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Abstract

Consider the Markov process taking values in the partitions of N such that each
pair of blocks merges at rate one, and each integer is eroded, i.e., becomes a singleton
block, at rate d. This is a special case of exchangeable fragmentation-coalescence
process, called Kingman’s coalescent with erosion. We provide a new construction of
the stationary distribution of this process as a sample from a standard flow of bridges.
This allows us to give a representation of the asymptotic frequencies of this stationary
distribution in terms of a sequence of hierarchically independent diffusions. Moreover,
we introduce a new process called Kingman’s coalescent with immigration, where pairs
of blocks coalesce at rate one, and new blocks of size one immigrate at rate d. By
coupling Kingman’s coalescents with erosion and with immigration, we are able to show
that the size of a block chosen uniformly at random from the stationary distribution
of the restriction of Kingman’s coalescent with erosion to {1, . . . , n} converges to the
total progeny of a critical binary branching process.

1 Introduction

1.1 Motivation
In evolutionary biology, speciation refers to the event when two populations from the same
species lose the ability to exchange genetic material, e.g. due to the formation of a new
geographic barrier or accumulation of genetic incompatibilities. Even if speciation is usually
thought of as irreversible, related species can often still exchange genetic material through
exceptional hybridization, migration events or sudden collapse of a geographic barrier (Roux
et al., 2016). This can lead to the transmission of chunks of DNA between different species,
a phenomenon known as introgression, which is currently considered as a major evolutionary
force shaping the genomes of groups of related species (Mallet et al., 2016).

Our study of Kingman’s coalescent with erosion was first motivated by the following sim-
ple model of speciation incorporating rare migration events, depicted in Figure 1. Consider
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Figure 1: Illustration of the model with N = 5 species, represented by grey tubes, and
n = 3 genes, represented by the colored lines inside the tubes. A species can split into
two, simultaneously replicating its genome (speciation). A gene can replicate and move
from one species to another and then replace its homologous copy in the recipient species
(introgression). At present time a randomly chosen species is sampled: the ancestral lineages
of its genes are represented with bolder colors. The green lineage is first subject to an
introgression event and jumps to a new species. It is then brought back to the same species as
the other genes by a coalescence event. The corresponding partition-valued process obtained
by assigning the labels 1, 2 and 3 to the red, blue and green gene respectively is given.

a set of N monomorphic species, each harboring a genome of n genes indexed by {1, . . . , n}.
We model speciation by assuming that the dynamics of the species is described by a Moran
model: at rate one for each pair of species (s1, s2), species s2 dies, s1 gives birth to a new
species, replicates its genome and sends it into the daughter species. We also model intro-
gression by assuming that at rate d for each gene g ∈ {1, . . . , n} and each pair of species
(s1, s2), g is replicated, the new copy of g is sent from s1 to s2 and replaces its homolog in s2.
This assumption is justified by the following view in terms of individual migrants. Each time
a migrant goes from s1 to s2, if recombination is sufficiently strong, its genome rapidly gets
washed out by that of the resident species due to the frequent backcrosses (crosses between
descendants of the migrant and local residents) so that at most one gene among n reaches
fixation.

Now consider a fixed large time T , and sample uniformly one species at that time. We
follow backwards in time the ancestral lineages of its genes and the ancestral species to which
those genes belong. This induces a process valued in the partitions of {1, . . . , n} by declaring
that i and j are in the same block at time t if the ancestral lineages of genes i and j sampled
at T lied in the same ancestral species at time T − t.

At first (t = 0), all genes belong to the same ancestral species. Eventually this species
receives a successful migrant from another species. Backwards in time, the gene that has
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been transmitted during this event is removed from its original species and placed in the
migrant’s original species. Such events occur at rate (N −1)d for each gene, and the migrant
species is then chosen uniformly in the population. Once genes belong to separate species,
they can be brought back to the same species by coalescence events. Any two species find
their common ancestor at rate one, and at such an event the genes from the two merging
species are placed back into the same species.

This informal description shows that the partition-valued process has two kinds of tran-
sitions: each pair of blocks merges at rate one; each gene is placed in a new uniformly chosen
species at rate (N − 1)d. Setting the introgression rate to dN = d/N and letting N → ∞,
introgression events occur at rate d for each gene. At each such event the gene is sent to
a new species that does not contain any of the other n − 1 ancestral gene lineages, i.e., it
is placed in a singleton block. This is the description of Kingman’s coalescent with erosion,
that we now more formally introduce.

1.2 Kingman’s coalescent with erosion
Let n ≥ 1, we define the n-Kingman coalescent with erosion as a Markov process (Πn

t )t≥0

taking values in the partitions of [n] := {1, . . . , n}. Its transition rates are the following.
Started from a partition π of [n], the process jumps to any partition π′ obtained by merging
two blocks of π at rate 1. Moreover, at rate d for each i ≤ n, the integer i is “eroded”. This
means that if C is the block of π containing i, then the process jumps to the partition π′

obtained by replacing the block C by the blocks C {i} and {i}. (Obviously if C = {i}, i.e.,
if i is in a singleton block, no such transition can occur.)

Kingman’s coalescent with erosion is a special case of the more general class of partition-
valued processes called exchangeable fragmentation-coalescence processes, introduced and
studied in Berestycki (2004). These processes are a combination of the well-studied frag-
mentation processes, where blocks can only split, and coalescence processes, where blocks
are only allowed to merge. The main new feature of combining fragmentation and coa-
lescence is that they can balance each other so that fragmentation-coalescence processes
display non-trivial stationary distributions. In this work we will be interested into describing
the stationary distribution associated to Kingman’s coalescent with erosion. The following
proposition, which is a direct consequence of Theorem 8 of Berestycki (2004), provides the
existence and uniqueness of this distribution.

Proposition 1.1 (Berestycki 2004). There exists a unique process (Πt)t≥0 valued in the
partitions of N such that for all n ≥ 1, the restriction of (Πt)t≥0 to [n] is distributed as the
n-Kingman coalescent with erosion. Moreover, the process (Πt)t≥0 has a unique stationary
distribution Π.

Kingman’s coalescent with erosion is an exchangeable process in the sense that for any
finite permutation σ of N,

(σ(Πt))t≥0
(d)
= (Πt)t≥0.

It is then clear that the stationary distribution Π is also an exchangeable partition of N.
Exchangeable partitions of N are often studied through what is known as their asymptotic
frequencies. Let Π = (C1, C2, . . . ) be the blocks of the partition Π. Then, Kingman’s
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representation theorem (see e.g. Bertoin, 2006) shows that for any i, the following limit
exists a.s.

lim
n→∞

1

n

n∑
k=1

1{k∈Ci} = fi.

Let (βi)i≥1 be the non-increasing reordering of the sequence (fi)i≥1. We call (βi)i≥1 the
asymptotic frequencies of Π. The sequence (βi)i≥1 is such that

β1 ≥ β2 ≥ · · · ≥ 0,
∑
i≥1

βi ≤ 1.

Such sequences are called mass-partitions. Mass-partitions are studied because exchangeable
partitions are entirely characterized by their asymptotic frequencies. The partition Π can
be recovered from its asymptotic frequencies (βi)i≥1 through what is known as a paintbox
procedure. Conditionally on (βi)i≥1, let (Xi)i≥1 be an independent sequence such that for
k ≥ 1, P(Xi = k) = βk, and P(Xi = −i) = 1−

∑
k≥1 βk. Then the partition Π′ of N defined

as
i ∼Π′ j ⇐⇒ Xi = Xj

is distributed as Π (see e.g. Bertoin, 2006). We see that i is in a singleton block iff Xi = −i.
The set of all singleton blocks is referred to as the dust of Π, and the partition Π has dust
iff

∑
i≥1 βi < 1.

The main characteristics of the asymptotic frequencies of fragmentation-coalescence pro-
cesses have already been derived in Berestycki (2004), see Theorem 8. In the case of King-
man’s coalescent with erosion, these results specialize to the following theorem.

Theorem 1.2 (Berestycki 2004). Let (βi)i≥1 be the asymptotic frequencies of Π, the station-
ary distribution of Kingman’s coalescent with erosion. Then∑

i≥1

βi = 1, ∀i ≥ 1, βi > 0, a.s.

In other words, the partition Π has infinitely many blocks, and no dust.

Before stating our main two results, let us motivate them. Consider a partition Π̂ obtained
from a paintbox procedure on a random mass-partition (β̂i)i≥1, and denote Π̂n its restriction
to [n]. There are two sources of randomness in Π̂n. One originates from the fact that (β̂i)i≥1

is random. Moreover, conditionally on (β̂i)i≥1, Π̂n is obtained by sampling a finite number
of variables with distribution (β̂i)i≥1. Thus, in addition to the randomness of (β̂i)i≥1, Π̂n is
subject to a finite sampling randomness.

Suppose that Π̂ has finitely many blocks, say N , with asymptotic frequencies (β̂1, . . . , β̂N).
When n gets large, the finite sampling effects vanish and the sizes of the blocks of Π̂n resemble
(nβ̂1, . . . , nβ̂N). However, when Π̂ has infinitely many non-singleton blocks, there always
exists a large enough i such that the size of the block with frequency β̂i remains subject to
finite sampling effects in Π̂n. In this case it is not entirely straightforward to go from the
asymptotic frequencies (β̂i)i≥1 to the size of the blocks of Π̂n, as this involves a non-trivial
sampling procedure.
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In this work our task will be twofold. First, we will investigate the size of the “large
blocks” of Πn by describing the distribution of the asymptotic frequencies (βi)i≥1. In order
to get an insight into the distribution of the “small blocks” of Πn, we will rather study the
empirical distribution of the size of the blocks of Πn, for large n. Let us now state the
corresponding results.

1.3 Main results
We show two main results in this work. One is concerned with the size of the large blocks of
Kingman’s coalescent with erosion, and gives a representation of its asymptotic frequencies in
terms of an infinite sequence of hierarchically independent diffusions. The other is concerned
with the size of the small blocks and provides the limit of the distribution of the size of a
block chosen uniformly from the stationary partition when n is large. Let us start with the
former result.

Size of the large blocks. Let (Yi)i≥1 be an i.i.d. sequence of diffusions verifying

∀i ≥ 1, dYi = (1− Yi) dt+
√

Yi(1− Yi) dWi,

started from 0, and where (Wi)i≥1 are independent Brownian motions. It is known, see
e.g. Lambert (2008) Proposition 2.3.4, that each Yi is distributed as a Wright-Fisher diffusion
conditioned on hitting 1, and thus we have

∀i ≥ 1, lim
t→∞

Yi(t) = 1 a.s.

Accordingly, we set Yi(∞) = 1. We build inductively a sequence of processes (Zi)i≥1 and
time-changes (τi)i≥1 as follows. Set

∀t ≥ 0, Z1(t) = Y1(t), τ1(t) =

∫ t

0

1

1− Z1(s)
ds.

Then, suppose that (Z1, . . . , Zi) and (τ1, . . . , τi) have been defined, and set

∀t ≥ 0, Zi+1(t) = (1− Z1(t)− · · · − Zi(t))Yi+1(τi(t)),

∀t ≥ 0, τi+1(t) =

∫ t

0

1

1− Z1(s)− · · · − Zi+1(s)
ds.

Then we have the following representation of the asymptotic frequencies of the stationary
distribution of Kingman’s coalescent with erosion.

Theorem 1.3. Let (Zi)i≥1 be the sequence of diffusions defined previously. Then the non-
increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =

∫ ∞

0

de−dtZi(t) dt,

is distributed as the frequencies of the blocks of the stationary distribution of Kingman’s
coalescent with erosion rate d.
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Let us explain the intuition behind Theorem 1.3. Kingman’s coalescent is dual to a
measure-valued process called the Fleming-Viot process (Etheridge, 2000). The Fleming-
Viot process describes the offspring distribution of a population with constant size, while
Kingman’s coalescent gives the genealogy of that population. By a classical duality argu-
ment, Kingman’s coalescent at time t can be obtained by sampling individuals at time t
from a Fleming-Viot process and placing in the same block those that have the same ances-
tor (Bertoin and Le Gall, 2003). The link with Theorem 1.3 is that the diffusions (Zi)i≥1

correspond to the sizes of the offspring of the individuals of a Fleming-Viot process, ordered
by extinction time of their progeny, see Section 5. The integral transformation is roughly due
to the fact that in Kingman’s coalescent with erosion, one needs to place in the same block
the individuals that have the same ancestor at their last erosion event, which is an expo-
nential variable with parameter d. This heuristical argument is made rigorous in Section 5,
where Theorem 1.3 is proved.

Size of the small blocks. In order to capture the characteristics of the small blocks of
Πn, we study the empirical measure of the size of the blocks of Πn. Let Mn be the total
number of blocks of Πn, and let (|Cn

1 |, . . . , |Cn
Mn|) be their sizes. For each k ≥ 1, we denote

µn
k =

1

Mn
Card({i : |Cn

i | = k})

the frequency of blocks of size k. The probability vector (µn
k)k≥1 is the empirical measure of

the size of the blocks of Πn. We give the following characterization of the asymptotic law of
(µn

k)k≥1 and Mn.

Theorem 1.4. (i) The following convergence holds in probability

lim
n→∞

Mn

√
n

=
√
2d.

(ii) Moreover, for each k ≥ 1, the following convergence holds in probability

lim
n→∞

µn
k =

1

22k−1

1

k

(
2(k − 1)

k − 1

)
= P(J = k),

where J is the total progeny of a critical binary branching process.

In the previous proposition and hereafter we call critical binary branching process the
Markov process on N starting from 1 that jumps from k to k+1 and from k to k− 1 at rate
k. Its progeny is the sum of the initial number of particles and of the total number of birth
events, i.e., of jumps from k to k + 1, before the process is absorbed at 0.

Remark 1.5. It is interesting to notice that the limiting distribution of the vector (µn
k)k≥1 is

determinisitc and does not depend on the erosion coefficient d.

Remark 1.6. The convergence of the vector (µn
k)k≥1 is equivalent to the convergence in

probability of the empirical measure of the size of the blocks of Πn to the distribution of J in
the weak topology.
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Let us again discuss briefly the heuristic of our proof of this result. Erosion occurs at a
rate proportional to the size of the blocks, i.e., a block of size k is eroded at rate k, while
coalescence events do not take the sizes of the blocks into account. As there are only few
blocks with large size in Πn, and many small blocks, most coalescence events occur between
small blocks, while most erosion events occur within these few large blocks. When restricting
our attention to small blocks, we can neglect erosion, and consider that pairs of blocks coalesce
at rate 1, and that new blocks of size 1 appear at constant rate due to the erosion of the
large blocks.

This heuristic led us to consider a process analogous to Kingman’s coalescent with erosion,
where pairs of blocks coalesce at rate 1, but new singleton blocks immigrate at constant rate
d. We call this process Kingman’s coalescent with immigration. We consider the genealogy of
a block sampled uniformly from Kingman’s coalescent with immigration. We prove that this
genealogy converges, as the immigration rate goes to infinity, to a critical binary birth-death
process. See the forthcoming Proposition 3.6.

Outline. The remainder of the paper is organized as follows. In Section 2 we provide
two constructions of Kingman’s coalescent with immigration, as well as a coupling between
Kingman’s coalescents with erosion and immigration. Section 3 is then devoted to giving the
genealogy of the blocks of Kingman’s coalescent with immigration. We there prove a result
analogous to Theorem 1.4, see Proposition 3.1. Theorem 1.4 is proved in Section 4, where we
carry out the coupling between Kingman’s coalescents with erosion and immigration. Finally,
we prove Theorem 1.3 in Section 5.

Possible extensions. As we have mentioned, Kingman’s coalescent is part of the more
general class of fragmentation-coalescence processes. We now briefly discuss potential exten-
sions of our results to such processes.

The main ingredient of our study of the size of small blocks is that fragmentation is
faster for larger blocks, while coalescence occurs at the same speed regardless of the size of
the blocks. This allows us to neglect fragmentation and consider a purely coalescing system
where new blocks immigrate due to the fragmentation of the large blocks. First, this picture
remains valid for Λ-coalescents with erosion, but the proofs would be more involved because
computations could no longer be made explictly. Morever, we believe that this picture also
remains valid for a broad class of binary fragmentation measures. The particles that are
removed from the large block would no longer be of size one, but should not have time
to split on the time-scale when small blocks are formed, yielding a situation similar to the
erosion case.

Theorem 1.3 relies on a construction of the stationary distribution of Kingman’s co-
alescent with erosion from a Fleming-Viot process that can be directly generalized to Λ-
coalescents with erosion (and even to Ξ-coalescents with erosion) by using the corresponding
Λ-Fleming-Viot process. However, the explicit expression of the size of the blocks in terms
of hierarchically independent diffusions cannot be achieved in general. Nevertheless see the
end of Section 5 for a discussion of a possible extension of Theorem 1.3 to Beta-coalescents
with erosion.

Overall, the techniques and ideas we use in this work are not entirely specific to Kingman’s
coalescent with erosion. Nevertheless, in this case, the proofs are greatly simplified because all
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calculations can be made explicitly. This reason led us to restrict our attention to Kingman’s
coalescent with erosion in this work, and to leave possible extensions for future work.

2 Kingman’s coalescent with immigration
In this section we construct Kingman’s coalescent with immigration as a partition-valued
process such that pairs of blocks coalesce at rate 1 and new blocks immigrate at rate d.
Then, we give an alternative construction of Kingman’s coalescent with erosion from the
flow of bridges of Bertoin and Le Gall (2003). Finally, the coupling between Kingman’s
coalescents with erosion and with immigration is carried out in Section 2.4.

2.1 Definition
Consider a Poisson point process on R with intensity d dt, and let (Ti)i∈Z be its atoms
labeled in increasing order such that T0 < 0 < T1. The sequence (Ti)i∈Z corresponds to the
immigration times of new particles in the system.

Fix N ∈ Z, we will first define Kingman’s coalescent with immigration for the particles
that have a label larger that N , and then extend it to all particles by consistency. We do
that in the following way. Initially, set

∀t < TN , Π̄
N
t = O̸.

We now extend Π̄N
t to all real times by induction. Suppose that Π̄N

t has been defined on
(−∞, Tk), for k ≥ N . We first set

Π̄N
Tk

= Π̄N
Tk− ∪ {k}

to represent the immigration of the new particle with label k. We now let each pair of blocks
of Π̄N

t coalesce at rate one for Tk ≤ t < Tk+1. One can achieve this by considering, conditional
on

{
Π̄N

Tk
= π̄k

}
, an independent version (Πk

t )t≥0 of Kingman’s coalescent started from π̄k, and
setting

∀t < Tk+1 − Tk, Π̄
N
Tk+t = Πk

t .

We say that the process (Π̄N
t )t∈R is the N-Kingman coalescent with immigration rate d.

The following proposition shows that we can extend consistently the N -Kingman’s coalescent
with immigration to a process taking its values in the partitions of Z, and that it is a Markov
process whose transitions coincide with our intuitive description of Kingman’s coalescent
with immigration.

Proposition 2.1. (i) There exists a unique process (Π̄t)t∈R, called Kingman’s coalescent
with immigration rate d, such that for all N ∈ Z, its restriction to {i ∈ Z : i ≥ N} is
distributed as the N-Kingman coalescent with immigration.

(ii) With probability one, Π̄t has finitely many blocks for all t ∈ R.

(iii) The process (Π̄t)t∈R is Markovian. Conditional on
{
Π̄t = π̄

}
, where π̄ is a partition of

{i ∈ Z : i ≤ n}, each pair of blocks coalesce at rate 1, and at rate d the process goes to
the partition π̄ ∪ {n+ 1}, i.e., a new particle immigrates.
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Proof. (i) Let (Π̄N
t )t∈R be a N -Kingman’s coalescent with immigration. It is sufficient to

show that the restriction (Π̄N+1
t )t∈R of (Π̄N

t )t∈R to {i ∈ Z : i ≥ N + 1} is distributed as a
N +1-Kingman’s coalescent with immigration, and the result will follow from Kolmogorov’s
extension theorem. Obviously, the immigration times of (Π̄N+1

t )t∈R have the desired distri-
bution. The result is now a simple consequence of the sampling consistency of Kingman’s
coalescent.

(ii) Let us now prove the second point. Kingman’s coalescent has the property of coming
down from infinity (Kingman, 1982). This means that even if Kingman’s coalescent is started
from a partition with an infinite number of blocks, then for all positive times it will have only
finitely many blocks. Thus, as the number of immigrated particles is locally finite, Kingman’s
coalescent with immigration only has a finite number of blocks for all times a.s.

(iii) That each (Π̄N
t )t∈R is a Markov process is a direct consequence of the Markov property

of Kingman’s coalescent, and of the fact that the immigration times are distributed according
to an independent Poisson point process with intensity d. This readily implies the Markov
property of (Π̄t)t∈R.

An interesting consequence of the last result is that the process counting the number
of blocks of Kingman’s coalescent with immigration is a Markov birth-death process. More
precisely, for t ∈ R, let Mt be the number of blocks of the partition Π̄t. Then (Mt)t∈R is a
stationary birth-death process.

Corollary 2.2. The process (Mt)t∈R counting the number of blocks of Kingman’s coalescent
with immigration rate d is a stationary Markov process. Conditional on {Mt = k}, it jumps
to

• k + 1 at rate d.

• k − 1 at rate k(k − 1)/2.

2.2 Preliminaries on flows of bridges
The previous construction of the Kingman coalescent with immigration is based on Kol-
mogorov’s extension theorem. The aim of the next two sections is to give an alternative con-
struction of Kingman’s coalescent with immigration based on the flow of bridges of Bertoin
and Le Gall (2003). This construction will only be needed in Section 4 for the proof of
Theorem 1.3. In this section we recall the material on flows of bridges that will be needed.

Bridges. We call bridge (Bertoin and Le Gall, 2003) any random function of the form

∀u ∈ [0, 1], B(u) = (1−
∑
i≥1

βi)u+
∑
i≥1

βi1{u≥Vi},

for some random mass-partition (βi)i≥1 and an independent i.i.d. sequence of uniform [0, 1]
variables (Vi)i≥1. For a bridge B, we define its inverse B−1 as

∀u ∈ [0, 1), B−1(u) = inf{t ∈ [0, 1] : B(t) > u}, B−1(1) = 1.
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Let (Ui)i≥1 be a sequence of i.i.d. uniform variables. An exchangeable partition Π̂ of N can
be obtained from B and (Ui)i≥1 by setting

i ∼Π̂ j ⇐⇒ B−1(Ui) = B−1(Uj).

Let (C1, C2, . . . ) be the blocks of Π̂ labeled in decreasing order of their least elements, i.e.,
such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

To each block Ci is associated a unique random variable V ′
i defined as

∀j ∈ Ci, V
′
i = B−1(Uj).

If Π̂ has finitely many blocks, say M , for i > M we set V ′
i = Ṽ ′

i where (Ṽ ′
i )i≥1 is an

independent sequence of i.i.d. uniform random variables. The sequence (V ′
i )i≥1 will be referred

to as the sequence of ancestors of the blocks of Π̂. The key results on bridges from Bertoin
and Le Gall (2003) is their Lemma 2 that we state here for later use.

Lemma 2.3 (Bertoin and Le Gall 2003). Consider a bridge B, and let Π̂ and (V ′
i ) be re-

spectively the partition and sequence of ancestors obtained from B as above. Then (V ′
i )i≥1 is

independent of Π̂, and (V ′
i )i≥1 is a sequence of i.i.d. uniform variables.

The standard flow of bridges. A flow of bridges is defined as follows.

Definition 2.4. A flow of bridges is a family of bridges (Bs,t)s≤t such that:

(i) For any s ≤ u ≤ t, we have Bs,u ◦Bu,t = Bs,t.

(ii) For p ≥ 1 and t1 ≤ · · · ≤ tp, the bridges Bt1,t2 , . . . , Btp−1,tp are independent, and Bt1,t2

is distributed as B0,t2−t1.

(iii) The limit B0,t → Id as t ↓ 0 holds in probability in the Skorohod space.

A flow of bridges encodes the dynamics of a population represented by the interval [0, 1].
Let t ∈ R and x < y. If the interval [x, y] is interpreted as a subfamily of the population
at time t, then its progeny at time s ≤ t is represented by the interval [Bs,t(x−), Bs,t(y)].
(Notice that time is going backward: if t is the present, then s ≤ t represents the future of
the population.)

By the independence and stationarity of the increments of the flow, the distribution of
a flow of bridges is entirely characterized by the distribution of B0,t, for t ≥ 0. We will be
particularly interested into the so-called standard flow of bridges, that can be described as
follows. Let t ≥ 0 and consider the bridge

∀u ∈ [0, 1], B0,t(u) =
Nt∑
i=1

βi1{Vi≤u},

where
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(i) The process (Nt)t≥0 is distributed as a pure-death process started at ∞, and going from
k to k − 1 at rate k(k − 1)/2.

(ii) Conditionally on Nt, (β1, . . . , βNt) has a Dirichlet distribution with parameter (1, . . . , 1).

(iii) The variables (Vi)i≥1 is an independent i.i.d. sequence of uniform variables.

Then we know (Bertoin and Le Gall, 2003) that there exists a flow of bridges (Bs,t)s≤t such
that B0,t is distributed as above. It is called the standard flow of bridges.

Our interest in the standard flow of bridges is that is represents the dynamics of a popu-
lation whose genealogy is given by Kingman’s coalescent. Let (Ui)i≥1 be a sequence of i.i.d.
uniform variables, and let Π̂t be the partition obtained from the bridge B0,t and the sequence
(Ui)i≥1. We stress that the same sequence is used for all t. Then the process (Π̂t)t≥0 is
distributed as Kingman’s coalescent started from the partition of N into singletons (Bertoin
and Le Gall, 2003).

The Fleming-Viot process. One of the main advantages of flows of bridges is that they
couple a backward process, giving the genealogy of the population, and a forward process,
giving the size of the progeny of the individuals in the population. This forward process is
often encoded as a measure-valued process known as a Fleming-Viot process.

Let (Bs,t)s≤t be a standard flow of bridges. For each t ≥ 0, B−t,0 is the distribution
function of some random measure ρt on [0, 1]. The measure-valued process (ρt)t≥0 is called
a Fleming-Viot process (Etheridge, 2000). A well-known fact that we will use is that the
dynamics of the mass of a fixed interval is a Wright-Fisher diffusion. More precisely, let
x ∈ [0, 1] and Xt = ρt([0, x]). Then the process (Xt)t≥0 is a Wright-Fisher diffusion started
from x, i.e., it is distributed as the unique solution to

dX =
√
X(1−X) dW, X0 = x,

where W is a standard Brownian motion.

2.3 A flow of bridges construction of Kingman’s coalescent with
immigration

Let (Bs,t)s≤t be a standard flow of bridges. We now construct a version of Kingman’s coa-
lescent with immigration from (Bs,t)s≤t. Consider a Poisson point process on R× [0, 1] with
intensity d dt ⊗ dx, and let (Ti, Ui)i∈Z be its atoms, labeled in increasing order of their first
coordinate such that T0 < 0 < T1. Similarly to Section 2.1, the times (Ti)i∈Z correspond to
immigration times of new particles. Here the sequence (Ui)i∈Z represents the location in the
population of these immigrated particles.

For each t ∈ R, we define a partition Π̄t of {i ∈ Z : Ti ≤ t} by setting

i ∼Π̄t
j ⇐⇒ B−1

Ti,t
(Ui) = B−1

Tj ,t
(Uj).

The following proposition shows that (Π̄t)t∈R is distributed as Kingman’s coalescent with
immigration.
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Proposition 2.5. The process (Π̄t)t∈R defined from the flow of bridges is a version of King-
man’s coalescent with immigration rate d.

Proof. The proof almost identical to the proof of Corollary 1 of Bertoin and Le Gall (2003).
The main difference is that here the flow of bridges is sampled at various times (Ti)i∈Z while
for the classical Kingman coalescent, the flow of bridges is only sampled at an initial time.

We work conditionally on (Ti)i∈Z and consider these times as fixed. It is sufficient to show
that for all N ∈ Z, between immigration times the blocks of (Π̄N

t )t∈R coalesce according to
independent versions of Kingman’s coalescent.

Let t ∈ R, and let (C1, . . . , CMt) be the blocks of Π̄N
t , where Mt is the number of blocks,

and where the blocks are labeled such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

Similarly to Section 2.2, we can define the sequence of ancestors of Π̄N
t by setting

∀j ∈ Ci, V
′
i = B−1

Tj ,t
(Uj),

and supplementing it with an independent sequence of i.i.d. uniform variables (Ṽ ′
i )i≥1, i.e.,

defining ∀i > Mt, V ′
i = Ṽ ′

i .
Let us show by induction that for all k ≥ N ,

(i) The ancestors (V
(k)
i )i≥1 of Π̄N

Tk
are i.i.d. with uniform distribution.

(ii) The sequence (V
(k)
i )i≥1 is independent of (Π̄N

t )t≤Tk
.

(iii) (Π̄N
t )t≤Tk

is a version of the N -Kingman coalescent with immigration.

Fix Tk ≤ t1 < · · · < tp+1 ≤ Tk+1. By induction on p we can suppose that the sequence of
ancestors of Π̄N

tp , denoted by (V
(tp)
i )i≥1, is independent of

(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp

)
. Then (i)

and (ii) are proved if we can show that the sequence of ancestors of Π̄N
tp+1

is independent of(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp+1

)
.

Let us now call Π∗ the partition obtained from the bridge Btp,tp+1 and the sequence
(V

(tp)
i )i≥1, i.e.,

i ∼Π∗ j ⇐⇒ B−1
tp,tp+1

(V
(tp)
i ) = B−1

tp,tp+1
(V

(tp)
j ),

and let (V ∗
i )i≥1 be the sequence of ancestors of Π∗, i.e.,

∀j ∈ C∗
i , V

∗
i = B−1

tp,tp+1
(V

(tp)
j ),

where (C∗
1 , C

∗
2 , . . . ) denote the blocks of Π∗ labeled in increasing order of their minimal

elements as above. Using the fact that for u ≤ s ≤ t, B−1
u,t = B−1

s,t ◦ B−1
u,s, we get that for all

N ≤ i, j ≤ k,

i ∼Π̄tp+1
j ⇐⇒ B−1

tp,tp+1
(B−1

Ti,tp
(Ui)) = B−1

tp,tp+1
(B−1

Tj ,tp
(Uj))

⇐⇒ B−1
tp,tp+1

(V
(tp)

b(i) ) = B−1
tp,tp+1

(V
(tp)

b(j) )

⇐⇒ b(i) ∼Π∗ b(j) (1)

12



where b(i) denotes the label of the block of Π̄N
tp to which i belongs.

By independence of the increments of the flow of bridges, the bridge Btp,tp+1 is independent
of the collection of variables

(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp , (V
(tp)
i )i≥1

)
. Thus, (Btp,tp+1 , (V

(tp)
i )i≥1)

are independent of
(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp

)
, and hence (Π∗, (V ∗

i )i≥1) are independent of(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp

)
. Using Lemma 2.3, we get that Π∗ is independent of (V ∗

i )i≥1. This
shows that (V ∗

i )i≥1 is independent
(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp ,Π
∗). Using (1), we see that Π̄N

tp+1

can be recovered from Π̄N
tp and Π∗. Thus, the variables

(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp+1

)
are inde-

pendent of (V ∗
i )i≥1.

In order to end the proof of the claim we need to distinguish two cases. First, suppose
that tp+1 < Tk+1. Then, due to our labeling convention, we have that (V ∗

i )i≥1 = (V
(tp+1)
i )i≥1

(up to the auxiliary variables that play no role). Conversely, if tp+1 = Tk+1, then one of the
variables (V ∗

i )i≥1 has to be replaced by the ancestor Uk+1 of the block {k + 1}. More precisely,
if Π̄N

Tk+1
has Mk+1 blocks, again by labeling convention, the block {k + 1} has label Mk+1.

Thus, (V (tp+1)
i )i≥1 is recovered by setting V

(tp+1)
i = V ∗

i for i ̸= Mk+1, and V
(tp+1)
i = Uk+1 for

i = Mk+1. It is straightforward to see that as Uk+1 is independent of all other variables, the
sequence (V

(tp+1)
i )i≥1 remains independent of

(
(Π̄N

t )t≤Tk
, Π̄N

t1
, . . . , Π̄N

tp+1

)
and thus that points

(i) and (ii) of the claim hold.

For k ≥ N and t < Tk+1 − Tk consider the partition Πk
t of {i ∈ Z : N ≤ i ≤ k} defined as

i ∼Πk
t
j ⇐⇒ B−1

Tk,Tk+t(V
(k)
b(i)) = B−1

Tk,Tk+t(V
(k)
b(j))

where b(i) is the label of the block of Π̄N
Tk

to which i belongs. As the sequence (V
(k)
i )i≥1 is

i.i.d. uniform, the process (Πk
t )t<Tk+1−Tk

is a version of Kingman’s coalescent started from Π̄N
Tk

.
The that fact these coalescents are independent is a consequence of the previous induction.
This proves (iii), and ends the proof of the result.

2.4 Coupling erosion and immigration
We now explain the coupling between Kingman’s coalescents with erosion and with immi-
gration. Let n ≥ 1, consider a Poisson point process P n on R with intensity nd dt and let
(Ti)i∈Z be its atoms ordered increasingly such that T0 < 0 < T1. To each atom of the process
we attach a uniform mark in [n]. We denote by ℓi the mark attached to Ti, so that (ℓi)i∈Z is
a sequence of i.i.d. uniform variables on [n].

Consider t ∈ R. For each k ∈ [n], let φt(k) be the label of the last atom of P n with
mark k, i.e., φt(k) ∈ Z is the unique i such that ℓi = k and there is no atom T of P n with
Ti < T ≤ t carrying mark k. Let (Π̄t)t∈R be Kingman’s coalescent with immigration rate nd
built from the Poisson process (Ti)i∈Z as in Section 2.1. We define a partition Πn

t of [n] by
setting

i ∼Πn
t
j ⇐⇒ φt(i) ∼Π̄t

φt(j).

In words, i and j belong to the same block of Πn
t iff the last particles of (Π̄t)t∈R with marks

i and j have coalesced before time t. The key point of this construction is that (Πn
t )t∈R is

distributed as Kingman’s coalescent with erosion.
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Proposition 2.6. The process (Πn
t )t∈R is a stationary version of the n-Kingman coalescent

with erosion rate d.

Proof. Let k ∈ [n]. By thinning, the set of atoms of P n with mark k is a Poisson process
on R with intensity d dt, and these processes are independent. Thus new atoms of P n with
mark k arrive at rate d. Let us consider what happens at such an arrival time. Suppose that
ℓi = k. Then, by definition, we have φTi

(k) = i, as the atom Ti has mark k. Moreover, the
particle i is a singleton of the partition Π̄Ti

(it is the particle that has newly immigrated).
Thus at time Ti, the integer k is removed from its block and placed in a singleton block. This
is the description of an erosion event, which occur at rate d.

Let us now describe the dynamics between immigration times. The atoms of P n that are
the last atoms with their marks form a subset of the atoms P n. By sampling consistency of
Kingman’s coalescent, the restriction of the process (Π̄t)t∈R to these atoms is also distributed
as Kingman’s coalescent. Thus any two pairs of blocks of such atoms with a last mark
coalesce at rate one, and so does the blocks of (Πt)t∈R.

The fact that (Πt)t∈R is stationary follows from the stationarity of the Poisson point
process.

Combined with the construction of Kingman’s coalescent with immigration from the
standard flow of bridges, this coupling gives an interesting construction of the stationary
distribution of Kingman’s coalescent with erosion.

Corollary 2.7. Let (Bs,t)s≤t be a standard flow of bridges, (Ti)i≥1 and (Ui)i≥1 be independent
sequences of i.i.d. exponential variables with parameter d, and of uniform variables respec-
tively. Then the partition Π defined by

i ∼Π j ⇐⇒ B−1
−Ti,0

(Ui) = B−1
−Tj ,0

(Uj)

has the stationary distribution of Kingman’s coalescent with erosion rate d.

Proof. Consider a Poisson process P n on R× [0, 1] with intensity nd dt⊗ dx, and attach to
each atom of P n a uniform mark on [n]. If (Ti, Ui) denotes the last atom of P n with mark i
before t = 0, then Ti is exponentially distributed with parameter d, Ui is uniform on [0, 1],
and all these variables are independent. A combination of Proposition 2.6 and Proposition 2.5
now proves the result.

Remark 2.8. The construction of Kingman’s coalescent with immigration from Section 2.1
and the construction with the flow of bridges of Section 2.3 only rely on the sampling consis-
tency of Kingman’s coalescent. These constructions could be extended directly to a case where
the coalescence events occur according to a Λ-coalescent (Pitman, 1999; Sagitov, 1999). In
particular, the construction of the stationary distribution of Kingman’s coalescent with erosion
of Corollary 2.7 extends directly to Λ-coalescents with erosion if one replaces the standard
flow of bridges by the corresponding Λ-flow of bridges.
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3 Size of the blocks of Kingman’s coalescent with im-
migration

In this section we study Kingman’s coalescent with immigration. The main result we will
show is the following.

Proposition 3.1. Let n ≥ 1 and consider (Π̄n
t )t∈R a version of Kingman’s coalescent with

immigration rate nd. Let (|C̄n
1 |, . . . , |C̄n

p |) be the size of p blocks chosen uniformly from Π̄n
0 ,

then
(|C̄n

1 |, . . . , |C̄n
p |) =⇒ (J1, . . . , Jp)

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical binary
branching process.

We prove this result by choosing k blocks uniformly from Π̄n
0 , and counting backwards in

time the number of blocks that are ancestors of these blocks, i.e., that will further coalesce
to form these blocks. We show that this process converges, under appropriate scaling, to k
independent critical binary branching processes, yielding the result.

We first give a precise definition of the ancestral process counting the number of blocks in
Section 3.1, along with its basic properties. The convergence is then carried out in Section 3.2.

3.1 The ancestral process
Let (Π̄t)t∈R be a version of Kingman’s coalescent with immigration rate d. The process
(Π̄t)t∈R is naturally endowed with a notion of ancestry between its blocks. For t ∈ R, let Mt

be the number of blocks of Π̄t. Let (C̄1, . . . , C̄Mt) be an enumeration of the blocks of Π̄t. We
say that this enumeration is exchangeable if conditional on {Mt = k}, for any permutation
σ of [k],

(C̄1, . . . , C̄k)
(d)
= (C̄σ(1), . . . , C̄σ(k)).

We can always consider an exchangeable enumeration of the blocks of Π̄t by changing the
labels of any enumeration according to an independent uniform permutation.

For s ≤ t, consider Π̄t = (C̄1, . . . , C̄Mt) and Π̄s = (C̄ ′
1, . . . , C̄

′
Ms

) an enumeration of the
blocks of Π̄t and Π̄s respectively. In Kingman’s coalescent with immigration, a block present
at time s can only coalesce with other blocks. Thus, for any block C̄ ′

i, there is a unique block
C̄j of Π̄t such that C̄ ′

i ⊆ C̄j. We say that C̄ ′
i is an ancestor of C̄j.

Definition 3.2. Let (Π̄t)t≥0 be Kingman’s coalescent with immigration, and let (C̄1, . . . , C̄M0)
be the blocks of Π̄0 enumerated in an exchangeable order. For each t ≥ 0 and i ≤ M0, we
define At(i) to be the number of blocks of Π̄−t that are ancestors of C̄i. We set At(i) = 0 for
i > M0. Then defining At := (At(1),At(2), . . . ), the process (At)t≥0 is called the ancestral
process associated to (Π̄t)t∈R.

The definition of the ancestral process is illustrated in Figure 2. The process (At)t≥0

can be seen as a particle system where at time 0, there are M0 particles with distinct types,
and (At(i))t≥0 records the number of particles with type i. As we have reversed time, each
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Figure 2: In this example, we have Π̄−t = (C1, C2, C3). Each black circle represents an
immigration event, and the lines merge at the coalescence time of the blocks to which they
correspond. At t = 0 the blocks of Π̄0 are labeled according to the permutation σ, and the
value of (At)t≥0 is given below for some times.

coalescence event now corresponds to the birth of a new particle, and each immigration event
to the death of a particle.

Recall that (Mt)t∈R stands for the number of blocks of (Π̄t)t∈R forward in time. For each
t ∈ R, we define Nt := M−t, the number of blocks of (Π̄t)t∈R backwards in time. The process
(Nt)t≥0 also gives the number of particles of the ancestral process (At)t≥0, that is we have

∀t ≥ 0, Nt =
∑
i≥1

At(i).

The following proposition shows that the ancestral process is Markovian. This is a key
feature that makes Kingman’s coalescent with immigration easier to study than Kingman’s
coalescent with erosion.

Proposition 3.3. Let (At)t≥0 be the ancestral process associated to Kingman’s coalescent
with immigration rate d, and let (Nt)t≥0 be the number of particles of (At)t≥0. Then (At)t≥0

is a Markov process with initial condition

∀i ≤ N0, A0(i) = 1, ∀i > N0, A0(i) = 0.

Moreover, conditionally on At:

• each particle gives birth to a new particle of its type at rate d/Nt.

• each particle dies at rate (Nt − 1)/2.

The proof of Proposition 3.3 can be found in Appendix A, we only sketch it here. The
process (Mt)t∈R is a stationary birth-death process, with rates given in Corollary 2.2. A
simple calculation shows that it is actually a reversible process, i.e., with our notation, that
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(Nt)t≥0 is distributed as (Mt)t≥0. When (Nt)t≥0 jumps from k to k + 1, a particle has given
birth to two particles. By exchangeability of our system, the particle that gives birth is
chosen uniformly, i.e., each particle gives birth at the same rate d/k. Similarly, when (Nt)t≥0

jumps from k to k − 1 a particle chosen uniformly from the population dies. Thus each
particle dies at rate k(k − 1)/(2k) = (k − 1)/2.

Making the above argument rigorous involves counting the number of trajectories of
(Π̄t)t∈R yielding a given trajectory of (At)t≥0. We postpone it until Appendix A.

In order to prove Proposition 3.1, we need to keep track of the number of ancestors of k
blocks chosen uniformly from Π̄0. As we have chosen a uniform labeling of the blocks of Π̄0,
this amounts to considering the process (At(1), . . . ,At(k); t ≥ 0). Proposition 3.3 directly
gives us the distribution of this process.

Corollary 3.4. The process (At(1), . . . ,At(p), Nt; t ≥ 0) is a Markov process such that
conditional on {At(1) = a1, . . . ,At(p) = ap, Nt = k}, the process jumps to:

• (a1, . . . , ai + 1, . . . , ap, k + 1) at rate d
k
ai.

• (a1, . . . , ai − 1, . . . , ap, k − 1) at rate k−1
2
ai.

• (a1, . . . , ap, k + 1) at rate d
k
(k − a1 − · · · − ap).

• (a1, . . . , ap, k − 1) at rate k−1
2
(k − a1 − · · · − ap).

Proof. We see from the expression of the transition rates of (At)t≥0 that the rate at which
each particle splits or dies only depends on the rest of the population through the total
population size Nt. This is enough to prove the result.

3.2 Convergence
We now prove that the process (At(1), . . . ,At(p); t ≥ 0) converges to independent critical
binary birth-death processes when time is rescaled by a factor 1/

√
n. We start with the

following lemma.

Lemma 3.5. Let Mn have the stationary distribution of (Mn
t )t≥0, the number of blocks of

Kingman’s coalescent with immigration rate dn. The sequence (Mn/
√
n; n ≥ 1) is tight.

Proof. Let n ≥ 1 and consider a birth-death process (Xn
t )t≥0 such that conditional on

{Xn
t = k}, the process jumps to

• k + 1 at rate dn;

• k − 1 at rate µk,

where the death rate µk is defined as

µk =

{
0 if k <

√
2dn+ 1,

(
√
2dn+1)

√
2dn

2
else.
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The process (Xn
t − ⌊

√
2dn + 1⌋; t ≥ 0) is distributed as a simple random walk, reflected at

0. Thus it admits a geometric stationary distribution with parameter γn given by

γn =
2dn

(
√
2dn+ 1)

√
2dn

=
1

1 +
√

1
2dn

.

This shows that the process (Xn
t )t≥0 also admits a stationary distribution. If Xn has the

stationary distribution of (Xn
t )t≥0, then Xn is distributed as ⌊

√
2dn⌋+1+Y n, where Y n has

a geometric distribution with parameter γn.
Hence, for K and n large enough, we have

P
(
Xn ≤ K

√
n
)
≤ P

(
Y n ≤ K

√
n−

√
2dn

)
= 1− γ(K−

√
2d)

√
n

n

= 1− exp(−K −
√
2d√

2d
) + on(1).

Thus the sequence (Xn/
√
n; n ≥ 1) is tight.

Recall that (Mn
t )t≥0 is a birth-death process jumping from k to k+1 at rate dn, and from

k to k − 1 at rate k(k − 1)/2 ≥ µk. Its stationary distribution is thus dominated by that of
Xn, and this proves the result.

We now prove our main convergence result. The proof will use a result from Chapter 11
of Ethier and Kurtz (1986) on the a.s. convergence of rescaled Markov processes. In order to
stick to their notation, we introduce

∀t ≥ 0, N̂n
t = Nn

t/
√
n, Ân

t = An
t/
√
n,

and
∀x ≥ 0, β+(x) = d, β−(x) =

x2

2
, F (x) = d− x2

2

Proposition 3.6. Let (An
t )t≥0 be the ancestral process of Kingman’s coalescent with immi-

gration rate dn. Then

(
Ân

t (1), . . . , Ân
t (p),

N̂n
t√
n
; t ≥ 0

)
=⇒

(
X1(t), . . . , Xp(t),

√
2d; t ≥ 0

)
,

in the sense of convergence in distribution in the Skorohod space, and where the processes
(X1, . . . , Xp) are i.i.d. critical binary birth-death processes, with per-capita birth and death
rate

√
d/2.

Proof. We start by showing that the process (N̂n
t /

√
n; t ≥ 0) converges to the constant

process with value
√
2d. The process (N̂n

t )t≥0 is a Markov process jumping from

• k to k + 1 at rate d
√
n =

√
nβ+(

k√
n
).

• k to k − 1 at rate k(k−1)
2
√
n

=
√
nβ−(

k√
n
)− 1

2
√
n
.
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Thus, the process (N̂n
t )t≥0 is of the same form as the processes considered in Theorem 2.1 of

Chapter 11 of Ethier and Kurtz (1986), except that the scaling is
√
n and not n.

Let us consider a stationary version of the process (N̂n
t )t≥0. Lemma 3.5 shows that the

sequence (N̂n
0 /

√
n; n ≥ 1) is tight. We can thus find an increasing sequence of indices (nk)k≥1

such that the subsequence (N̂nk
0 /

√
nk; k ≥ 1) converges in distribution to a limiting variables

N . Using Skorohod’s representation theorem (see e.g. Billingsley, 1999), we can assume that
the convergence holds a.s.

Applying Theorem 2.1 of Chapter 11 of Ethier and Kurtz (1986) shows that the sequence
of processes (N̂nk

t /
√
nk; t ≥ 0, k ≥ 1) converges a.s. uniformly on compact sets to the solution

of

ẋ = F (x) = d− x2

2
, (2)

started from the random variables N . (The original theorem is given for a different scaling,
but the proof is easily adapted to ours.) As each process (N̂nk

t )t≥0 is stationary, the limiting
process is a stationary solution to (2), i.e., is the constant process with value

√
2d. This

shows that each converging subsequence of (N̂n
t /

√
n; t ≥ 0, n ≥ 1) converges to the same

constant process, and thus that the entire sequence converges.
Let us now prove the convergence of the ancestral processes. Consider independent Pois-

son processes (P−
i (t))t≥0, (P+

i (t))t≥0 for i ≤ p, and (P−
N (t))t≥0, (P+

N (t))t≥0. Using e.g. Theo-
rem 4.1 from Chapter 6 of Ethier and Kurtz (1986), there exists a unique strong solution to
the following equation

∀t ≥ 0,∀i ≤ p, Xn
i (t) = P+

i

(∫ t

0

d
√
nXn

i (s)

Y n(s)
ds

)
− P−

i

(∫ t

0

Xn
i (s)(Y

n(s)− 1)

2
√
n

ds
)
,

Y n(t) = P+
N

(∫ t

0

d
√
n(1−

∑
i X

n
i (s)

Y n(s)
) ds

)
− P−

N

(∫ t

0

Y n(s)(Y n(s)−1)
2
√
n

(1−
∑

i X
n
i (s)

Y n(s)
) ds

)
+

p∑
i=1

Xn
i (t).

Moreover, this solution (Xn
1 , . . . , X

n
p , Y

n) is distributed as (Ân
t (1), . . . , Ân

t (p), N̂
n
t ; t ≥ 0).

As Y n/
√
n converges in probability to the constant process with value

√
2d, we can find

a subsequence such that

lim
n→∞

d
√
n

Y n(t)
=

√
d

2
, lim

n→∞

(Y n(t)− 1)

2
√
n

=

√
d

2
a.s.

holds uniformly in t on compact sets. This is sufficient to show that for each i ≤ p, the
subsequence of processes (Xn

i (t))t≥0 converges a.s. in the Skorohod space to the solution
(Xi(t))t≥0 of

∀t ≥ 0, ∀i ≤ p, Xi(t) = P+
i

(∫ t

0

√
d

2
Xi(s) ds

)
− P−

i

(∫ t

0

√
d

2
Xi(s) ds

)
.

This proves that the entire sequence (Xn
1 , . . . , X

n
p ) converges in probability in the Skorohod

topology to the solution of the previous equation. Finally, noting that the solutions of
these equations are independent and distributed as critical binary branching processes with
branching rate

√
d/2 ends the proof.
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We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. By construction, the size of p blocks of Π̄n chosen uniformly is
given by the total number of particles of the processes (Ân

t (1), . . . , Ân
t (p); t ≥ 0). Thus, in

the limit, the size of these blocks converges to the total size of p independent critical binary
branching processes.

4 Proof of Theorem 1.4
In the previous section we have derived the limiting distribution of the sizes of blocks uni-
formly sampled from Kingman’s coalescent with immigration. In this section we make use
of the coupling between Kingman’s coalescent with immigration and Kingman’s coalescent
with erosion from Section 2.3 to get the analogous result in the erosion case.

We first show the following result.

Corollary 4.1. Let Πn have the stationary distribution of the n-Kingman coalescent with
erosion. Let (|Cn

1 |, . . . , |Cn
p |) be the size of p blocks chosen uniformly from Πn. Then

(|Cn
1 |, . . . , |Cn

p |) =⇒ (J1, . . . , Jp),

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical binary
branching process.

Proof. Recall the coupling between Kingman’s coalescent with erosion and Kingman’s co-
alescent with immigration. Let (Ti)i∈Z be the atoms of a Poisson point process P n with
intensity dn, labeled in increasing order such that T0 < 0 < T1. Consider an independent
i.i.d. sequence of marks (ℓi)i∈Z that are uniformly distributed on [n].

Let Π̄n
0 be the value at time 0 of the version of Kingman’s coalescent with erosion rate

nd built from (Ti)i∈Z as in Section 2.1. We know from Proposition 2.6 that we can obtain a
version Πn of the stationary distribution of the n-Kingman coalescent with erosion by placing
i and j in the same block of Πn if the last atoms of P n in (−∞, 0] with mark i and j both
belong to the same block of Π̄n

0 .
Now let (C̄n

1 , . . . , C̄
n
p ) be p blocks chosen uniformly from Π̄0, and let (|C̄n

1 |, . . . , |C̄n
p |) be

their respective sizes. For k ≤ p, let

|Cn
k | = Card

{
i ∈ C̄n

k : (Ti, ℓi) is the last atom in (−∞, 0] with mark ℓi
}
.

Then conditionally on
{
|Cn

1 | ≥ 1, . . . , |Cn
p | ≥ 1

}
, (|Cn

1 |, . . . , |Cn
p |) are the sizes of p blocks

chosen uniformly from Πn. The result is thus proved if we can show that

lim
n→∞

P
(
|Cn

1 | = |C̄n
1 |, . . . , |Cn

p | = |C̄n
p |
)
= 1.

Let us first explain intuitively why the previous claim holds. The ancestors of C̄n
1 have

all immigrated on a time-scale of order 1/
√
n. On this time-scale, there are of order

√
n

particles that have also immigrated. All these particles receive a uniform label in [n]. Thus
the probability that an ancestor of C̄n

1 has received the same label as one of the other
√
n
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particles, i.e., that it is not the first atom with its mark, is of order 1/
√
n. Let us make this

argument rigorous.
Set

τn1 := min
{
Ti : i ∈ C̄n

1

}
to be the total life-time of the ancestors of the block C̄n

1 . (The variable τn1 gives the immigra-
tion time of the first particle that forms the block C̄n

1 .) The total number of particles that
have immigrated during the time interval [τn1 , 0] is then P n([τn1 , 0]). Consider the event

Ek =
{
|C̄n

1 | = k, τn1 ∈ [− t√
n
, 0], P n([− t√

n
, 0]) ≤ (1 + ε)dt

√
n
}
.

On this event, if |Cn
1 | ̸= |C̄n

1 |, then one the k ancestors of C̄n
1 has received the same label as

one of the particle that has immigrated in the time interval [τn1 , 0], that is, the same label as
one of the (1 + ε)dt

√
n last atoms of P n. As the labels are chosen uniformly, the probability

that the k ancestors all have labels distinct from the labels of the (1 + ε)dt
√
n last particles

is (
1− 1

n

)
. . .

(
1− k − 1

n

)(
1− k

n

)(1+ε)dt
√
n−k

which goes to 1 as n goes to infinity for all fixed k. Thus

P
(
|Cn

1 | ̸= |C̄n
1 |, Ek

)
≤

(
1− 1

n

)
. . .

(
1− k − 1

n

)(
1− k

n

)(1+ε)dt
√
n−k

,

and

P
(
|Cn

1 | ̸= |C̄n
1 |
)
≤ P

(
τn1 ̸∈ [− t√

n
, 0]

)
+ P

(
|C̄n

1 | ≥ K
)

+ P
(
P n([− t√

n
, 0]) > (1 + ε)dt

√
n
)
+ on(1).

Now, by Proposition 3.1, the sequence (−
√
nτn1 )n≥1 converges in distribution to the total

life-time of a binary critical branching process, and (|C̄n
1 |)n≥1 converges to the total progeny

of this process. Thus, the first two terms in the above equation can be made as small as
desired uniformly in n by taking t and K large enough. Using Chebishev’s inequality, the
last term can also be made small by choosing a large enough ε. This proves the result for
p = 1 and a simple union bound proves the result for any p.

Remark 4.2. In the previous proof, on the event
{
|C̄n

1 | = |Cn
1 |
}

, not only the size of the blocks
of Kingman’s coalescents with erosion and immigration coincide, but also the genealogy of the
blocks. Thus we have shown the slightly stronger result that, in the n-Kingman coalescent with
erosion, the genealogy of a block chosen uniformly from the stationary distribution converges
to that of a critical binary branching process.

We can now prove Theorem 1.4. Recall that µn
k denotes the frequency of blocks of size k

of Πn, i.e., if the blocks of Πn are (Cn
1 , . . . , C

n
Mn), then

µn
k =

1

Mn
Card({i : |Cn

i | = k}).
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Proof of Theorem 1.4. (i) We start by proving that Mn/
√
n converges to

√
2d in probability.

Let us consider a version Π̄n of the stationary distribution of Kingman’s coalescent with
immigration rate nd, coupled with a version Πn of the stationary distribution of Kingman’s
coalescent with erosion rate d on [n]. Let M̄n, resp. Mn, denote the number of blocks of
Π̄n, resp. Πn. Recall that the blocks of Πn are subsets of the blocks of Π̄n, where a particle
is retained if there are no other particles with the same label that have immigrated after
it. Let |C̄n| be the size of a block of Π̄n chosen uniformly, and let |Cn| be the size of the
corresponding block of Πn. Some blocks of Π̄n are only composed of particles that are not
retained to form Πn. Such blocks have no corresponding blocks in Πn, and M̄n − Mn is
exactly the number of such blocks. Thus

E
[M̄n −Mn

M̄n

]
= P(|Cn| = 0) −→ 0.

This shows that Mn/M̄n goes to 1 in probability. Lemma 3.5 further shows that M̄n/
√
n

goes to
√
2d in probability, and thus that Mn/

√
n also goes to

√
2d in probability.

(ii) We prove the second point using the method of moments. Let (|Cn
1 |, . . . , |Cn

p |) be the
sizes of k uniformly sampled blocks of Πn. Then, as the number of blocks Mn goes to infinity,
we have that

lim
n→∞

E[(µn
k)

p] = lim
n→∞

P
(
|Cn

1 | = · · · = |Cn
p | = k

)
= P(J = k)p,

where J is the total progeny of a binary critical branching process. The convergence of the
moments readily implies convergence in distribution as the limit is a Dirac mass.

5 Asymptotic frequencies of Kingman’s coalescent with
erosion

In this section we prove Theorem 1.3, which gives a representation of the asymptotic fre-
quencies in terms of hierarchically independent diffusions. First, we use the flow of bridges
construction of Kingman’s coalescent with erosion from Corollary 2.7 to give a correspon-
dence between the frequencies of the blocks and the size of the families of a Fleming-Viot
process.

5.1 Eves of a Fleming-Viot process
Let (ρt)t≥0 be a Fleming-Viot process. For each individual x ∈ [0, 1], denote

ζ(x) = inf{t ≥ 0 : ρt({x}) = 0}

the extinction time of the offspring of x. It is clear that the set

{x ∈ [0, 1] : ζ(x) > 0} = {x ∈ [0, 1] : ρt({x}) > 0 for some t ≥ 0}

is countable. The elements of this set can actually be enumerated in decreasing order of their
extinction time, that is, they can be written (ei)i≥0 with

ζ(e1) > ζ(e2) > . . .
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This fact can be found e.g. in Labbé (2014), Theorem 1.6. The sequence (ei)i≥0 is called the
sequence of Eves of (ρt)t≥0, and was introduced in Bertoin and Le Gall (2003) and Labbé
(2014), see also Duquesne and Labbé (2014) for a similar notion for Continuous-State Branch-
ing Processes. The following result shows that the frequencies of the blocks of the stationary
distribution of Kingman’s coalescent with erosion can be recovered from the size of the off-
spring of the Eves.
Lemma 5.1. Let (ei)i≥1 be the Eves of a Fleming-Viot process (ρt)t≥0. Then the non-
increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =

∫ ∞

0

de−dtρt({ei}) dt

is distributed as the frequencies of the blocks of the stationary distribution of Kingman’s
coalescent with erosion rate d.
Proof. Consider a flow of bridges (Bs,t)s≤t, and let (Ti)i≥1, (Ui)i≥1 be two independent i.i.d.
sequences of exponential variables with parameter d, and uniform variables respectively.
Again, let Π be the partition of N defined as

i ∼Π j ⇐⇒ B−1
−Ti,0

(Ui) = B−1
−Tj ,0

(Uj),

which has the stationary distribution of Kingman’s coalescent with erosion. We denote
Π = (C1, C2, . . . ) the blocks of Π, ordered in increasing order of their least elements, i.e.,
such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

Then let us call
Ai = B−1

−Tj ,0
(Uj), ∀j ∈ Ci,

the ancestor of the block Ci.
As the flow of bridges (Bs,t)s≤t is independent of the sequences (Ui)i≥1 and (Ti)i≥1, the

sequence (B−1
−Ti,0

(Ui))i≥1 is exchangeable. Thus, the law of large numbers shows that for any
i ≥ 1,

1

n
Card(Ci ∩ [n]) =

1

n

n∑
j=1

1{
B−1

−Tj,0
(Uj)=Ai

} −→
n→∞

∫ ∞

0

de−dtρt({Ai}) dt a.s.

Thus the result is proved if we can show that a.s.

{ei : i ≥ 1} = {Ai : i ≥ 1}.

Clearly we have ζ(Ai) > 0, as otherwise the frequency of the block Ci would be zero. More-
over, conditionally on the flow of bridges, there exists a.s. some j ≥ 1 such that

(Uj, Tj) ∈
{
(x, t) : B−1

−t,0(x) = ei
}

as by definition of ei this set has positive Lebesgue measure. Thus, a.s. ei is the ancestor of
some block of Π, and the result is proved.

In order to prove Theorem 1.3, it remains to show that the sequence of processes
(
ρt({e1}),

ρt({e2}), . . . ; t ≥ 0
)

has the same distribution as the sequence of hierarchically independent
diffusions introduced in Section 1.3. In the following section we characterize this distribution,
and complete the proof in the last section.
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5.2 Wright-Fisher diffusion conditioned on its extinction order
Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn). That is, (X1, . . . , Xn) is
distributed as the unique solution to

∀i ≥ 1, dXi =
n∑

j=1
j ̸=i

√
XiXj dWi,j,

where (Wi,j)i<j are independent Brownian motions, and Wj,i = −Wi,j, and started from
an initial condition (x1, . . . , xn) ∈ (0, 1)n verifying x1 + · · · + xn = 1. The Wright-Fisher
diffusion describes the dynamics of a population with constant size, where individuals can be
of n different types; Xi denotes the frequency of type i individuals in the population. Each
process Xi is eventually absorbed at 0 or 1. We say that the family Xi reaches fixation if it
gets absorbed at 1, and that it becomes extinct otherwise. Let

ζi = inf{t ≥ 0 : Xi = 0}

denote its absorption time at 0.
In this section, we study the distribution of (X1, . . . , Xn) conditionally on the event

{ζn < · · · < ζ1}. First, notice that as X1 + · · · + Xn = 1, there is exactly one family that
reaches fixation. Thus, on the event {ζn < · · · < ζ1}, we have ζ1 = ∞ and X1 reaches fixation;
X2 is the last family to go extinct, and Xn is the first family to go extinct. We now express the
distribution of the conditioned Wright-Fisher diffusion in terms of the diffusions introduced
in Section 1.3.

We will work inductively, by first conditioning the process (X1, . . . , Xn) on ζ1 being the
largest extinction time, then on ζ2 being the second largest and so on and so forth. The
key point is that after conditioning on the fixation of X1, the remainder of the population,
(X2, . . . , Xn), is distributed as a rescaled, time-changed, unconditioned (n − 1)-dimensional
Wright-Fisher diffusion, independent of X1.

Let us be more specific and let Y1 be the solution of

dY1 = (1− Y1) dt+
√
Y1(1− Y1) dW1, (3)

for some Brownian motion W1. Notice that Y1 is distributed as a usual 1-dimensional Wright-
Fisher diffusion, conditioned on fixation. Consider the fixation time of Y1 which is defined
as

S1 = inf{t ≥ 0 : Y1(t) = 1}.

We further define a random time-change τ1 as

∀t < S1, τ1(t) =

∫ t

0

1

1− Y1(s)
ds, ∀t ≥ S1, τ1(t) = ∞.

We start by proving the following result.
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Lemma 5.2. Let Y1 and τ1 be as above and consider an independent (n − 1)-dimensional
Wright-Fisher diffusion (X2, . . . , Xn). Then, the process (Z1, . . . , Zn) defined as

Z1 = Y1, ∀i > 1,∀t ≥ 0, Zi(t) = (1− Z1(t))Xi(τ1(t)),

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on {ζ1 = ∞}.

Remark 5.3. The time τ1(t) is infinite with positive probability. However, each of the pro-
cesses (X2, . . . , Xn) has an a.s. limit as t goes to infinity. On the event {τ1(t) = ∞}, we take
Xi(τ1(t)) to be this limit, so that the process (Z1, . . . , Zn) is now well-defined.

Before proving Lemma 5.2, we need the following fact that we prove for the sake of
completeness.

Lemma 5.4. Let (Wt)t≥0 be a Brownian motion on R started at 1, and let T0 be the first
time it hits 0. Then for α ∈ R, a.s.∫ T0

0

Wα
s ds =

{
∞ if α ≤ −2

yα < ∞ if α > −2.

Proof. Let us define

∀t ≥ 0, ξt = W̃t −
t

2
, τ(t) = inf

{
s ≥ 0 :

∫ s

0

exp(2ξu) du > t
}
,

for a Brownian motion (W̃t)t≥0 with the convention that inf O̸ = ∞ and ξ∞ = −∞. The
Lamperti representation of positive self-similar processes (Lamperti, 1972) shows that Wt

stopped at T0 satisfies the equality in distribution

(Wt∧T0)t≥0
(d)
= (exp(ξτ(t)))t≥0.

Thus ∫ t∧T0

0

Wα
s ds

(d)
=

∫ t

0

exp(αξτ(s)) ds =

∫ τ(t)

0

exp((2 + α)ξs) ds,

and ∫ T0

0

Wα
s ds

(d)
=

∫ ∞

0

exp((2 + α)ξs) ds,

which yields the result.

Proof of Lemma 5.2. Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn). A cal-
culation of Doob’s h-transform using the harmonic function

h(x1, . . . , xn) = P
(
lim
t→∞

X1(t) = 1
∣∣∣X1(0) = x1, . . . , Xn(0) = xn

)
= x1

25



shows that the process (X1, . . . , Xn) conditioned on {limt→∞ X1(t) = 1} = {ζ1 = ∞} is dis-
tributed as the unique solution to the equation

dX1 = (1−X1) dt+
n∑

j=2

√
X1Xj dW1,j,

∀i ≥ 2, dXi = −Xi dt+
n∑

j=1
j ̸=i

√
XiXj dWi,j,

where (Wi,j)i<j are independent Brownian motions, and Wi,j = −Wj,i. We will prove that
the process (Z1, . . . , Zn) solves this equation.

Now consider a (n− 1)-dimensional Wright-Fisher diffusion (X ′
2, . . . , X

′
n) independent of

Y1 which solves

∀i ≥ 2, dX ′
i =

n∑
j=2
j ̸=i

√
X ′

iX
′
j dW

′
i,j.

We start by giving the equation solved by the process (Y1, X
′
2 ◦ τ1, . . . , X ′

n ◦ τ1). Notice that
here, only a subset of the processes are time-changed, and that τ1 explodes in finite time.
For these two reasons, let us realize the time-change carefully.

We transform τ1 into a family of finite stopping times. Our first task is to prove that τ1
goes continuously to infinity, we do this using the speed and scale measures of the diffusion
Y1, see e.g. Etheridge (2011). If we define D = 1/Y1, then

dD =
√
D − 1D dW1, ∀t ≥ 0, [D,D]t =

∫ t

0

(D(s)− 1)D(s)2 ds.

Thus we can write that∫ S1

0

1

1− Y1(s)
ds =

∫ S1

0

D(s)

D(s)− 1
ds

(d)
=

∫ S1

0

W1([D,D]s)

W1([D,D]s)− 1
ds =

∫ T1

0

1

(W1(s)− 1)2W1(s)
ds

where W1 is a Brownian motion started at 1/Y1(0), and T1 is the first time when W1 hits
1. We now know from Lemma 5.4 that this integral is a.s. infinite, and thus that τ1 goes
continuously to infinity, and does not “jump to infinity”.

Further consider the times

∀i ≥ 2, Si = inf{t ≥ 0 : X ′
i(t) = 1}, S = min(S2, . . . , Sn).

At time S, one of the families has reached fixation, and thus for t ≥ S we have X ′
i(t) = X ′

i(S).
Therefore, for all t ≥ 0, we have X ′

i(τ1(t)) = X ′
i(τ1(t)∧S), where the stopping time τ1(t)∧S is

now a.s. finite, and t 7→ τ1(t)∧S is continuous. (The continuity requires that τ1 does not jump
to infinity.) Thus, by making a time-change in the following integrals, see e.g. Kallenberg
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(2002), Theorem 17.24, we obtain

∀t ≥ 0, X ′
i(τ1(t)) = X ′

i(τ1(t) ∧ S)

=
n∑

j=2
j ̸=i

∫ τ1(t)∧S

0

√
X ′

i(s)X
′
j(s) dWi,j

=
n∑

j=2
j ̸=i

∫ t

0

√
X ′

i(τ1(s) ∧ S)X ′
j(τ1(s) ∧ S) dWi,j(τ1(s) ∧ S)

=
n∑

j=2
j ̸=i

∫ t

0

√
X ′

i(τ1(s))X
′
j(τ1(s))

1− Y1(s)
dW̃i,j

where
∀t ≥ 0, W̃i,j(t) =

∫ t

0

√
1− Y1(s) dWi,j(τ1(s) ∧ S).

A direct computation of the quadratic variations gives

∀i, j, t ≥ 0, [W̃i,j, W̃i,j]t = t ∧ S,

and the crossed variations are null. Thus a multidimensional version of Dubins-Schwarz
theorem, see e.g. Theorem 18.4 in Kallenberg (2002), shows that we can find independent
Brownian motions (Ŵi,j)i<j such that W̃i,j(t) = Ŵi,j(t∧S). This proves that the time-changed
processes solve

∀t ≥ 0, X ′
i(τ1(t)) =

n∑
j=2
j ̸=i

∫ t

0

√
X ′

i(τ1(s))X
′
j(τ1(s))

1− Y1(s)
dŴi,j.

A final application of Itô’s formula shows that the process (Z1, . . . , Zn) as defined above
solves the same equation as (X1, . . . , Xn) conditioned on {ζ1 = ∞}. This proves the result.

We can now proceed inductively. Let us set up the notation for the proof. Consider i.i.d.
processes (Y1, . . . , Yn−1) such that

∀i ≥ 1, dYi = (1− Yi) dt+
√
Yi(1− Yi) dWi

where (W1, . . . ,Wn−1) are independent Brownian motions. We set Z̃1 = Y1, and

∀t ≥ 0, τ̃1(t) =

∫ t

0

1

1− Z̃1(s)
ds.

We then define recursively, for i < n− 1,

∀t ≥ 0, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi+1(τ̃i(t))

∀t ≥ 0, τ̃i+1(t) =

∫ t

0

1

1− Z̃1(s)− · · · − Z̃i+1(s)
ds.

We finally set Z̃n = 1− Z̃1 − · · · − Z̃n−1.
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Proposition 5.5. The process (Z̃1, . . . , Z̃n) defined above is distributed as a n-dimensional
Wright-Fisher diffusion conditioned on {ζn < · · · < ζ1}.

Proof. We prove the result inductively. For n = 2, conditioning (X1, X2) on its extinction
order amounts to conditioning it on the fixation of X1, and Lemma 5.2 shows that the result
holds.

Let (Y1, . . . , Yn−1) be the i.i.d. diffusions defined above. We first define

∀t ≥ 0, Z̃ ′
2(t) = Y2(t), ∀t ≥ 0, τ ′2(t) =

∫ t

0

1

1− Z̃ ′
2(s)

ds

and then define inductively, for i < n− 1,

∀t ≥ 0, Z̃ ′
i+1(t) = (1− Z̃ ′

2(t)− · · · − Z̃ ′
i(t))Yi+1(τ̃

′
i(t)),

∀t ≥ 0, τ̃ ′i+1(t) =

∫ t

0

1

1− Z̃ ′
2(s)− · · · − Z̃ ′

i+1(s)
ds,

and Z̃ ′
n = 1− Z̃ ′

2 − · · · − Z̃ ′
n−1. By induction, we can suppose that (Z̃ ′

2, . . . , Z̃
′
n) is distributed

as a (n−1)-dimensional Wright-Fisher diffusion conditioned on its extinction order. We first
claim that the process defined as

∀t ≥ 0, Z̃1(t) = Y1(t),

∀i > 1,∀t ≥ 0, Z̃i(t) = (1− Z̃1(t))Z̃
′
i(τ̃1(t))

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on its extinction order.
To see this, let (X2, . . . , Xn) be a (n− 1)-dimensional unconditioned Wright-Fisher diffu-

sion, independent of Y1, and recall the definition of (Z1, . . . , Zn) from Lemma 5.2. Consider

ζ ′i = inf{t ≥ 0 : Zi(t) = 0}, ζi = inf{t ≥ 0 : Xi(t) = 0}

the extinction times of Zi and Xi. Lemma 5.2 ensures that (Z1, . . . , Zn) is distributed as
a Wright-Fisher diffusion conditioned on the fixation of Z1. Thus, the process (Z1, . . . , Zn)
further conditioned on {ζ ′n < · · · < ζ ′2} has the distribution of a Wright-Fisher diffusion con-
ditioned on its extinction order. Now notice that

{ζ ′n < · · · < ζ ′2} = {ζn < · · · < ζ2}.

Thus conditioning (Z1, . . . , Zn) on {ζ ′n < . . . ζ ′2} amounts to conditioning (X2, . . . , Xn) on
{ζn < · · · < ζ2}, that is, conditioning it on its fixation order. As {ζn < · · · < ζ2} is inde-
pendent of Z1, conditioning the process (Z1, . . . , Zn) on this event is equivalent to replacing
(X2, . . . , Xn) by (Z̃ ′

2, . . . , Z̃
′
n) in the construction of (Z1, . . . , Zn), and this proves the claim.

It only remains to show that Z̃i+1 as defined in the proof can be written

∀i > 1, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi(τ̃i(t)).

A direct calculation first shows that

∀i > 1, ∀t ≥ 0, τ̃i(t) = τ̃ ′i(τ̃1(t))

and the result follows.
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We end this section by pointing out the following fact that will be required in the next
section. We have only defined the Wright-Fisher diffusion conditioned on its extinction order
for an initial condition (x1, . . . , xn) such that for all 1 ≤ i ≤ n, xi > 0. Nevertheless, the
processes Yi have an entrance boundary at 0. Thus there exists a unique extension of the
process (Y1, . . . , Yn−1) started from (0, . . . , 0) that remains Feller, see e.g. Kallenberg (2002),
Chapter 23. This shows that a Wright-Fisher diffusion conditioned on its fixation order
(Z̃1, . . . , Z̃n) admits a Feller extension for the initial condition (0, . . . , 0, 1).

5.3 Proof of Theorem 1.3
Let (ρt)t≥0 be a Fleming-Viot process, and let (ei)i≥1 be its Eves. In this section we end
the proof of Theorem 1.3 by showing that the distribution of the sequence of processes
(ρt({e1}), ρt({e2}), . . . ; t ≥ 0) is that of a Wright-Fisher diffusion conditioned on its fixation
order.

The result we want to prove is the direct extension of Theorem 4 of Bertoin and Le Gall
(2003). Reformulated in our setting, this theorem proves that (ρt({e1}); t ≥ 0) is distributed
as the solution to eq. (3) started from 0. We now give a similar representation for the process
(ρt({e1}), . . . , ρt({en}); t ≥ 0) giving the size of the progeny of the first n Eves.

Proposition 5.6. Let (ρt)t≥0 be a Fleming-Viot process, and (ei)i≥1 be its Eves. Then for
any n ≥ 1, the process (ρt({e1}), . . . , ρt({en}); t ≥ 0) is distributed as (Z̃1, . . . , Z̃n) where
(Z̃1, . . . , Z̃n+1) is a (n+1)-dimensional Wright-Fisher diffusion conditioned on its extinction
order, started from (0, . . . , 0, 1).

Proof. We realize a similar computation as in the proof of Theorem 4 of Bertoin and Le Gall
(2003). The proof requires three facts. First notice that

lim
m→∞

ρt
(( ⌊m ei⌋

m
, ⌊m ei +1⌋

m

])
= ρt({ei}).

Then, if I1, . . . , In are n disjoint intervals of length 1/m, due to exchangeability of the incre-
ments of bridges, the process (ρt(I1), . . . , ρt(In); t ≥ 0) is distributed as the process(

ρt
((
0, 1

m

])
, . . . , ρt

((
n−1
m

, n
m

])
; t ≥ 0

)
which is distributed as the n first coordinates of a (n+1)-dimensional Wright-Fisher diffusion
started from ( 1

m
, . . . , 1

m
, 1− n

m
).

Finally, notice that on the event {∀i ̸= j ∈ {1, . . . , n}, ⌊m ei⌋ ̸= ⌊m ej⌋}, conditioning the
process (

ρt
((
0, 1

m

])
, . . . , ρt

((
n−1
m

, n
m

])
; t ≥ 0

)
on its extinction order as in Section 5.2 is equivalent to conditioning it on the location of the
Eves, i.e., on the event

{
∀k ∈ {1, . . . , n}, ek ∈

(
k−1
m

, k
m

]}
.

We can now proceed to the calculation. Let 0 ≤ t1 < · · · < tp and let φ1, . . . , φp be
continuous bounded functions. Consider (Z̃1, . . . , Z̃n+1) a (n+ 1)-dimensional Wright-Fisher
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diffusion conditioned on its extinction order. Then

E
[
φ1

(
ρt1({e1}), . . . , ρt1({en})

)
. . . φp

(
ρtp({e1}), . . . , ρtp({en})

)]
= lim

m→∞

m−1∑
i1=0

· · ·
m−1∑
in=0

E
[
φ1

(
ρt1

((
i1
m
, i1+1

m

])
, . . . , ρt1

((
in
m
, in+1

m

]))
. . .

φp

(
ρtp

((
i1
m
, i1+1

m

])
, . . . , ρtp

((
in
m
, in+1

m

]))
1{∀k∈{1,...,n}, ek∈( ik

m
,
ik+1

m ]}
]

= lim
m→∞

mnE
[
φ1

(
ρt1

((
0, 1

m

])
, . . . , ρt1

((
n−1
m

, n
m

]))
. . .

φp

(
ρtp

((
0, 1

m

])
, . . . , ρtp

((
n−1
m

, n
m

]))
1{∀k∈{1,...,n}, ek∈( k−1

m
, k
m ]}

]
= lim

m→∞
E
[
φ1

(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . φp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) =

1
m

]
= E

[
φ1

(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . φp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) = 0

]
,

where, the last line comes from the Feller property of the process (Z̃1, . . . , Z̃n+1).

Our current proof of Theorem 1.3 relies on calculations specific to the Wright-Fisher
diffusion. We end this section by discussing a potential alternative proof of this result that
would more easily generalize to Beta-coalescents.

The Feller branching diffusion describes the size of a population where different individuals
die and reproduce independently. Similarly to the Fleming-Viot process, it is possible to
define a measure-valued process, called the Dawson-Watanabe process, that encodes the size
of the offspring of each individual in the initial population, see e.g. Etheridge (2000). (Note
that there are no mutations here, i.e., no spatial motion of the particles.) Its total mass
is then distributed as a Feller diffusion. Starting from a Dawson-Watanabe process, one
can renormalize it by its total mass to obtain a process valued in the space of probability
measures. Then the resulting renormalized process is distributed as a time-changed Fleming-
Viot process, see Birkner et al. (2005).

Let us now discuss the results of Section 5.2 in the light of this new construction. The
key point of Section 5.2 is that after removing one family from a Fleming-Viot process
and renormalizing the remainder of the population to have mass one, the resulting process
remains distributed as an independent time-changed Fleming-Viot process. Suppose that the
Fleming-Viot process has been obtained by renormalizing a Dawson-Watanabe process. Then
removing a family from the Fleming-Viot process amounts to removing a family from the
original Dawson-Watanabe process. By the branching property, removing this family does
not change the distribution of the remainder of the population, which remains distributed as
an independent Dawson-Watanabe process. Thus when renormalizing the remainder of the
population to have size one, we obtain a new time-changed Fleming-Viot process, independent
of the removed family. In other words, the results of Section 5.2 essentially originate from the
fact that the Fleming-Viot process can be seen as a renormalized branching measure-valued
process.

A similar link has been obtained in Birkner et al. (2005) between the Λ-Fleming-Viot
processes associated to Beta-coalescents and a family of α-stable measure-valued branching
processes. Thus we believe that one could derive a similar, but less explicit, representation of
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the asymptotic frequencies of the stationary distribution of the Beta-coalescents with erosion
than the one obtained in Theorem 1.3.
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A Proof of Proposition 3.3
In this section, we prove that the ancestral process of Kingman’s coalescent with immigration
is Markovian. To do this, consider a version of Kingman’s coalescent with immigration
(Π̄t)t∈R, and let (Π̄i)i∈Z be its embedded chain, i.e., the sequence of states visited by (Π̄t)t∈R,
where Π̄0 is the state at time t = 0. We count the number of trajectories of (Π̄i)i∈Z that
produce a given trajectory of (Ai)i≥0, the embedded chain of (At)t≥0.

First, note that given the values of (Π̄−n, . . . , Π̄0) and a uniform permutation σ of the
blocks of Π̄0, one can uniquely reconstruct the values of (A0, . . . ,An). We now fix a sequence
(a0, . . . , an) of possible values of (A0, . . . ,An), and a partition π̄−n with |an| blocks, where
|an| is the total number of particles of an. Our first task is to count the number of trajec-
tories of (Π̄−n, . . . , Π̄0) starting from π̄−n, and of labelings σ of the blocks of Π̄0 such that
(A0, . . . ,An) = (a0, . . . , an). Before stating the result we need to introduce one notation.
The variable Ak+1 is obtained from Ak by splitting or killing one particle. Let us denote ℓk
the label of this particle. That is, ℓk is the unique integer such that

|Ak+1(ℓk)−Ak(ℓk)| = 1, ∀i ̸= ℓk, |Ak+1(i)−Ak(i)| = 0.

Lemma A.1. Fix a sequence of states (a0, . . . , an) of (A0, . . . ,An), and a partition π̄−n

of {i ∈ Z : i ≤ −n} with |an| blocks. Then the number of trajectories of (Π̄−n, . . . , Π̄0) and
labelings of the blocks of Π̄0 such that (A0, . . . ,An) = (a0, . . . , an) and Π̄−n = π̄−n is

|an|!
2b

a0(ℓ0) . . . an−1(ℓn−1),

where b is the number of birth events along the sequence (a0, . . . , an).

Proof. Each trajectory of (Π̄−n, . . . , Π̄0) naturally encodes a forest that can be built as follows.
Choose any labeling of the blocks of Π̄−n, and for each block add an initial leaf with the
corresponding label. Suppose that the forest corresponding to (Π̄−n, . . . , Π̄−k) has been built.
If Π̄−k+1 is obtained from Π̄−k by immigrating a new particle, then add a new isolated vertex.
Otherwise, a coalescence event has occurred between two blocks of Π̄−k. Then add a new
internal node and connect it to the nodes corresponding to the two blocks that have coalesced.
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Once the forest representing (Π̄−n, . . . , Π̄0) is built, by construction the nodes corresponding
to Π̄0 all belong to different trees. We set them to be the roots of their respective trees, and
label them according to the partition σ. (Notice that the resulting forest is endowed with
some additional structure: the nodes added along the procedure are totally ordered by the
induction step at which they have been added.)

Counting trajectories of (Π̄−n, . . . , Π̄0) now amounts to counting forests. Instead of build-
ing the forests by starting from the leaves as above, we build a forest with ancestral sequence
(a0, . . . , an) by starting from the roots. Initially, consider a set of |a0| roots, labeled by
{1, . . . , |a0|}, that represent the particles of a0. Nodes can be in two states: active or inac-
tive. Active nodes represent the particles that are still alive in the population while inactive
nodes represent the dead particles. Initialy all roots are active. We build the forest recur-
sively. Suppose that at step k we have built a forest such that for all i there are ak(i) nodes
that are active in the tree with root i. If a particle with label ℓk has died from ak to ak+1, we
inactivate one of the nodes belonging to the tree with root ℓk. There are ak(ℓk) such nodes.
Similarly, if a particle has split from ak to ak+1, we inactivate one node in the tree ℓk, and
connect it to two new active nodes. There are again ak(ℓk) active nodes in the tree ℓk. After
step n, we have built a forest with ancestral sequence (a0, . . . , an). We assign the blocks of
Π̄−n to the remaining active nodes of the forest by choosing one of the |an|! permutations of
the blocks.

There are
|an|! a0(ℓ0) . . . an−1(ℓn−1)

outputs of the previous construction, and all forests with ancestral sequence (a0, . . . , an) can
be obtained that way. However, due to symmetries, some forests can be obtained multiple
times through this construction. More precisely, at each birth events, the two daughter
nodes are indistinguishable. Interchanging the trees corresponding to the offspring of these
two nodes yields the same forest. Thus, the actual number of forests with ancestral sequence
(a0, . . . , an) is

|an|!
2b

a0(ℓ0) . . . an−1(ℓn−1)

where b is the number of birth events, and the result is proved.

Lemma A.2. Let (Mt)t∈R be the process counting the number of blocks of Kingman’s coales-
cent with immigration. Then (Mt)t∈R is a reversible process.

Proof. Let us compute the stationary distribution of (Mt)t∈R. As (Mt)t∈R jumps from k to
k + 1 at rate d and from k to k − 1 at rate k(k − 1)/2, a usual calculation shows that its
stationary distribution (νk)k≥1 is

∀k ≥ 1, νk ∝
(2d)k

k! (k − 1)!

where the renormalization constant is obtained by summing over all the terms. Thus a direct
calculation now proves that (νk)k≥1 fulfills the detailed balance equation

∀k ≥ 1, dνk =
k(k + 1)

2
νk+1

and thus that (Mt)t∈R is reversible.
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We are now ready to prove Proposition 3.3

Proof of Proposition 3.3. Recall the notations from Section 3.1. As proved in Lemma A.2,
the process (Mt)t∈R that counts the number of the blocks of Kingman’s coalescent with
immigration is a reversible Markov process. Thus, the process (Nt)t≥0 that gives the number
of particles of (At)t≥0 is a stationary process jumping from k to k + 1 at rate d, and from
k to k − 1 at rate k(k − 1)/2. Hence, the result is proved if we show that conditional on
(N0, . . . , Nn), the type of the particle that dies or splits from Ak to Ak+1 is chosen with a
probability proportional to the vector Ak. We have

P(A0 = a0, . . . ,An = an) =
∑

(π̄−n,...,π̄0)

∑
s

P
(
∀i < n, Π̄−i = π̄−i, σ = s

∣∣ Π̄−n = π̄−n

)
P
(
Π̄−n = π̄−n

)
where the sum is taken over all partitions π̄−n of {i ∈ Z : i ≤ −n} with |a0| blocks, all trajec-
tories (π̄−n+1, . . . , π̄0) and labelings s of the blocks of π̄0 such that (A0, . . . ,An) = (a0, . . . , an).
Now notice that the probability of seeing such a trajectory and labeling does only depend on
the sequence of number of blocks (|a0|, . . . , |an|). Indeed we have

P
(
∀i < n, Π̄−i = π̄−i, σ = s

∣∣ Π̄−n = π̄−n

)
=

1

|a0|!

n−1∏
i=0

d1{|ai+1|−|ai|=−1} + 1{|ai+1|−|ai|=1}

d+ |ai+1|(|ai+1| − 1)/2
.

Thus the probability of the event {A0 = a0, . . . ,An = an} is proportional to the number of
terms in the sum, and thus to the number of trajectories of (Π̄−n, . . . , Π̄0) that correspond
to this ancestral sequence. Hence, Lemma A.1 shows that

P(A0 = a0, . . . ,An = an) ∝ a0(ℓ0) . . . an−1(ℓn−1),

where the coefficient only depends on (|a0|, . . . , |an|). This proves the result.

Let us end this section by discussing a possible extension to Λ-coalescents. The key point
here is that conditionally on the block counting process, the particles that die or split are
chosen uniformly in the population. This is a consequence of 1) Lemma A.1 and 2) the fact
that all trajectories with a given sequence of number of blocks have the same probability.
The second point is a consequence of exchangeability so remains valid for Λ-coalescents. As
for Lemma A.1, the proof could be easily adapted to Λ-coalescents with immigration. (The
factor 2b should be replaced by the product of the number of blocks involved in coalescence
events.)

Thus, the only difference between Kingman’s coalescent with immigration and more gen-
eral Λ-coalescents with immigration is that the block counting process is no longer reversible.
Hence we cannot obtain a closed form for the transition rates of the corresponding ancestral
processes. Nevertheless, we believe that in some cases it should be possible to obtain a result
similar to Theorem 1.4 by using the same techniques as in this paper, if one can derive a
good enough approximation for the stationary distribution of the number of blocks.
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