Olivier Sigaud
email: olivier.sigaud@isir.upmc.fr

Freek Stulp
email: freek.stulp@dlr.de

Policy Search in Continuous Action Domains: an Overview

Keywords: policy search, sample efficiency, deep reinforcement learning, deep neuroevolution

Continuous action policy search is currently the focus of intensive research, driven both by the recent success of deep reinforcement learning algorithms and the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, providing a unified perspective on very different approaches, including also Bayesian Optimization and directed exploration methods. The main message of this overview is in the relationship between the families of methods, but we also outline some factors underlying sample efficiency properties of the various approaches.

Introduction

Autonomous systems are systems which know what to do in their domain without external intervention. Generally, their behavior is specified through a policy. The policy of a robot, for instance, is defined through a controller which determines actions to take or signals to send to the actuators for any state of the robot in its environment.

Robot policies are often designed by hand, but this manual design is only viable for systems acting in well-structured environments and for wellspecified tasks. When those conditions are not met, a more appealing alternative is to let the system find its own policy by exploring various behaviors and exploiting those that perform well with respect to some predefined utility function. This approach is called policy search, a particular case of reinforcement learning (RL) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] where actions are vectors from a continuous space. More precisely, the goal of policy search is to optimize a policy where the function relating behaviors to their utility is black-box, i.e. no analytical model or gradient of the utility function is available. In practice, a policy search algorithm runs the system with some policies to generate rollouts made of several state and action steps and gets the utility as a return (see Figure 1). These utilities are then used to improve the policy, and the process is repeated until some satisfactory set of behaviors is found. In general, policies are represented with a parametric function, and policy search explores the space of policy parameters. For doing so, rollout and utility data are processed by policy improvement algorithms as a set of samples.

Figure 1: Visualization of one episode, the information contained in a rollout, and the definition of the episode utility (which is also known as the episode return when the utility is a reward).

In the context of robotics, sample efficiency is a key concern. There are three aspects to sample ef-ficiency: (1) data efficiency, i.e. extracting more information from available data (definition taken from [START_REF] Deisenroth | Pilco: A modelbased and data-efficient approach to policy search[END_REF]), (2) sample choice, i.e. obtaining data in which more information is available and (3) sample reuse, i.e. improving a policy several times by using the same samples more than once through experience replay.

In this paper, we provide a broad overview of policy search algorithms under the perspective of these three aspects.

Scope and Contributions

Three surveys about policy search for robotics have been published in recent years [START_REF] Deisenroth | A survey on policy search for robotics[END_REF][START_REF] Stulp | Robot skill learning: From reinforcement learning to evolution strategies[END_REF][START_REF] Kober | Reinforcement learning in robotics: A survey[END_REF]. With respect to these previous surveys, we cover a broader range of policy search algorithms, including optimization without a utility model, Bayesian optimization (BO), directed exploration methods, and deep RL. The counterpart of this breadth is that we do not give a detailed account of the corresponding algorithms nor their mathematical derivation. To compensate for this lack of details, we refer the reader to [START_REF] Deisenroth | A survey on policy search for robotics[END_REF] for the mathematical derivation and description of most algorithms before 2013, and we provide carefully chosen references as needed when describing more recent algorithms.

Furthermore, we focus on the case where the system is learning to solve a single task. That is, we do not cover the broader domain of lifelong, continual or open-ended learning, where a robot must learn how to perform various tasks over a potentially infinite horizon [START_REF] Thrun | Lifelong robot learning[END_REF]. Additionally, though a subset of policy search methods are based on RL, we do not cover recent work on RL with discrete actions such as dqn and its successors [START_REF] Mnih | Humanlevel control through deep reinforcement learning[END_REF][START_REF] Hessel | Rainbow: Combining improvements in deep reinforcement learning[END_REF]. Finally, we restrict ourselves to the case where samples are the unique source of information for improving the policy. That is, we do not consider the interactive context where a human user can provide external guidance [START_REF] Najar | Training a robot with evaluative feedback and unlabeled guidance signals[END_REF], either through feedback, shaping or demonstration [START_REF] Argall | A survey of robot learning from demonstration[END_REF].

Perspective and structure of the survey

The main message of this paper is as follows. In optimization, when the utility function to be optimized is known and convex, efficient convex methods can be applied [START_REF] Gill | Practical optimization[END_REF]. If the function is known but not convex, a local optimum can be found using gradient descent, iteratively moving from the current point towards a local optimum by following the direction provided by the derivative of the function at this point. If the function is blackbox, neither the function nor its analytic gradient are known. In policy gradient methods, policy parameters are only related to their utility indirectly through an intermediate set of observed behaviors. Given that policy search corresponds to this more difficult context, we consider five solutions:

1. searching for high utility policy parameters without building a utility model (Section 2), 2. learning a model of the utility function in the space of policy parameters and performing stochastic gradient descent (SGD) using this model (Section 3), 3. defining an arbitrary outcome space and using directed exploration of this outcome space for finding high utility policy parameters (Section 4), 4. doing the same as in Solution 2 in the stateaction space (Section 5), 5. learning a model of the transition function of the system-environment interaction that predicts the next state given the current state and action, to generate samples without using the system, and then applying one of the above solutions based on the generated samples.

An important distinction in the policy search domain is whether the optimization method is episode-based or step-based [START_REF] Deisenroth | A survey on policy search for robotics[END_REF] 1 . The first three solutions above are episodebased, the fourth is step-based and the fifth can be applied to all others. Resulting from the above perspective, this survey is structured following the organization of methods depicted in Figure 2. The rest of the paper describes the different nodes in the trees and highlights some of their sample efficiency factors. A table giving a quick reference to the main paper for each algorithm is given in the end of each section.

In Sections 2 to 5, we present Solutions 1 to 4 above in more detail, showing how the corresponding methods are implemented in various policy search algorithms. We do not cover Solution 5 and refer readers to [START_REF] Chatzilygeroudis | Black-box data-efficient policy search for robotics[END_REF] for a recent presentation of these model-based policy O is an outcome space (see Section 4) and X × U is the state and action space (see Section 5). Algorithms not covered in [START_REF] Deisenroth | A survey on policy search for robotics[END_REF] have a lighter (green) background. References to the main paper for each of these algorithms is given in a table in the end of each section. From the left to the right, algorithms are grossly ranked in order of increasing sample reuse, but methods using a utility model in Θ and O show better sample choice, resulting in competitive sample efficiency.

search methods. Then, in Section 6, we discuss the different elementary design choices that matter in terms of sample efficiency. Finally, Section 7 summarizes the paper and provides some perspectives about current trends in the domain.

Policy search without a utility model

When the function to be optimized is available but has no favorable property, the standard optimization method known as Gradient Descent consists in iteratively following the gradient of this function towards a local optimum. When the same function is only known through a model built by regression from a batch of samples, one can also do the same, but computing the gradient requires evaluations over the whole batch, which can be computationally expensive. An alternative known as Stochastic Gradient Descent (SGD) circumvents this difficulty by taking a small subset of the batch at each iteration [START_REF] Bottou | Stochastic gradient descent tricks[END_REF]. Before starting to present these methods in Section 3, we first investigate a family of methods which perform policy search without learning a model of the utility function at all. They do so by sampling the policy parameter space Θ and moving towards policy parameters θ of higher utility J(θ).

Truly random search

At one extreme, the simplest black-box optimization (BBO) method randomly searches Θ until it stumbles on a good enough utility. We call this method "Truly random search" as the name "random search" is used in the optimization community to refer to gradient-free methods [START_REF] Rastrigin | The convergence of the random search method in the extremal control of a many parameter system[END_REF]. Its distinguishing feature is in its sample choice strategy: the utility of the previous θ has no impact on the choice of the next θ.

Quite obviously, this sample choice strategy is not efficient, but it requires no assumption at all on the function to be optimized. Therefore, it is an option when this function does not show any regularity that can be exploited. All other methods rely on the implicit assumption that J(θ) presents some smoothness around optima θ * , which is a first step towards using a gradient. So globally, this method provides a proof of concept that an agent can obtain a better utility without estimating any gradient at all. Recently, other forms of gradient-free methods called random search though they are not truly random have been shown to be competitive with deep RL [START_REF] Mania | Simple random search provides a competitive approach to reinforcement learning[END_REF].

The next three families of methods, populationbased optimization, evolutionary strategies and estimation of distribution algorithms, are all variants of evolutionary methods. An overview2 of these methods is depicted in Figure 3. Full blue dots: samples with a good evaluation. Dots with a red cross: samples with a poor evaluation. Green: new generation and sampling domain, empty dots are not evaluated yet. Red dots: optimum guess. In population-based methods, the next generation are offspring from several elite individuals of the previous generation. In ES, it is obtained from an optimum guess and sampling from fixed Gaussian noise. In EDAs, Gaussian noise is tuned using Covariance Matrix Adaptation.

Population-based optimization

Population-based BBO methods manage a limited population of individuals, and generate new individuals randomly in the vicinity of the previous elite individuals. There are several families of population-based optimization methods, the most famous being Genetic Algorithms (GAs) [START_REF] Goldberg | Genetic Algorithms in Search, Optimization, and Machine Learning[END_REF], Genetic Programming (GP) [START_REF] Koza | Genetic Programming: On the Programming of Computers by Means of Natural Selection[END_REF], and the more advanced NEAT framework [START_REF] Stanley | Efficient evolution of neural network topologies[END_REF]. In these methods, the parameter θ corresponding to an individual is often called its genotype and the corresponding utility is called its fitness, see [START_REF] Back | Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms[END_REF] for further reading. These methods have already been combined with neural networks giving rise to neuroevolution [START_REF] Floreano | Neuroevolution: from architectures to learning[END_REF] but, up to recently, these methods were mostly applied to small to moderate size policy representations. However, the availability of modern computational resources have made it possible to apply them to large and deep neural network representations, defining the emerging domain of deep neuroevolution [START_REF] Petroski Such | Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning[END_REF]. Among other things, it was shown that, given large enough computational resources, methods as simple as GAs can offer a competitive alternative to deep RL methods presented in Section 5, mostly due to their excellent parallelization capabilities [START_REF] Petroski Such | Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning[END_REF][START_REF] Conti | Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[END_REF].

Evolutionary strategies

Evolutionary strategies (ES) can be seen as specific population-based optimization methods where only one individual is retained from one generation to the next. More specifically, an optimum guess is computed from the previous samples, then the next samples are obtained by adding Gaussian noise to the current optimum guess.

Moving from one optimum guess to the next implements a form of policy improvement similar to SGD, but where the gradient is approximated by averaging over samples instead of being analytically computed. Hence this method is more flexible but, since gradient approximation uses a random exploration component, it is less data efficient. However, data efficiency can be improved by reusing samples between one generation and the next when their sampling domain overlaps, a method called importance mixing [START_REF] Sun | Efficient natural evolution strategies[END_REF]). An improved version of importance mixing was recently proposed in (Pourchot et al., 2018), showing a large impact on sample efficiency, but not large enough to compete with deep RL methods on this aspect. Further results about importance mixing can be found in (Pourchot and Sigaud, 2018), showing that more investigations are necessary to better understand in which context this mechanism can be most useful.

The correlation between the direction of the gradient given by SGD and the same direction for ES depends on the evolutionary algorithm. Interestingly, good ES performance can be obtained even when the correlation is not high, though this result still needs to be confirmed in the case of policy search [START_REF] Zhang | On the relationship between the openai evolution strategy and stochastic gradient descent[END_REF].

A specific ES implementation of deep neuroevolution where constant Gaussian noise is used at each generation was shown to compete with deep RL methods on standard benchmarks [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF]. This simple implementation generated an insightful comparison with methods based on SGD depending on various gradient landscapes, showing under which conditions ES can find better optima than SGD [START_REF] Lehman | ES is more than just a traditional finite-difference approximator[END_REF].

Finally, instead of approximating the vanilla gradient of utility, nes [START_REF] Wierstra | Natural evolution strategies[END_REF] and xnes [START_REF] Glasmachers | Exponential natural evolution strategies[END_REF] approximate its natural gradient [START_REF] Akimoto | Bidirectional relation between cma evolution strategies and natural evolution strategies[END_REF], but for doing so they have to compute the inverse of the Fisher Information Matrix, which is prohibitively expensive in large dimensions [START_REF] Grondman | A survey of actor-critic reinforcement learning: Standard and natural policy gradients[END_REF]. We refer the reader to [START_REF] Pierrot | First-order and second-order variants of the gradient descent: a unified framework[END_REF] for a detailed presentation of natural gradient and other advanced gradient descent concepts.

Estimation of Distribution Algorithms

The standard perspective about EDAs is that they are a specific family of ES using a covariance matrix Σ [START_REF] Larrañaga | Estimation of distribution algorithms: A new tool for evolutionary computation[END_REF]. This covariance matrix defines a multivariate Gaussian function over Θ, hence its size is |θ| 2 . Samples at the next iteration are drawn with a probability proportional to this Gaussian function. Along iterations, the ellipsoid defined by Σ is progressively adjusted to the top part of the hill corresponding to the local optimum θ * .

The role of Σ is to control exploration. The exploration policy can be characterized as uncorrelated when it only updates the diagonal of Σ and correlated when it updates the full Σ [START_REF] Deisenroth | A survey on policy search for robotics[END_REF]. The latter is more efficient in small parameter spaces but computationally more demanding and potentially inaccurate in larger spaces as more samples are required. In particular, it cannot be applied in the deep neuroevolution context where the order of magnitude of the size of θ is between thousands and millions.

Various instances of EDAs, such as cem, cmaes, pi 2 -cma, are covered in (Stulp andSigaud, 2012a,b, 2013). Among them, the cma-es algorithm is also shown to approximate the natural gradient [START_REF] Arnold | Information-geometric optimization algorithms: A unifying picture via invariance principles[END_REF]. By contrast, the pi BB algorithm, also described in [START_REF] Stulp | Robot skill learning: From reinforcement learning to evolution strategies[END_REF], is a simplification of pi 2 -cma where covariance matrix adaptation has been removed. Thus it should be considered an instance of the former ES category.

Finite difference methods

In finite difference methods, the gradient of utility with respect to θ is estimated as the first order approximation of the Taylor expansion of the utility function. This estimation is performed by applying local perturbations to the current input. Thus these methods are derivative-free and we classify them as using no model, even if they are based on a local linear approximation of the gradient.

In finite difference methods, gradient estimation can be cast as a standard regression problem, but perturbations along each dimension of Θ can be treated separately, which results in a very simple algorithm [START_REF] Riedmiller | Evaluation of policy gradient methods and variants on the cartpole benchmark[END_REF]. The counterpart of this simplicity is that it suffers from a lot of variance, so in practice the methods are limited to deterministic policies. [START_REF] Mania | Simple random search provides a competitive approach to reinforcement learning[END_REF] Table 1: Main gradient-free algorithms. Above the line, they were studied in [START_REF] Deisenroth | A survey on policy search for robotics[END_REF], below they were not.

Reference to the main algorithms

Algorithm

Sample efficiency analysis

In all gradient-free methods, sampling a vector of policy parameters θ provides an exact information about its utility J(θ). However, the J function can be stochastic, in which case one value of J(θ) only contains partial information about the value of that θ. Anyways, sample reuse can be implemented by storing an archive of the already sampled pairs < θ, J(θ) >. Each time an algorithm needs the utility J(θ) of a sample θ, if this utility is already available in the archive, it can use it instead of sampling again. In the deterministic case, using the stored value is enough. In the stochastic case, the archive may provide a distribution over values J(θ), and the algorithm may either draw a value from this distribution or sample again, depending on accuracy requirements.

Message 1: Policy search without a utility model is generally less data efficient than Stochastic Gradient Descent (SGD). Though sample reuse is technically possible without a utility model, in practice it is seldom used. Despite their lower sample efficiency in comparison to SGD, some of these methods are highly parallelizable and offer a viable alternative to deep RL provided enough computational resources.

Policy search with a model of utility in the space of policy parameters

As outlined in the introduction, the utility of a vector of policy parameters is only available by observing the corresponding behavior. Although no model that relates policy parameters to utilities is given, one may approximate the utility function in Θ from these observations, by collecting samples consisting of (policy parameters, utility) pairs and using regression to infer a model of the corresponding function (see e.g. [START_REF] Stulp | Many regression algorithms, one unified model: A review[END_REF]). Such a model could either be deterministic, giving one utility per policy parameters vector, or stochastic, giving a distribution over utility values.

Once such a model is learned, one could perform gradient descent on this model. These steps could be performed sequentially (first model learning and then gradient descent) or incrementally (improving the model and performing gradient descent after each new utility observation). In the latter case, the model is necessarily persistent: it evolves from iteration to iteration given new information, in contrast with the sequential case where it could be transient, that is recomputed from scratch at each iteration.

Bayesian Optimization

Though the above approach seems appealing, we are not aware of any algorithm performing what is described above in the deterministic case. A good reason for this is that utility functions are generally stochastic in Θ. Thus, algorithms which learn a model J(θ) have to learn a distribution over such models. This is exactly what Bayesian optimization (BO) does. The distribution over models is updated through Bayesian inference. It is initialized with a prior, and each new sample, considered as some new evidence, helps adjusting the model distribution towards a peak at the true value, whilst keeping track of the variance over models. By estimating the uncertainty over the distribution of models, BO methods are endowed with active learning capabilities, dramatically improving their sample efficiency at the cost of a worse scalability.

A BO algorithm comes with a covariance function that determines how the information provided by a new sample influences the model distribution around this sample. It also comes with an acquisition function used to choose the next sample given the current model distribution. A good acquisition function should take into account the value and the uncertainty of the model over the sampled space.

By quickly reducing uncertainty, BO implements a form of active learning. As a consequence, it is very sample efficient when the parameter space is small enough, and it searches for the global optimum, rather than a local one. However, given the necessity to optimize globally over the acquisition function, it scales poorly in the size of the parameter space. For more details, see [START_REF] Brochu | A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[END_REF].

The rock * algorithm is an instance of BO that searches for a local optimum instead of a global one [START_REF] Hwangbo | ROCK * :efficient black-box optimization for policy learning[END_REF]. It uses cma-es to find the optimum over the model function. By doing so, it performs natural rather than vanilla gradient optimization, but it does not use the available model of the utility function, though this could improve sample efficiency.

Bayesian optimization algorithms generally use Gaussian kernels to efficiently represent the distribution over models. However, some authors have started to note that, in the specific context of policy search, BO was not using all the information available in elementary steps of the agent. This led to the investigation of more appropriate data-driven kernels based on the Kullbak-Leibler divergence between rollout density generated by two policies [START_REF] Wilson | Using trajectory data to improve bayesian optimization for reinforcement learning[END_REF].

Using BO in the context of policy search is an emerging domain [START_REF] Lizotte | Automatic gait optimization with gaussian process regression[END_REF][START_REF] Calandra | Bayesian gait optimization for bipedal locomotion[END_REF][START_REF] Metzen | Bayesian optimization for contextual policy search[END_REF][START_REF] Martinez-Cantin | Policy search using robust Bayesian optimization[END_REF]. Furthermore, recent attempts to combine BO with reinforcement learning approaches, giving rise to the Bayesian Optimization Reinforcement Learning (BORL) framework, are described in Section 5.

Reference to the main algorithms

Algorithm

Main paper Bayes. Opt. [START_REF] Pelikan | Boa: The Bayesian optimization algorithm[END_REF] rock * [START_REF] Hwangbo | ROCK * :efficient black-box optimization for policy learning[END_REF] Table 2: Main Bayesian Optimization algorithms

Sample efficiency analysis

Learning a model of the utility function in Θ should be more sample efficient than trying to optimize without a model, as the gradient with respect to the model can be used to accelerate parameter improvement. However, learning a deterministic model is not enough for most cases, as the true utility function is generally stochastic in Θ, and learning a stochastic model comes with an additional computational cost which impacts the scalability of the approach.

Message 2: Bayesian Optimization is BBO managing a distribution over models in the policy parameter space. Its sample efficiency benefits from active choice of samples. But as it performs global search, it does not scale well to large policy parameter spaces. Thus, it is difficult to apply to deep neural network representations.

Directed exploration methods

Directed exploration methods are particularly useful in tasks with sparse rewards, i.e. where large parts of the search space have the same utility signal. These methods have two main features. First, instead of searching directly in the policy parameter space Θ, they search in a smaller outcome space O (also called descriptor space or behavioral space) and learn an invertible mapping between Θ and O. Second, they all optimize a task-independent criterion called novelty or diversity which is used to efficiently cover the outcome space.

The outcome itself corresponds to properties of the observed behavior. The general intuition is that if the outcome space is properly covered by known policy parametrizations, and if utility can be easily related to outcomes, then it should be easy to find policy parameters with a high utility, even when the utility function is null for most policy parameters. Figure 4 visualizes why it is generally more efficient to perform the search for novel solutions in a dedicated outcome space and learning a mapping from Θ to O than performing this search directly in Θ [START_REF] Baranes | The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration[END_REF].

So, for the method to work, the outcome space has to be defined in such a way that determining the utility corresponding to an outcome is straightforward. Generally, the outcome space is defined by an external user to meet this requirement. Nevertheless, using representation learning methods to let the agent autonomously define its own outcome space is an emerging topic of interest [START_REF] Pere | Unsupervised learning of goal spaces for intrinsically motivated goal exploration[END_REF][START_REF] Laversanne-Finot | Curiosity driven exploration of learned disentangled goal spaces[END_REF].

Figure 4: A standard mapping between a policy parameter space Θ and an outcome space O. Most often, many policy parameters result in the same outcome (for instance, in the case of a robotic arm which must move a ball around, if the policy defines arm movements and the outcome space is defined as ball positions, most policy parameters will results into a static ball). In that case, sampling directly in Θ works poorly: you have to sample in such a way to efficiently cover O.

Directed exploration methods can be split into novelty search (NS) [START_REF] Lehman | Abandoning objectives: Evolution through the search for novelty alone[END_REF], quality-diversity (QD) [START_REF] Pugh | Confronting the challenge of quality diversity[END_REF] and goal exploration processes (geps) [START_REF] Baranes | Intrinsically motivated goal exploration for active motor learning in robots: A case study[END_REF][START_REF] Forestier | Overlapping waves in tool use development: a curiosity-driven computational model[END_REF][START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF]. The first two derive from evolutionary methods, whereas geps come from the developmental learning and intrinsic motivation literature.

An important distinction between them is that NS and geps are designed to optimize diversity only3 , thus they do not use the utility function at all, whereas QD methods rely on multi-objective optimization methods to optimize diversity and utility at the same time.

The NS approach arose from the realization that optimizing utility as a single objective is not the only option [START_REF] Doncieux | Beyond black-box optimization: a review of selective pressures for evolutionary robotics[END_REF]. In particular, in the case of sparse or deceptive reward problems, it was shown that seeking novelty or diversity is an efficient strategy to obtain high utility solutions, even without explicitly optimizing this utility [START_REF] Lehman | Abandoning objectives: Evolution through the search for novelty alone[END_REF]. The gep approach was more inspired by thoughts on intrinsic motivations, where the goal was to have an agent achieve its own goal without an external utility signal [START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF]. However, researchers in evolutionary methods also realized that diversity and utility can be optimized jointly [START_REF] Cuccu | When novelty is not enough[END_REF], giving rise to more advanced NS and QD algorithms [START_REF] Pugh | Confronting the challenge of quality diversity[END_REF][START_REF] Cully | Quality and diversity optimization: A unifying modular framework[END_REF].

All these methods share a lot of similarities. They all start with a random search stage and, when they evaluate a policy parameter vector θ resulting in a point o in the outcome space O, they store the corresponding < θ, o > pair in an archive. Because they use this archive for policy improvement, they all implement a form of lazy learning, endowing them with interesting sample efficiency properties [START_REF] Aha | Lazy learning[END_REF]. The archive itself can be seen as a stochastic model of the function relating Θ to O, as made particularly obvious in the MAP-Elites algorithm [START_REF] Cully | Robots that can adapt like animals[END_REF].

In more details, the main differences between these methods lie in the way they cover the outcome space O. NS and QD methods perform undirected variations to the elite θ vectors present in the archive. More precisely, in NS, the resulting solution is just added to the archive, whereas in QD the new solution replaces a previous one if it outperforms it both in terms of diversity and utility. By contrast, geps choose a desired outcome o * and modify a copy of the θ leading to the closest outcome in the archive. The choice of a desired outcome o * can be performed randomly or using curriculum learning or learning progress concepts [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF][START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF]. Similarly, the modification of θ can be performed using undirected Gaussian noise or in more advanced ways. For instance, some gep methods build a local linear model of the mapping from Θ to O to efficiently invert it, so as to find the θ * corresponding to the desired outcome o * ([START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF].

Thus directed exploration methods all learn a stochastic and invertible mapping between Θ and O. When they also learn a model of J(o), this model is stochastic with respect to Θ, which makes them similar to BO methods. In that case, the outcome space is an intermediate space between Θ and utilities: policy parameters are first projected into the outcome space, and then a model of the utility function in this outcome space can be learned.

Learning a model of the utility in O shares some similarities with learning a critic in the state action space X × U, as presented in Section 5. From this perspective, these methods can be seen as providing an intermediary family between evolutionary, BO and reinforcement learning methods. However, we shall see soon that learning a critic in the state action space X × U benefits from additional properties related to temporal difference learning, which limits the use of the above unifying perspective.

Reference to the main algorithms

Algorithm

Main paper Novelty Search [START_REF] Lehman | Abandoning objectives: Evolution through the search for novelty alone[END_REF]) Quality-Diversity [START_REF] Pugh | Confronting the challenge of quality diversity[END_REF] Goal Exploration [START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF]

Sample efficiency analysis

The defining characteristic of all directed exploration methods is their capability to widely cover the outcome space. This provides efficient exploration, which in turn critically improves sample efficiency when combined with more standard evolutionary methods mentioned in Section 2 [START_REF] Conti | Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[END_REF] or deep RL method mentioned in Section 5 [START_REF] Colas | GEP-PG: Decoupling exploration and exploitation in deep reinforcement learning algorithms[END_REF].

Even though our article focuses on single-task learning, it is worth mentioning that direct exploration methods may very much improve sample efficiency in multi-task learning scenarios. This is because such methods aim at covering the (interesting) outcome space, and can thus more easily adapt when facing multiple tasks, and thus potentially multiple outcomes.

Message 3: Looking for diversity only in a user defined outcome space is an efficient way to perform exploration, and can help solve sparse or deceptive reward problems, where more standard exploration would fail. Directed exploration methods are thus useful complements to other methods covered in this survey.

Policy search with a critic

The previous two sections have presented methods which learn mappings from policy parameter space Θ to utilities or outcomes. We now cover methods which learn a model of utility in the stateaction space X × U.

An important component in the RL formalization, the utility U (x, u) corresponds to the return the agent may expect from performing action u when it is in state x and then following either its current policy π θ or the optimal policy π * . This quantity may also depend on a discount factor γ and a noise parameter β.

The true utility U (x, u) can be approximated with a model Ûη (x, u) with parameters η. Such a model is called a critic. A key feature is that the critic can be learned from samples corresponding to single steps in the rollouts of the agent, either with temporal differencing or Monte Carlo methods. Methods that approximate U by Ûη , and determine the policy parameters θ by descending the gradient of θ with respect to Ûη are called actorcritic methods, the policy π θ being the actor (Peters and Schaal, 2008b;[START_REF] Deisenroth | A survey on policy search for robotics[END_REF].

This actor-critic approach can be applied to stochastic and deterministic policies [START_REF] Silver | Deterministic policy gradient algorithms[END_REF]. The space of deterministic policies being smaller than the space of stochastic policies, the latter can be advantageous because searching the former is faster than searching the latter. However, a stochastic policy might be more appropriate when Markov property does not hold [START_REF] Williams | Experimental results on learning stochastic memoryless policies for partially observable markov decision processes[END_REF][START_REF] Sigaud | Markov Decision Processes in Artificial Intelligence[END_REF] or in adversarial contexts (Wang et al., 2016b).

Exploration in parameter or state-action space

As mentioned in Section 3, learning a model of the utility in the space Θ is a regression problem that is performed by sampling and exploring directly in Θ. In contrast, X × U cannot be sampled directly, as one does not know in advance which policy parameters will result in visiting which states and performing which action. Exploration is therefore performed in either by adding noise to the θ (policy parameter perturbation), or adding noise to the actions the policy outputs (action perturbation). In the latter case, exploration is generally undirected and adds Gaussian noise or correlated Ornstein-Ulhenbeck noise to the actions taken by the policy. Policy parameter perturbation is done in pepg, power and pi 2 , and more recently to ddpg [START_REF] Fortunato | Noisy networks for exploration[END_REF][START_REF] Plappert | Parameter space noise for exploration[END_REF], whereas action perturbation in the other algorithms presented in this paper.

All actor-critic algorithms iterate over the following three steps:

A Collect new step samples from the current policy with policy parameter perturbation or action perturbation for exploration, B Compute a new critic Ûη based on these samples, by determining η through a temporal difference method, C Update the policy parameters θ through gradient descent with respect to the critic.

A distinction here should be made on whether 1) the critic is discarded after step C, and must thus be learned from scratch in step B in the next iteration, or 2) the critic is persistent throughout the learning, and incrementally updated in step B. We discuss the differences between these two variants -which we denote transient critic and persistent critic respectively -in more detail in the next two sections.

Transient Critic Algorithms

In methods with a transient critic, Monte Carlo sampling -running a large set of episodes and averaging over the stochastic return -is used to evaluate the current policy and generate a new set of step samples. Then, determining the optimal critic parameters given these samples can be cast as a batch regression problem.

Among these methods, one must distinguish between three families: likelihood ratio methods such as reinforce [START_REF] Williams | Simple statistical gradientfollowing algorithms for connectionist reinforcement learning[END_REF] and pepg [START_REF] Sehnke | Parameter-exploring pol-icy gradients[END_REF], natural gradient methods such as nac and enac4 (Peters and Schaal, 2008a) and EM-based methods such as power 5 [START_REF] Kober | Learning motor primitives for robotics[END_REF] and the variants of reps [START_REF] Peters | Relative entropy policy search[END_REF]. All the corresponding algorithms are well described in [START_REF] Deisenroth | A survey on policy search for robotics[END_REF].

Although they derive from a different mathematical framework, likelihood ratio methods and EM-based methods are similar: they both use unbiased estimation of the gradient through Monte Carlo sampling and they are both mathematically designed so that the most rewarding rollouts get the highest probability.

The trpo [START_REF] Schulman | Trust region policy optimization[END_REF] algorithm also follows an iterative approach and can use a deep neural network representation, thus it can be classified as a deep RL method. Among other things, it uses a bound on the Kullback-Leibler divergence between policies at successive iterations to ensure safe and efficient exploration. Finally, the Guided Policy Search (gps) algorithm [START_REF] Levine | Guided policy search[END_REF][START_REF] Montgomery | Guided policy search via approximate mirror descent[END_REF] is another transient critic deep RL method inspired from reinforce, but adding guiding rollouts obtained from simpler policies.

Persistent Critic Algorithms

In contrast with transient critic algorithms, persistent critic algorithms incrementally update the critic during training. Most such algorithms use an actor-critic architecture, with the notable exception of naf (Gu et al., 2016b), which does not have an explicit representation of the actor. To our knowledge, before the emergence of deep RL algorithms described below, the four inac algorithms were the only representative of this family [START_REF] Bhatnagar | Incremental natural actor-critic algorithms[END_REF].

The way to compute the critic incrementally can be named a temporal difference (TD) method, also named a bootstrap method [START_REF] Sutton | Learning to Predict by the Method of Temporal Differences[END_REF]. They compute at each step a temporal difference error or reward prediction error (RPE) between the immediate reward predicted by the current values of the critic and the actual reward received by the agent. This RPE can then be used as a loss that the critic should minimize over iterations [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF].

5 Interestingly, pi 2 can also be seen as a transient critic method, though it could in principle use a persistent oneand fall into Section 5.3. This is just because using batch updates make it more stable [START_REF] Deisenroth | A survey on policy search for robotics[END_REF].

Key properties of Persistent Critic Algorithms

Most mechanisms that made deep actor-critic algorithms possible where first introduced in dqn [START_REF] Mnih | Humanlevel control through deep reinforcement learning[END_REF]. Though dqn is a discrete action algorithm which is outside the scope of this survey, we briefly review its important concepts and mechanisms before listing the main algorithms in the family of continuous action deep RL methods.

5.4.1. Accuracy and scalability: deep neural networks By using deep neural networks as approximation functions and making profit of large computational capabilities of modern clusters of computers, all deep RL algorithms are capable of addressing much larger problems than before, and to approximate gradients with unprecedented accuracy, which makes them more stable than the previous linear architectures of nac and power, hence amenable to incremental updates of a persistent critic rather than recomputing a transient one.

Stability: the target critic

Deep RL methods introduced a target critic as a way to improve stability. Standard regression is the process of fitting samples to a model so as to approximate an unknown stationary function [START_REF] Stulp | Many regression algorithms, one unified model: A review[END_REF]. Estimating a critic through temporal difference methods is similar to regression, but the target function is not stationary: it is itself a function of the estimated critic, thus it is modified each time the critic is modified. This can result in divergence of the critic when the target function and the estimated critic are racing after each other [START_REF] Baird | Reinforcement learning in continuous time: Advantage updating[END_REF]. To mitigate this instability, one should keep the target function stationary during several updates and reset it periodically to a new function corresponding to the current critic estimate, switching from a regression problem to another. This idea was first introduced in dqn [START_REF] Mnih | Humanlevel control through deep reinforcement learning[END_REF] and then modified from periodic updates to smooth variations in ddpg [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF].

Sample reuse: the replay buffer

Since they are based on value propagation, TD methods can give rise to more sample reuse than standard regression methods, provided that these samples are saved into a replay buffer. Using a replay buffer is at the heart of the emergence of modern actor-critic approaches in deep RL. Actually, learning from the samples in the order in which they are collected is detrimental to learning performance and stability because these samples are not independent and identically distributed (i.i.d.). Stability is improved by drawing the samples randomly from the replay buffer and sample efficiency can be further improved by better choosing the samples, using prioritized experience replay [START_REF] Schaul | Prioritized experience replay[END_REF].

Adaptive step sizes and return lengths

Modern SGD methods provided by most machine learning libraries now incorporate adaptive step sizes, removing a difficulty with previous actorcritic algorithms such as enac. Another important ingredient for the success of some recent methods in the use of n-step return, which consists in performing temporal difference updates over several time steps, resulting in the possibility to control the variance trade-off (see Section 6.3.1).

Overview of deep RL algorithms

All these favorable properties are common traits of several incremental deep RL algorithms: ddpg [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF], naf (Gu et al., 2016b), ppo [START_REF] Schulman | Proximal policy optimization algorithms[END_REF], acktr [START_REF] Wu | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation[END_REF], sac [START_REF] Haarnoja | Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[END_REF], td3 [START_REF] Fujimoto | Addressing function approximation error in actor-critic methods[END_REF] and d4pg [START_REF] Barth-Maron | Distributional policy gradient[END_REF]. As depicted in Figure 2, the last one, d4pg, is an instance of Bayesian Optimization Reinforcement Learning (BORL) algorithms which derive from BO but belong to the step-based category of methods described in Section 5. These algorithms result from an effort to incorporate Bayesian computations into the deep RL framework, and correspond to a very active trend in the field. Most of these works address discrete actions [START_REF] Azizzadenesheli | Efficient exploration through bayesian deep q-networks[END_REF][START_REF] Tang | Variational deep q network[END_REF], but d4pg is an exception that derives from adopting a distributional perspective on policy gradient computation, resulting in more accurate estimates on the gradient and better sample efficiency [START_REF] Bellemare | A distributional perspective on reinforcement learning[END_REF].

Finally, a few algorithms such as acer (Wang et al., 2016b), Q-prop (Gu et al., 2016a) and pgql [START_REF] O'donoghue | Combining policy gradient and q-learning[END_REF] combine properties of transient and persistent critic methods, and are captured into the more general framework of Interpolated Policy Gradient (ipg) [START_REF] Gu | Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning[END_REF]. For a more detailed description of all these algorithms, we refer the reader to the corresponding papers and to a recent survey [START_REF] Arulkumaran | A brief survey of deep reinforcement learning[END_REF].

Reference to the main algorithms

Algorithm

Main paper reinforce [START_REF] Williams | Simple statistical gradientfollowing algorithms for connectionist reinforcement learning[END_REF] g(po)mdp [START_REF] Baxter | Infinite-horizon policygradient estimation[END_REF]

Sample efficiency analysis

Message 4: Being step-based, deep RL methods are able to use more information from rollouts than episode-based methods. Furthermore, using a replay buffer leads to further sample reuse.

Discussion

In the previous sections we have presented methods which: (1) do not build a utility model; (2) learn a utility model: (2a) in the policy parameter space Θ, (2b) in an arbitrary outcome space O, (2c) in the state-action space X ×U. In this section, we come back to the sample efficiency properties of these different methods. We do so by descending the tree of design choices depicted in Figure 2.

Building a model or not

We have outlined that policy search methods which build a model of the utility function are generally more sample efficient than methods which do not. However, the reliance of the latter to SGD can make them less robust to local optima [START_REF] Lehman | ES is more than just a traditional finite-difference approximator[END_REF] and it has been shown recently that methods which do not build a model of utility are still competitive in terms of final performance, due to their higher parallelization capability and distinguishing properties with respect to various gradient landscapes [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF][START_REF] Petroski Such | Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning[END_REF][START_REF] Zhang | On the relationship between the openai evolution strategy and stochastic gradient descent[END_REF].

Building a utility function model in the policy

parameter space versus the state-action space. Several elements speak in favor of the higher sample efficiency of learning a critic in the state-action space X × U. First, it can give rise to more sample reuse than learning a model of the utility function in Θ. Second, learning from each step separately makes a better use of the information available from a rollout than learning from global episodes.

Furthermore, X × U may naturally exhibit a hierarchical structure -especially the state -which is not so obvious for Θ. As a consequence, methods that model utility in X × U may benefit from learning intermediate representations at different levels in the hierarchy, thus reducing the dimensionality of the policy search problem. Learning such intermediate and more compact representations is the focus of hierarchical reinforcement learning, a domain which has also been impacted by the emergence of deep RL [START_REF] Kulkarni | Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation[END_REF][START_REF] Bacon | The option-critic architecture[END_REF]. Hierarchical reinforcement learning can also be performed off-line, which corresponds to the perspective of the DREAM project 6 , illustrated for instance in [START_REF] Zimmer | Bootstrapping Q-learning for robotics from neuro-evolution results[END_REF].

Finally, an important factor of sample efficiency is the size and structure of X × U with respect to Θ. In both respects, the emergence of deep RL methods using large neural networks as policy representation has changed the perspective. First, in deep RL, the size of Θ can become larger than that of X × U, which speaks in favor of learning a critic. Second, deep neural networks seem to generally induce a smooth structure between Θ and X × U, which facilitates learning. Finally, a utility function modeled in a larger space may suffer from fewer 6 http://www.robotsthatdream.eu/ local minima, as more directions remain for improving the gradient [START_REF] Kawaguchi | Deep learning without poor local minima[END_REF].

The above conclusions might be mitigated by considering exploration. Indeed, in several surveys about policy search for robotics, policy parameter perturbation methods are considered superior to action perturbation methods [START_REF] Stulp | Robot skill learning: From reinforcement learning to evolution strategies[END_REF][START_REF] Deisenroth | A survey on policy search for robotics[END_REF]. This analysis is backed-up with several mathematical arguments, but it might be true mostly when the space Θ is smaller than the space X × U. Until recently, all deep RL methods were using action perturbation. But deep RL algorithms using policy parameter perturbation have recently been published, showing again that one can model the utility function in X ×U while performing exploration in Θ [START_REF] Fortunato | Noisy networks for exploration[END_REF][START_REF] Plappert | Parameter space noise for exploration[END_REF]. Exploration is currently one of the hottest topics in deep RL and directed exploration methods presented in Section 4 may play a key role in this story, despite the lower data efficiency of their policy improvement mechanisms [START_REF] Conti | Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[END_REF][START_REF] Colas | GEP-PG: Decoupling exploration and exploitation in deep reinforcement learning algorithms[END_REF].

Message 5: There are more arguments for learning a utility model in X × U than in Θ, but this ultimately depends on the size of these spaces and the structure of their relationship.

Transient versus persistent critic

At first glance, having a persistent critic may seem superior to having a transient one, for three reasons. First, by avoiding to compute the critic again at each iteration, it is computationally more efficient. Second, immediate updates favor data efficiency because the policy is improved as soon as possible, which in turn helps generating better samples. Third, being based on bootstrap methods, they give rise to more sample reuse. However, these statements must be differentiated, as two factors (described below) must be taken into account.

Trading bias against variance

Estimating the utility of a policy in X × U is subject to a bias-variance compromise [START_REF] Kearns | Bias-variance error bounds for temporal difference updates[END_REF]. On the one hand, estimating the utility of a given policy through Monte Carlo sampling -as is generally done in transient critic approaches -is subject to a variance which grows with the length of the episodes. On the other hand, incrementally updating a persistent critic reduces variance, but may suffer from bias, resulting in potential sub-optimality, or even divergence. Instead of performing bootstrap updates of a critic over one step, one can do so over N steps. The larger N , the closer to Monte Carlo estimation, thus tuning N is a way of controlling the bias-variance compromise. For instance, while the transient critic trpo algorithm is less sample efficient than actor-critic methods but more stable, often resulting in superior performance [START_REF] Duan | Benchmarking deep reinforcement learning for continuous control[END_REF], its immediate successor, ppo, uses N steps return, resulting in a good compromise between both families [START_REF] Schulman | Proximal policy optimization algorithms[END_REF].

Off-policy versus on-policy updates

In on-policy methods such as Sarsa, the samples used to learn the critic must come from the current policy, whereas in off-policy methods such as q-learning, they can come from any policy. In most transient critic methods, the samples are discarded from one iteration to the next and these methods are generally on-policy. By contrast, persistent critic methods using a replay buffer are generally off-policy7 .

This on-policy versus off-policy distinction is related to the bias-variance compromise. Indeed, when learning a persistent critic incrementally, using off-policy updates is more flexible because the samples can come from any policy, but these offpolicy updates introduce bias in the estimation of the critic. As a result, off-policy methods such as ddpg and naf are more sample efficient because they use a replay buffer, but they are also more prone to sub-optimality and divergence. In that respect, a key contribution of acer and Q-prop is that they provide an off-policy, sample efficient update method which strongly controls the bias, resulting in more stability (Gu et al., 2016a;Wang et al., 2016b;[START_REF] Wu | Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation[END_REF][START_REF] Gu | Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning[END_REF]. These aspects are currently the subject of intensive research but the resulting algorithms suffer from being more complex, with additional metaparameters.

Message 6: Persistent critic methods are superior to transient critic methods in many respects, but the latter are more stable because they decorrelate the problem of estimating the utility function from the problem of descending its gradient, and they suffer from less bias.

Conclusion

In this paper, we have contrasted various approaches to policy search, from evolutionary methods which do not learn a model of the utility function to deep RL methods which do so in the stateaction space.

In [START_REF] Stulp | Robot skill learning: From reinforcement learning to evolution strategies[END_REF], the authors have shown that policy search applied to robotics was shifting from actor-critic methods to evolutionary methods. Part of this shift was due to the use of open-loop dmps [START_REF] Ijspeert | Dynamical movement primitives: learning attractor models for motor behaviors[END_REF] as a policy representation, which favors episode-based approaches, but another part resulted from the higher stability and efficiency of evolutionary methods by that time.

The emergence of deep RL methods has changed this perspective. It should be clear from this survey that, in the context of large problems where deep neural network representations are now the standard option, deep RL is generally more sample efficient than deep neuroevolution methods, as empirically confirmed in (de Froissard de Broissia and Sigaud, 2016) and (Pourchot et al., 2018). The higher sample efficiency of deep RL methods, and particularly actor-critic architectures with a persistent critic, results from several mechanisms. They benefit from better approximation capability of non-linear critics and the incorporation of an adapted step size in SGD, they model the utility function in the state-action space, and they benefit from massive sample reuse by using a replay buffer. Using a target network has also mitigated the intrinsic instability of incrementally approximating a critic. However, it is important to acknowledge that incremental deep RL methods still suffer from significant instability8 .

Future directions

The field of policy search is currently the object of an intense race for increased performance, stability and sample efficiency. We now outline what we currently consider as promising research directions.

More analyses than competitions

Up to now, the main trend in the literature focuses on performance comparisons [START_REF] Duan | Benchmarking deep reinforcement learning for continuous control[END_REF][START_REF] Islam | Reproducibility of benchmarked deep reinforcement learning tasks for continuous control[END_REF][START_REF] Henderson | Deep reinforcement learning that matters[END_REF][START_REF] Petroski Such | Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning[END_REF] showing that, despite their lower sample efficiency, methods which do not build a model of utility are still a competitive alternative in terms of final performance [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF][START_REF] Chrabaszcz | Back to basics: Benchmarking canonical evolution strategies for playing atari[END_REF]. But stability and sample efficiency comparisons are missing and works analyzing the reasons why an algorithm performs better than another are only just emerging [START_REF] Lehman | ES is more than just a traditional finite-difference approximator[END_REF][START_REF] Zhang | On the relationship between the openai evolution strategy and stochastic gradient descent[END_REF][START_REF] Gangwani | Genetic policy optimization[END_REF]. By drawing an overview of the whole field and revealing some important factors behind sample efficiency, this paper was intended as a starting point towards broader and deeper analyses of the efficacy of various policy search methods.

More combinations than competitions

An important trend corresponds to the emergence of methods which combine algorithms from various families described above. As already noted in Section 4, directed exploration methods are often combined with evolutionary or deep RL methods [START_REF] Conti | Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[END_REF][START_REF] Colas | GEP-PG: Decoupling exploration and exploitation in deep reinforcement learning algorithms[END_REF]. There is also an emerging trend combining evolutionary or population-based methods and deep RL methods [START_REF] Jaderberg | Population based training of neural networks[END_REF][START_REF] Khadka | Evolutionary reinforcement learning[END_REF]Pourchot and Sigaud, 2018) which seem to be able to take the best of both worlds. We believe we are just at the beginning of such combinations and that this area has a lot of potential.

Beyond single policy improvement

Though we decided to keep lifelong, continual and open-ended learning outside the scope of this survey, we must mention that fast progress in policy improvement has favored an important tendency to address several tasks at the same time [START_REF] Yang | A unified perspective on multi-domain and multi-task learning[END_REF]. This subfield is extremely active at the moment, with many works in multitask learning [START_REF] Vezhnevets | Feudal networks for hierarchical reinforcement learning[END_REF][START_REF] Veeriah | Many-goals reinforcement learning[END_REF][START_REF] Gangwani | Policy optimization by genetic distillation[END_REF], Hierarchical Reinforcement Learning [START_REF] Levy | Hierarchical reinforcement learning with hindsight[END_REF][START_REF] Nachum | Data-efficient hierarchical reinforcement learning[END_REF] and meta reinforcement learning (Wang et al., 2016a), to cite only a few.

Finally, because we focused on these elementary aspects, we have left aside the emerging topic of state representation learning [START_REF] Jonschkowski | State representation learning in robotics: Using prior knowledge about physical interaction[END_REF][START_REF] Raffin | Unsupervised learning of state representations for multiple tasks[END_REF][START_REF] Lesort | State representation learning for control: An overview[END_REF] or using auxiliary tasks for improving deep RL [START_REF] Shelhamer | Loss is its own reward: Self-supervision for reinforcement learning[END_REF][START_REF] Jaderberg | Reinforcement learning with unsupervised auxiliary tasks[END_REF][START_REF] Riedmiller | Learning by playing-solving sparse reward tasks from scratch[END_REF]. The impact of these methods should be made clearer in the future.

Final word

As we have highlighted in the article, research in policy search and deep RL moves at a very high pace. Therefore, forecasting future trends, as we have done above, is risky, and even attempts to analyze the factors underlying current trends may be quickly outdated, but this also what makes this such an exciting research field.

Figure 2 :

 2 Figure2: Simplified classification of the algorithms covered in the paper. Θ is the space of policy parameters (see Section 2), O is an outcome space (see Section 4) and X × U is the state and action space (see Section 5). Algorithms not covered in[START_REF] Deisenroth | A survey on policy search for robotics[END_REF] have a lighter (green) background. References to the main paper for each of these algorithms is given in a table in the end of each section. From the left to the right, algorithms are grossly ranked in order of increasing sample reuse, but methods using a utility model in Θ and O show better sample choice, resulting in competitive sample efficiency.

Figure 3 :

 3 Figure 3: One iteration of evolutionary methods. (a) Population-based methods (b) Evolutionary Strategies (c) EDAs. Blue: current generation and sampling domain. Full blue dots: samples with a good evaluation. Dots with a red cross: samples with a poor evaluation. Green: new generation and sampling domain, empty dots are not evaluated yet. Red dots: optimum guess.In population-based methods, the next generation are offspring from several elite individuals of the previous generation. In ES, it is obtained from an optimum guess and sampling from fixed Gaussian noise. In EDAs, Gaussian noise is tuned using Covariance Matrix Adaptation.

Table 3 :

 3 Main directed exploration algorithms

Table 4 :

 4 Main reinforcement learning algorithms. Algorithms below the line have not yet been covered in[START_REF] Deisenroth | A survey on policy search for robotics[END_REF].

This distinction exactly matches the phylogenetic RL versus ontogenetic RL distinction in(Togelius et al.,

2009).

A blog with dynamical visualizations and more technical details can be found at http://blog.otoro.net/2017/10/ 29/visual-evolution-strategies/.

Hence the dotted line in Figure2.

The critic is generally persistent in actor-critic methods, but this is not the case in nac and enac.

The a3c algorithm is an incremental actor-critic method which does not use a replay buffer, and it is classified as onpolicy.

As outlined at https://www.alexirpan.com/2018/02/ 14/rl-hard.html.

Acknowledgments

Olivier Sigaud was supported by the European Commission, within the DREAM project, and has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N o 640891. Freek Stulp was supported by the HGF project "Reduced Complexity Models" and received funding from the European Commission through the project H2020 AnDy (GA no. 731540). We thank David Filliat, Nicolas Perrin and Pierre-Yves Oudeyer for their feedback on this article.