Journal of Mineralogy, vol.25, pp.241-252

M. Reich, S. E. Kesler, S. Utsunomiya, C. S. Palenik, S. L. Chryssoulis et al., Solubility 896 of gold in arsenian pyrite, Geochim. Cosmochim. Acta, vol.69, pp.2781-2796, 2005.

S. Scher, W. Jones, S. A. Williams-jones, and G. , Fumarolic activity, acid-sulfate 899 alteration, and high sulfidation epithermal precious metal mineralization in the crater of 900, 2013.

. Kawah-ijen, . Volcano, and I. Java, Econ. Geol, vol.108, pp.1099-1118

T. M. Seward, A. E. Williams-jones, and A. A. Migdisov, The chemistry of metal transport and 903 deposition by ore-forming hydrothermal fluids. Treatise of Geochemistry, vol.13, p.29, 2014.

W. E. Seyfried and K. Ding, Phase equilibria in subseafloor hydrothermal systems: a review 906 of the role of redox, temperature, pH, and dissolved Cl on the chemistry of hot spring fluids 907 and Mid-Ocean Ridges, Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological 909 Interactions, 1995.

D. M. Shendberger and H. L. Barnes, Solubility of gold in aqueous sulfide solutions from 150 to 350°C, Geochim. Cosmochim. Acta, vol.53, pp.269-278, 1989.

P. J. Sylvester, Matrix effects in laser ablation-ICP-MS. Mineral Ass Can Short Course Series 915 40, pp.67-78, 2008.

B. Tagle, A database of chondrite analyses including platinum group elements, p.918, 2008.

A. Co and C. , Implications for the identification of chondritic projectiles, Met. Planet. Sci, vol.919, pp.541-559

T. Schirmer, A. Koschinsky, and M. Bau, The ratio of tellurium and selenium in geological 922 material as a possible paleo-redox proxy, Geology, vol.376, pp.44-51, 2014.

D. Vaughan and J. R. Craig, Sulfide ore mineral stabilities, morphologies and intergrowth 925 textures, Geochemistry of hydrothermal ore deposits, vol.3, 1997.

P. C. Voudouris, V. Melfos, G. Paul, . Spry, R. Moritz et al., , p.929, 2011.

, Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation 930

, Mineral. Petrol, vol.103, pp.79-100

Z. Wang and H. Becker, Ratios of S, Se and Te in the silicate Earth require a volatile-rich late 933 veneer, Nature, vol.499, pp.328-331, 2013.

J. T. Wasson and G. W. Kallemeyn, Compositions of chondrites, Philosophical Transaction, p.936, 1988.

, Royal Society of London, vol.325, pp.535-544

R. T. Wilkin and H. L. Barnes, Formation processes of framboidal pyrites, 1997.

, Cosmochim. Acta, vol.61, pp.323-339

S. A. Wilson, W. I. Ridley, and A. E. Koenig, Development of sulfide calibration standards for 942 the laser ablation inductively-coupled plasma mass spectrometry technique, J. Anal. At. Sp, vol.943, pp.406-409, 2002.

A. Wittmann, R. L. Korotev, B. L. Jolliff, A. J. Irving, D. Moser et al., 946 (2015) Petrography and composition of Martian regolith breccia meteorite Northwest Africa 947 7475, Met. Planet. Sci, vol.50, pp.326-352

, NWA 7533 pyrite (in bold) compared with terrestrial hydrothermal pyrite

. Abraitis, , p.1002, 2004.

. Deditius, Note the 1003 logarithmic concentration scale, 2014.

, Mass balance estimates of the contribution of pyrite to the whole-rock budget of NWA 1006 7533 (whole-rock data after Humayun, Details of calculations in supplementary Table 1007 S5, 2013.

G. After, Log fS 2 (B) diagrams for the Fe-S-O system at T = 1010 350°C displaying the concentrations of the different Au species dissolved in the putative 1011 hydrothermal fluids involved in the 1.4 Ga hydrothermal events, Log fO 2 vs. pH (A) and Log fO 2 vs, vol.10, p.1014, 1998.

K. Scher, Oxygen fugacity relative to the FMQ buffer 1015 after Lorand et, 2013.