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Abstract A new set of CORDEX simulations over South America, together with their coarser-
resolution driving Global Climate Models (GCMs) are used to investigate added value of Regional
Climate Models (RCMs) in reproducing mean climate conditions over the continent. There are
two types of simulations with different lateral boundary conditions: five hindcast simulations
use re-analysis as boundary conditions, and five other historical simulations use GCMs out-
puts. Multi-model ensemble means and individual simulations are evaluated against two or three
observation-based gridded datasets for 2-meter surface air temperature and total precipitation.
The analysis is performed for summer and winter, over a common period from 1990 to 2004.
Results indicate that added value of RCMs is dependent on driving fields, surface properties of
the area, season and variable considered. A robust added value for RCMs driven by ERA-Interim
is obtained in reproducing the summer climatology of surface air temperature over tropical and
subtropical latitudes. Mixed results can be seen, however, for summer precipitation climatology
in both hindcast and historical experiments. For winter, there is no noticeable improvement by
the RCMs for the large-scale precipitation and surface air temperature climatology. To further
understand the added value of RCMs, models deviations from observation are decomposed ac-
cording to different terms that reflect the observational uncertainty, the representativeness error,
the interpolation error, and the actual performance of the model. Regions where these errors are
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not negligible, such as in complex terrain regions, among others, can be identified. There is a
clear need for complementary assessment to understand better the real value added by RCMs.

Keywords Model assessment - Seasonal climatology - Added value - South America - CORDEX

1 Introduction

Regional Climate Models (RCMs), also called limited area models, are one of the most common
downscaling tools applied to Global Climate Models (GCMs) output or global reanalysis. The
main purpose of using RCMs is to provide physically-consistent regional to local climate informa-
tion in scales that cannot be represented in the coarser-resolution driving data. The fundamental
hypothesis of this technique is that while the GCM provides large-scale information to the RCM
through lateral boundary conditions, the RCM can reproduce sub-scale information within a
limited domain (Laprise, 2008). One of the key debates associated with RCMs is whether they
improve their driving GCMs. In this context, added value (AV) is defined as a measure of the
extent to which downscaled climate is closer to the observation that the model from which the
boundary conditions are obtained (IPCC, 2013).

When it is to identify the added value of an RCM, it is important to note that not all available
metrics are optimal for its calculation. The methodology selected should not only assess model
performance but should also consider in some way the difference between the resolution of the
RCM and its driving data. For example, Gilleland et al. (2009) argue that most traditional
verification metrics are based on a point-to-point validation without any consideration of the
spatial information. Kanamitsu and DeHaan (2011) illustrate this problem by showing that the
identification of high skill regions is lost when averaging over large areas. They also raised the idea
of differentiating relevant terms in the deviations between RCM and its driving GCM, including
terms related to model resolution or model error. They conclude that the deviations of the model
from the validating observations can not only be associated with the model performance but also
with model resolution, interpolation, and observational uncertainty. For these reasons, many
authors proposed new AV metrics to assess model performance (Denis et al., 2002, Feser and
von Storch, 2005, Kanamitsu and DeHaan, 2011, Di Luca et al., 2012, Wang et al., 2015, among
others).

The growing interest of the Regional Climate Model Community on assessing the AV of RCMs
is accompanied by an important production of scientific articles focused on this issue. General
conclusions regarding AV of RCMs are not easy to obtain, as results depend on many factors,
such as the study domain, the model evaluated, the reference used, the variable analyzed, the
temporal scale, the specific application, the experiment configuration, along others (Torma et al.,
2015, Giorgi and Gutowski, 2015, Di Luca et al., 2015). Nevertheless, a general consensus is that
AV signal is expected for mesoscale atmosphere phenomena (Feser et al., 2011, Di Luca et al.,
2012, Karmacharya et al., 2016, Lucas-Picher et al., 2016), over regions with complex surface
forcing (Gao et al., 2006, De Haan et al., 2014, Di Luca et al., 2012, Prommel et al., 2010, Feser
and von Storch, 2005, Lenz et al., 2017), and also for extreme events (Coppola et al., 2014,
Giorgi, 2002, Di Luca et al., 2012, Rummukainen, 2016, Prein et al., 2016). One of the main
debates is whether RCMs can add value for large-scale mean values. While some works find an
improvement on representing the mean large-scale features (Kerkhoff et al., 2014, Llopart et al.,
2014, Nikulin et al., 2012, Torma et al., 2015, Fotso-Nguemo et al., 2017, Veljovic et al., 2010,
Prein et al., 2016), others find a deterioration (Coppola et al., 2014, Feser, 2006, Giorgi et al.,
2014, Roads et al., 2003, Mishra et al., 2017).

Over South America (SA), the limited computational resources currently available in local re-
search institutions makes RCMs the most viable tool for the production of high-resolution climate
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simulations. This has, in turn, prompted the need for understanding regional climate modeling
strengths and weaknesses over the continent by establishing common experimental frameworks.
Under these circumstances, Roads et al. (2003) were the first to analyze an ensemble of four
RCMs driven by the NCEP/NCAR I global reanalysis (Kalnay et al., 1996), followed by CREAS
regional program (Marengo et al., 2009). The CLARIS (Menéndez et al., 2010) and CLARIS-LPB
Projects (Boulanger et al., 2016) succeeded to create a large ensemble of regional simulations,
involving different RCMs driven by ERA-Interim reanalysis (Dee et al., 2011) and CMIP3 Global
Climate Models (Meehl et al., 2007). The CLARIS-LPB Project comprehended two types of sim-
ulations for the recent past concerning the boundary forcing: the hindcast simulations and the
historical simulations.

Simulating SAs climate is challenging due to the extension of the continent, and the local to
regional climatic features associated to the South American Monsoon (SAM) System over tropical
and subtropical latitudes, and also to frontal activities over mid-latitudes (Garreaud et al., 2009).
While GCMs are generally capable of reproducing the main large-scale circulation characteristics,
their performance deteriorates when evaluating regional aspects of climate (Gulizia et al., 2013,
Rusticucci et al., 2010, Silvestri and Vera, 2008, Zazulie et al., 2017). For example, Gulizia et al.
(2013) and Zazulie et al. (2017) found that CMIP5 GCM simulations (Taylor et al., 2012) do not
reproduce adequately the moisture transport associated with the South American Low-Level Jet.
Previous works have assessed regional climate simulations over SA within the context of CLARIS-
LPB Project (Carril et al., 2012, 2016, Lépez-Franca et al., 2016, Sdnchez et al., 2015, Solman,
2016, Solman et al., 2013, Zaninelli et al., 2015, 2018, Sanabria and Carril, 2018, Menéndez et al.,
2016), indicating an overall good performance of RCMs in reproducing different aspects of the
observed climate. However, none of these works focus entirely on the AV issue, and only a few
of them (Sénchez et al., 2015, Solman, 2016) make a general comparison of the RCM with its
driving data.

Apart from CLARIS-LPB Project, the CREMA experiment (Coppola et al., 2014) succeeded
to produce several simulations of RegCM4 RCM forced by different GCMs and reanalysis over
SA. When comparing these simulations with their driving data, the results suggest an added
value of RegCM4 in reproducing extreme events over SA (Coppola et al., 2014, Giorgi et al.,
2014). Also, the model partly reduces the dry bias of precipitation in the Amazon Basin when
comparing to different CMIP5 GCMs (Llopart et al., 2014, da Rocha et al., 2014). Some few more
works have addressed the added value issue over SA, and there are no matching results: Roads
et al. (2003) assessed the capabilities of RCMs to make skillful forecasts compared to its forcing
data over SA, finding no noticeable improvement in precipitation when assessing the large-scale
fields; Seth et al. (2007) studied the performance of RCMs forced by reanalysis for different
regions on tropical and extratropical latitudes in SA. In their work they concluded that regions
where remote influences are strong (Northeast SA, Southeast SA, and Amazon regions) the AV
of RCMs is low; by contrast, where local processes dominate and remote influences are weak
(maximum monsoonal precipitation region) there is some potential for the regional model to add
value. Finally, De Sales and Xue (2011) assessed the role of resolution on the South American
climate simulation by performing a sensitivity test with the Andean topography represented
by different heights. They suggested that height representation of the Andes Mountain Range
topography impact on low-level moisture flux transport and therefore on precipitation in La
Plata Basin.

Within the CORDEX framework (Giorgi and Gutowski, 2015), several simulations with
updated model versions have been recently incorporated to the CORDEX SA domain (Fig.
1), enabling the availability of state-of-the-art nested RCMs at a horizontal resolution of
~0.44°x~0.44°. Therefore, motivated by the availability of new simulations and the lack of
studies about AV over the continent, this work aims to assess the AV of CORDEX simulations in
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South America. As a first step, we evaluate the capacity of RCMs to simulate seasonal mean pre-
cipitation and surface air temperature over SA through its comparison to their coarser-resolution
driving data. We believe this is a fundamental step, not only for RCM evaluation but also due
to the discrepancies in the literature whether RCMs can add value or not over large-scale mean
values (Llopart et al., 2014, Roads et al., 2003).

Summer regions Winter regions

80°W 60°W 40°W 80°W 60°W 40°W

250 750 1250 1750 2250
meters

Fig. 1 CORDEX region 1 domain, with ETOPO2 (National Geophysical Data Center, 2006) terrain height (m)
indicated in shading. Boxes in solid-black lines denote areas selected for area-mean assessment.

The paper is organized as follows: in section 2 we first describe the observed and simulated
data used in this study, followed by the introduction of model errors and observed uncertainties. In
section 3 we assess the general and regional performance of individual and multi-model ensemble
data in simulating the seasonal spatial patterns of the mean state, including a regional assessment
of model errors and observational uncertainties. Finally, in section 4, we present a discussion of
the most relevant results together with our main conclusions.

2 Data and methods
2.1 CORDEX simulations and observed data

For our analysis, we selected the common time period of the integrations, covering from 1990
to 2004, to keep the same time-scale variability. The seasons considered were austral summer
(December, January, and February) and winter (June, July, and August). All RCMs use roughly
the same domain and horizontal resolution (~0.44°x~0.44°), but different grid types. For a
direct assessment and intercomparison of RCM simulations, we interpolated all original monthly
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precipitation and 2-meter-temperature data onto a regularly spaced latitude/longitude grid of
0.5°x0.5°. ERAi and CMIP5 GCM fields were also interpolated into a common regularly spaced
grid of 1.5°x1.5°. Both variables were interpolated using a bilinear interpolation procedure, and
a height correction was applied to the surface air temperature fields. The height correction
consisted of adding the difference between the model native height (interpolated into the regular
grid) and the observed height, multiplied by a standard lapse rate of -6,5°/km.

Table 1 Overview of Regional Climate Models used in the present study and their boundary conditions.

Experiment Acronym RCM id / Reference Resolution /  Boundary condition id / Boundary
Number of Reference resolution
grid points

s NOICTMIEE T 0Mn0 PONEEANT

REMO2009-fERAi 1}/;12;)030;{21\04%009 O 04 BOMWE-BRAINT 1.5°%1.5°

RCA4ERAI f{hf;{liggﬁ . (2014) O 04 BOMWE-BRAINT 1.5°x1.5°

RegCM4-fERAI gz:;lztei(il\g(ﬁm (l)ggfl’;%w ECMWF-ERAINT 1.5°%1.5°

WRF3411-fERAi ggﬁg;xg;?’iilmoog)) ?412?120%440 ECMWEF-ERAINT 0.75°x0.75°

ROACECEARTH il o1y ti6elor Hoselegor o ol (2010) 12575125

REMO2006-{MPI Jacob et ol (2012) . VibadT  Stevensetal (oug)  LSTOXLSTS

WRr sy JONVREMIL 0008 CCOMCMENE

ooy [CIPROME T i MORCIMGRS

LMDZ4-fIPSL-CM5A goslllrld%rlrd (5 Zajl1 (2006) ?B(Zif;gwmso Eosul;:iicrxiil. (2012) 3.75°x1.9°

Different gridded data for precipitation and surface air temperature were used to evaluate the
simulations. With the goal of measuring the uncertainty among observation data sets, we consider
three station-based monthly data for precipitation (CRU, UDEL and CPC-UNI), over land on
a 0.5°x0.5° resolution. We also considered two of the above data sets (CRU and UDEL) for
surface air temperature. Complementary to the interpolation of model simulations, the observed
datasets were also interpolated using the same procedure to the same 0.5°x0.5° regular grid, and
also, to the 1.5°x1.5° grid to allow GCM evaluation. Throughout the work, the set of observed
datasets is denoted as Obs, and the reference field for the assessment is calculated as the average
across all the observed datasets.

2.2 Model error and observational uncertainties

The main advantage of RCMs is they are integrated with a higher spatial resolution than their
boundary-condition providers and, therefore, add to the latter information on a regional scale.
Thus, one can distinguish between two different spatial scales: the small scales that can be
reproduced only by the RCM and the large scales reproduced by both simulations. However,
when it comes to consciously comparing an RCM with its driving data, there is no optimal
methodology to follow (Prein et al., 2016). On the one hand, if we choose to interpolate the
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RCM and the observations to the resolution of the GCM, we would benefit the GCM, since we
are removing the small-scale variability of the RCM. But if we interpolate the global model to
the resolution of the regional model and the observations, then the GCM is disfavored since
the reduction of the grid will generate non-consistent physical information. In this paper, we
performed the evaluation of the experiments in their resolution, that is, in a 0.5° grid for the
regional simulations and a 1.5° grid for the global simulations. However, for the evaluation to be
adequate, we considered other sources of error associated with grid interpolation, resolution and
observational uncertainty.

Kanamitsu and DeHaan (2011) introduced a clear picture of model error or deviation from the
observed reference by describing the whole process of model validation. Firstly, each grid point
value in model represents an entire area of the field, and therefore the model will not be able to
reproduce the sub-grid variability. This error or limitation can be called representativeness error
and is a function of resolution of the model and variability of the field. Secondly, interpolation
error can be identified as those changes of a field when interpolated from the model grid into a
validation grid. The magnitude of this error is also influenced by the model’s resolution and the
variability of the field. Finally, the observations used for the evaluation are not perfect, and gen-
erally have errors associated with instrumental and data acquisition imperfections. Interpolation
and representativeness errors should also be counted when using station-based gridded datasets.
The concept of Kanamitsu and DeHaan (2011), expressed as an apparent deviation between the
model and observation for a single location, can be qualitatively formulated as

Model Error = [en] + [er]) + €1 + €obss (1)

where [ | is a spatial interpolation operator, s is the model deviation from observations, eg is
the representativeness error of model grid value, € is the interpolation error, and 5 is the error
associated with observation. Eq. (1) shows that model deviation seen in a validation operation
is directly related to the performance of the model, i.e., the true model error, if and only if ey,
er, and €,ps are negligible. In real world, they are generally not negligible, and they need an
appropriate evaluation, which allows us to have just an appreciation for the true performance
(or error) of a model.

In our work, we revisit Eq. (1) and adapt it to our experimental design. Our reference obser-
vations for evaluation are station-based gridded datasets, so the grid spacing of the observational
dataset defines the finest scale on which the comparisons are meaningful (Prein et al., 2016). All
observed datasets have a resolution of 0.5°x0.5°. This entails that it is impossible to quantify
the sub-grid representativeness error of RCMs, as they have a finer resolution. Following Eq. (1),
the deviation of both RCM experiments from the reference field will be affected by the following
terms:

o o
ETIQLCM = f(gg}?‘g%{a 75?'5 ;Eobs), (2)

where m can be RCMs-fERAi or RCMs-fCMIP5, 5%‘50 is the representativeness error at a reso-
lution of 0.5°, that is neglected hereafter since its resolution is close to that of the observations,
and €9 is the interpolation error at a resolution of 0.5°. In the same way, the errors associated
with GCMs will include the same terms but for a coarser resolution grid. Therefore, the deviation
of both GCM experiments from the reference field will be affected by the following terms:
EECM = f(5717\/}7€}%.5 ’6},5 agobs)v (3)
again, m can be ERAi or CMIP5, £+ is the interpolation error at a resolution of 1.5°, and e}
is the representativeness error between the resolutions of 0.5° and 1.5°. In this case, the term
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associated with the representativeness error is not negligible, as degrading the observed field into
the GCM resolution for evaluation implies losing details in the process of filtering.

In this work, we present a methodology that accounts for the different terms involved in the
process of model evaluation. Despite strong constraints and difficulties in calculating precisely
each term in Egs. (2) and (3), we try to estimate their order of magnitude. We aim to find regions
with significant contributions in order to determine if the model’s deviations from observation
are genuinely associated with model performance or not.

Starting with the model error, €7, we cannot execute a temporal validation as historical
simulations are not synchronized with the observed variability. Consequently, we perform a multi-
model evaluation of the seasonal climatology by using the root-mean square (RMS) error metric.
We define €3y as the RMS deviations of all individual members of an ensemble m from the
reference data, that is

L —
el = | v 2 (il es — [Freg)res)? (4)

moi=1

with IV, the number of associated simulations, and [ ]"** the interpolation of the simulation and
station-based observed datasets to a regular grid of resolution res (0.5° for both RCMs and 1.5°
for both GCMs). It is worthy to note that the reference field is calculated as an average among
available datasets in the resolution of each experiment.

The degradation of the observed field from 0.5° to 1.5° is done by aggregating the reference
field at 0.5° into a coarser-resolution grid of 1.5°x1.5°. The aggregation is performed by aver-
aging all original sub-grid values inside each of the coarser grid boxes (Di Luca et al., 2012).
The aggregated values are then re-distributed into the original resolution, which will give an
estimation of the details lost in the process of filtering. The error g is calculated as the RMS
difference between the degraded and reconstructed fields

eil =\ (LY — P =Ry —F | (5)
Eq. (6) permits to measure the information contained in the range of resolutions from 0.5° to
1.5°.

Unlike Kanamitsu and DeHaan (2011), we won’t neglect €; and &,,s as both terms can be
significant over some regions. While there is no easy way to calculate the interpolation error, we
estimate it by interpolating the mean observed climatological field into a regularly-spaced but
staggered grid, and then interpolating it back to the original grid. For the 0.5°x0.5° resolution we
consider a displacement of 0.25° in both latitude and longitude directions and for the 1.5°x1.5°
a displacement of 0.75°. The interpolation error is then estimated as half the difference between
the double interpolated field and the original field

Fres]] — Fres)2 Tres|| _ Fres
([ TR ) =P | ©)

Finally, we need to point out that a main part of observation errors comes from the repre-
sentativeness error and interpolation error when station-based information is converted into a
regular grid. But its estimation is out of the scope of our study. Nevertheless, we can estimate the
observational uncertainty as the spreading among individual datasets. For that, we substitute m
by Obs and res by 0.5° in Eq. (4), and obtain

Novs

> (Fovs ™8 — [Fres]®)2. (7)

i=1

1
Nops

Eobs =
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3 Results
3.1 Seasonal spatial patterns of the mean state

The challenge for regional climate modelers in representing the South American climate comes
from the extent of the computational domain and the complexity of the physical phenomena
involved. During the austral summer, precipitation maximizes over tropical and subtropical lat-
itudes and is largely associated to the SAM System (Fig. 2a). All multi-model ensemble cli-
matologies can reproduce large-scale features of the summer precipitation, but the presence of
deviations from the reference indicates some systematic biases (Figs. 2b-2e). There are some
common biases in all experiments, such as an overestimation of precipitation intensity along the
Andes Cordillera, a dry bias in northern and central Brazil and a wet bias in Northeast Brazil
(NeB). This last behavior is accentuated in historical experiments, especially in RCMs-fCMIP5.
All the three ensembles, RCMs-fERAi, RCMs-fCMIP5 and CMIP5, show a wet bias over the
South Atlantic Convergence Zone (SACZ) and a dry bias over La Plata Basin (LPB). On the
contrary, ERAi has opposite biases in these two regions. The spatial distribution of surface air
temperature biases (Figs. 2g-2j) reveals a cold bias over most of the continent in all experiments.
This is not true over the Amazon basin, where RCMs-fERAi and CMIP5 ensembles show small
positive values. Also, over LPB, most ensembles except ERAI product have a warm bias.

a) Observation b) RCMs-fERAI c) ERAI d) RCMs-fCMIP5 e) CMIP5
10°N
> 4
0 Ny PR
TN\ = e g
10°s S \\‘\\. 5 . i \\\\\\ U AN N
N = AN =
20°s N . \\\ Y
N7 ) N -

Fig. 2 Summer mean precipitation (mm/day; top panels) and 2-meter surface air temperature (°C; bottom
panels) of the observed fields and the multi-model ensembles. The first column is the average of observed datasets
and the second, third, forth and fifth columns are the climatologies of RCMs-fERAi, ERAi, RCMs-fCMIP5, and
CMIP5, respectively. Hatched areas indicate regions where the inter-model standard deviation is larger than the
natural variability, represented by the mean interannual standard deviation of all simulations involved.
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Given that results are presented as ensemble mean, it is important to assess the multi-model
dispersion over each ensemble. Following Rinke et al. (2006) and Solman et al. (2013), we can
highlight those areas where the dispersion among datasets is larger than the interannual variabil-
ity of the field (hatched areas in Fig. 2). In the case of summer precipitation, all three ensemble
mean climatologies have large inter-model spread over most of tropical and subtropical SA (Fig.
2b, 2d, and 2e), suggesting that the ensemble climatology is not very representative of individual
climatologies. The absence of hatched areas for observed climatologies (Fig. 2a) indicates that the
inter-dataset spread is small over most of SA. Regarding surface air temperature, only CMIP5
ensemble has large hatched areas that denote a large dispersion among simulations over most of
the continent.

a) Observation i d) RCMs-fCMIP5 e) CMIP5

mm/day mm/day

i)

Fig. 3 As in Fig. 2 but for the winter season.

Winter precipitation climatology (Fig. 3a) exhibits two maxima: the first over the northern
part of the continent, north of the equator, associated to the North American Monsoon (NAM)
System; and the other one over the meridional Andes, south of 40°S, associated to baroclinic
activities. While all experiments show the northern precipitation maximum associated to the
NAM System (not shown), they fail to capture the observed intensity by largely underestimating
it (Figs. 3b-3e). Even ERAI fails to simulate the southward extension of the NAM influence,
which is noticed by the wet bias at the southern edge of the region. All ensembles present a
significant multi-model spread over the tropics, indicating a wide variation in the representation
of the NAM. In the extratropics, all multi-model ensembles overestimate precipitation over the
western slope of the Andes. The bias is maximal in RCMs, as they also present an unrealistic
extension over northern Chile. Regarding 2-meter temperature (Fig. 3, bottom panels), we note
again that most experiments have a cold bias over most of the continent, except RCMs-fERA1
multi-model ensemble over the southern Amazon basin and CMIP5 multi-model ensemble over
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northern Brazil and LPB. During this cold season, unlike in summer, both RCM ensembles have
large inter-model spread for surface-air temperature climatology over the tropical and subtropical
latitudes, and also over Patagonia in the case of RCMs-fCMIP5. CMIP5 simulations continue to
show large inter-model spread over the same latitudes as in summer.

Taylor diagrams (Taylor, 2001) are multi-parameter-based diagrams that allow intercompar-
ison of models performance in reproducing a reference pattern. They are a useful and visual tool
to summarize how well climate models reproduce the observed climate. We first assess models
performance over the South American low-level terrain (lower than 1500m) in Fig. 4. Results
suggest that there is a clear distinction between models ability to reproduce 2-meter temperature
climatology and precipitation climatology (Fig. 4). The spatial correlation between observed and
modeled climatology is always higher for 2-meter temperature (ranging from 0.9 to 0.99) than
for precipitation (from 0.5 to 0.9). It is interesting to note that in all cases the ensemble mean
improves the field when comparing to each individual simulation, as suggested by other authors
(Carril et al., 2012, Lépez-Franca et al., 2016). Surface air temperature tends to be closer from
each other in the Taylor diagrams compared to precipitation points, which indicates a larger
inter-model spread for precipitation.

01 g5 01 g5
03 RCMs-fERAI
0 0
- 0.6 Q,/} RCMs-fCMIP5 ™
15 CMIP5
= o] c
2 £ 9
B g 9
3 3 —
o o
2 2
© ©
© ©
= C
5 i
@ 095 0.95
=
0.99 0.99
A
o R o
o T T I o
0.0 0.5 10 15 0.0 0.5 1.0 15

Fig. 4 Taylor diagrams showing the correlation, normalized standard deviation and centered RMSE for individual
simulations (empty markers) and for multi-model ensembles (full markers). The left panel corresponds to summer
and the right one to winter. The observation ensemble is considered as the reference data. Red, yellow, light-blue
and green colors represent the RCMs forced by reanalysis, the reanalysis itself, RCMs forced by CMIP5 and
CMIP5 models themselves, respectively. Black markers represent individual observed datasets. Circles correspond
to seasonal precipitation climatology and triangles to seasonal surface air temperature climatology. The calculation
excludes grid points with topography higher than 1500m.

During summer, ERAi reanalysis and RCMs-fERA1 multi-model ensemble have both the best
performance in reproducing the observed summer precipitation climatology (Fig. 4a). Their over-
all performance is similar in terms of correlation but not in terms of normalized standard devia-
tion (nSTD). When compared with the reference, ERAi has lower spatial variability (nSTD<1)
and RCMs has higher spatial variability (nSTD>1). These characteristics are also valid when
evaluating the ensemble of RCMs-fCMIP5 and their driving data ensemble. During this season,
all RCMs-fCMIP5 individual simulations show worse performance, compared to RCMs-fERAi
individual simulations, probably due to the quality of the different boundary conditions. Never-
theless, all RCM individual simulations have larger nSTD when compared to their driving data,
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suggesting there is an excessive spatial variability. Regarding surface air temperature, the en-
semble of RCMs-fERAI is the one showing the best match with the observed climatology pattern
by presenting the highest spatial correlation coefficient. In both experiments, there is an added
value from RCM ensembles in reproducing the referenced surface air temperature, each individ-
ual simulation being also the case. Again, as noted in Fig. 2, CMIP5 simulations tend to have a
significant spread during this season.

RCMs-fCMIP5 ensemble is the most skillful multi-model ensemble in simulating the winter
precipitation climatology (Fig. 4b). RCMs-fERAI has similar nSTD than its driving data but
lower spatial correlation. In the historical experiments, RCMs-fCMIP5 has higher correlation
and a spatial variability nearer the observed when comparing to its driving data. Alike summer,
RCMs-fERAI continue having the best performance in reproducing the winter 2-meter temper-
ature climatology, but all ensemble and individual simulations have high correlation values and
near to 1 nSTD, suggesting an overall good performance.

3.2 Regional performance of individual simulations and multi-model ensembles

Regional-scale climate assessment is fundamental for understanding the potential added value
of RCMs since AV is expected only over those regions where stationary climatic features are
associated to small-spatial scale processes (Di Luca et al., 2012). For this reason, we emphasize
on the evaluation of regional performance by selecting several key areas over the whole continent
(Fig. 1). It is clear that RCMs ensembles can add value to the simulated climate when compared
to their driving data (Figs. 2 and 3), but it is worthy to note that there is a large spread
among simulations (Figs. 2, 3 and 4). We need to evaluate the performance of individual RCM
simulations against their driving data, which can reveal the robustness of results. To do so, we use
an AV index defined as the ratio between the absolute error (AE) of the RCM and the AE of the
GCM. The AE is calculated as the absolute difference between the simulation climatology with
the reference, followed by an average over each individual region. Hence, if the index is smaller
than one, the RCM has a lower AE than its driving data, suggesting a better representation of
the mean climatology over a region. The index is also calculated for the multi-model ensemble
climatology to see how representative it is.

Table 2 Added Value Index (AVI) of individual regional climate simulations against their driving data for austral
summer (DJF) and for each study region. The index is calculated as the ratio of the area-averaged absolute error
(AE) of RCM over that of GCM. Bold figures highlight cases with AVI smaller than 1, indicating added value in
RCM.

Experiment Am SAM NeB SACZ LPB
Acronym pr tas pr tas pr tas pr tas pr tas
RCMs-fERAi 0.80 0.10 0.52 0.21 0.84 0.37 0.81 0.65 0.83 2.06
HadRM3P-fERAI 1.55 0.45 1.42 0.45 1.08 0.41 0.71 0.44 0.61 3.91
REMO2009-fERAI 1.67 0.25 0.97 0.92 1.45 1.59 0.97 0.53 1.12 1.47
RCA4-fERAI 1.44 0.13 1.47 0.27 3.04 0.98 1.13 0.99 1.91 3.16
RegCM4-fERAI 1.36 0.21 0.93 0.36 1.21 0.36 1.35 0.90 1.64 2.90
WRF341I-fERAi 3.19 0.67 0.98 0.75 1.07 1.02 1.12 1.17 1.15 1.77
RCMs-fCMIP5 0.56 1.75 1.23 1.63 2.46 1.44 1.82 1.37 1.15 0.72
RCA4-fEC-EARTH 1.05 0.60 2.49 0.70 3.31 0.92 1.56 1.05 2.17 1.17
REMO2009-fMPI 0.74 0.89 2.08 1.26 2.21 1.23 1.85 0.99 0.95 0.52
WRF341I-fCanESM2 0.58 0.19 0.79 1.16 2.44 3.44 3.72 2.80 0.84 1.43
RegCM4-fHadGEM2 1.51 1.67 1.22 0.80 0.96 1.26 1.22 1.06 1.22 0.92
LMDZ4-fIPSL-CM5A 0.81 0.94 0.89 1.32 1.07 1.66 0.72 1.50 0.43 0.61
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When analyzing the AV index over all summer regions (table 2), we find that even though the
ensemble of RCMs-fERAI represents the mean value of precipitation better than its driver does,
individual simulations show different statistics. Over the five regions, only three of them (SAM,
SACZ and LPB) show added value within at least one individual simulation: three simulations
(over five) in the case of SAM region, two in the case of SACZ and only one in LPB. For RCMs
driven by CMIP5, the RCMs add value over the CMIP5 driver only in Am region, coincident
with results in Fig. 9, since 3 of 5 individual simulations have lower bias than its driver. Other
regions where individual simulations add value in precipitation are SAM with two simulations,
NeB with one simulation, SACZ with one simulation and LPB with three simulations.

Summer surface air temperature shows a more positive outlook for the RCMs-fERA1 ensemble,
as in Am (5 simulations), SAM (5 simulations), NeB (3 simulations) and SACZ (4 simulations)
almost all simulations, together with the ensemble mean, show a lower AE than ERAi. RCMs-
fCMIP5 adds value over two regions: Am (4 simulations) and LPB (3 simulations). For Am,
the ensemble mean did not represent individual performance. This counter-intuitive result is
probably caused by the large spreading among CMIP5 models over this region (Fig. 2j).

Table 3 Same as in Table 2 but for austral winter (JJA).

Experiment NAM LPB SSA
Acronym pr tas pr tas pr tas
RCMs-fERA1 1.05 0.41 1.25 1.06 1.69 0.94
HadRM3P-fERAI 1.26 0.37 0.70 0.70 2.25 1.00
REMO2009-fERAi 0.77 0.27 0.93 0.65 2.34 1.03
RCA4-fERAI 1.61 0.50 2.73 1.42 1.64 1.00
RegCM4-fERAI 1.24 0.41 1.08 1.20 1.26 1.27
WRF341I-fERAi 1.64 1.08 1.58 2.68 1.58 1.17
RCMs-fCMIP5 0.71 1.73 1.08 2.08 2.23 1.08
RCA4-fEC-EARTH 1.08 0.84 1.94 1.98 1.62 1.04
REMO2009-fMPI 0.65 0.71 1.11 1.37 2.31 0.84
WRF341I-fCanESM2 0.69 1.20 0.74 3.89 1.55 1.35
RegCM4-fHadGEM2 1.73 1.04 1.53 1.43 0.82 0.91
LMDZ4-fIPSL-CM5A 1.10 0.94 0.70 2.09 2.43 1.18

For winter precipitation, Table 3 shows that AV can only be found in some individual simula-
tions over NAM region (2 simulations of CMIP5-driving RCMs and one of ERAi-driving RCMs),
four simulations in LPB (two in each experiment) and only one simulation in SSA. Regarding sur-
face air temperature, most models show an improvement over NAM region for both experiments
(5 in ERAi-driving RCMs and 3 in CMIP5-driving RCMs), but in the case of CMIP5-driving
RCMs the higher skill is not represented by the ensemble mean. For RCMs-fERAI, there are two
individual simulations showing added value in LPB and also two simulations in SSA with an AV
index of 1.

Box-and-whisker plots are an excellent non-parametric tool for evaluating quartile distribu-
tion, allowing us to visually analyze and compare various L-estimators beyond the mean value.
Assessing the distribution of rainfall and surface air temperature allows us not only to assess the
biases in the mean climate but also to evaluate the interannual variability of the simulations.
Generally speaking, models are far from correctly reproducing the observed variability (Figs. 5
and 6). However, in most regions, data sets broadly reproduce the observed statistical distri-
bution by intersecting at least part of the inter-quartile range (IQR; that is 25%*-75!" quartile
distance) with the corresponding observed one.

Most of the experiments tend to have a systematic cold bias over most regions during summer
(Fig. 5). This is especially true for ERAi reanalysis and RCMs-fCMIP5 ensemble. Precipitation is
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Fig. 5 Box-and-whisker plots showing the mean temporal summer distribution statistics in each study region.
Every box represents the inter-quartile range (25th-75th percentile), the median is indicated with a white line
and the mean with a green triangle. The whiskers indicate the 95" and 5" percentiles. The regional time series
of each simulation is obtained by spatially averaging all values within the region in every time step. Also, all
percentiles of the multi-model ensembles are calculated as the average of individual percentiles. The left panels
correspond to precipitation (mm/day; blue) and the right panels to 2-meter temperature (°C; red).
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well simulated in all experiments and over most regions, an exception is RCMs-fCMIP5 ensemble
which has a systematic wet bias over SAM, NeB and SACZ. Concerning the AV of RCMs in
precipitation, there is a little improvement compared to its driving data. RCMs-fERAi improves
ERAI by better reproducing the observed median value and the interannual variability over Am
region. There are also some improvements over LPB and SACZ for the median value but not
so much for the interannual variability. RCMs-fCMIP5 only slightly improve its driving data for
precipitation distribution over LPB. Regarding surface air temperature, the added value is more
evident, especially for the case of hindcast simulations. RCMs-fERAi improves the reproduction
of the observed distribution over Am, SAM, NeB and SACZ region. On the other hand, RCMs-
fCMIP5 ensemble does not seem to reduce the bias of CMIP5 simulations, but they rather
improve the representation of the interannual variability; this is the case for Am, SAM, SACZ
and LPB regions.

During winter, there is a general disability of climate models in reproducing the observed
statistics over NAM, by systematically underestimating both temperature and precipitation (Fig.
6). AV hardly manifests, but RCMs-fERAI reduces the large cold bias that ERAi has over the
NAM region and the same region sees an improvement in RCMs-fCMIP5 which reduces the dry
bias of CMIP5 simulations. Winter precipitation statistics over SSA indicate a general systematic
overestimation of rainfall by all models. This is especially true for both RCM ensembles, which
lowers its performance when comparing to their driving data.

3.3 Assessment on model errors and observational uncertainties

The assessment performed in the previous sections combines different types of error, which makes
difficult to understand how the RCM simulations add value (or not), compared to its coarser-
resolution driver. We follow the resolution-aware methodology described in the methods section
to identify the type of error that should not be neglected during the assessment. A regional
comparison of all the terms presented in Eqs. (2) and (3) is performed over each region for
both temperature and precipitation. We present the average value of each term over each region
for DJF and JJA respectively (Fig. 7). The observational uncertainty, €,ps, is considered as a
reference value, as no assessment can be done when errors are smaller than this term. Results
show that model error (eps) is usually the largest one. We recall that it generally represents
the model performance that we actually want to evaluate. However, eg, and £; are not always
negligible. The spatial distribution of these errors (see supplementary material) shows they are
particularly large over complex terrain regions, especially for surface air temperature. This result
is also evident in the regional diagram (Fig. 7), where the coarse-resolution errors, i.e., e1-% and
£3;°, are relatively large over SACZ in summer and NAM and SSA in winter. eg is usually larger
than e, being the latter the one that presents the smallest values when comparing to the other
terms. €7 is also dependent of resolution, being the interpolation error associated to a grid of
1.5° resolution (£}-°) larger than the one from a grid of 0.5° resolution (£%-%).

In summer, all e;® and e}® are of a similar order of magnitude, close to €.ps for both tem-
perature and precipitation. £}° often exceeds e,ps value, as is the case in NeB and SACZ for
precipitation and in NeB, SACZ and LPB for surface air temperature (Fig. 7, left panels). When
analyzing the regional performance of models, ERAi has the best performance in reproducing
regional precipitation climatology, since ef/[RAi has the lowest values compared to EﬁCMs_f ERAI,

5f1cMsffCMIP5 and S%MIPE’ over most regions. This is the case over Am, SAM, NeB and LPB

. . . . . _RCMs—fERAi .
regions. For surface air temperature, the experiment with lower values is e, " ° f ’. mainly

over Am, SAM, NeB and SACZ region. The results are not very encouraging for RCM historical

simulation ensemble for precipitation, but improve for surface air temperature: sﬁ,c Ms—fOMIPS
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CMIP5

is lower than e} only in Am region for precipitation and in Am, SAM, and LPB for surface

. C . Ms—fCMIP . e
air temperature. In addition to this, 51\Rf s=/C > presents an outlier in precipitation over

NeB, with a value of 4.7 mm/day.
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Fig. 7 Diagrams summarizing different errors or deviations obtained with our best estimation for each of our
regions of interest. Left panels are for austral summer DJF, and right ones for austral winter JJA. Values plotted
in the form of different symbols represent the spatial average of different terms in Eqgs. (2) and (3). Top panels
are for precipitation (mm/day), and bottom panels for 2-meter temperature (°C). Red, yellow, light-blue and
green colors represent our estimations in RCMs forced by reanalysis, reanalysis, RCMs forced by CMIP5 and
CMIP5, respectively. Black markers represent our estimation for observational uncertainty. Grey empty markers
correspond to interpolation (square markers) and representativeness (circle markers) errors.

During winter, e4ps is large for precipitation over the NAM region (Fig. 7, right panels), as
was already seen with the spread among datasets in Fig. 3a. The uncertainty is also relatively
large (larger than 0.5 °C) over NAM and SSA for surface air temperature, probably because of
the selection of domains placed over complex terrain regions. 5111%'5 is larger than the observational
uncertainty for surface air temperature, by exceeding it over all three winter regions (i.e., NAM,
LPB and SSA). e} is also larger than e,4s in NAM for surface air temperature. Regarding ey,
RCMs usually have similar or larger RMSE in precipitation than its driving data; except for the
case of NAM region where ehCM = /OMIPS 1hag o Jower value than e{MIP5. The aforementioned

also represents the case for 2-meter temperature, except for RCMs-fERAi over LPB.
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4 Conclusions and discussion

Although many CORDEX simulations over SA became available recently, there was a general
lack of works investigating the AV of RCMs over the continent. It is thus very relevant for us
to assess these regional simulations, which can provide a useful guide for researchers or end
users of these simulations. The particularity of our approach was in the joint evaluation of
RCM simulations and their coarser-resolution driving data. We first evaluated their capability in
reproducing mean climate conditions over the continent. We used two types of RCM experiments
with different nature in lateral boundary conditions: hindcast simulations with RCMs driven by
ERA-Interim re-analysis and historical simulations with RCMs driven by CMIP5 global models.
Our database included five hindcast simulations and five other historical simulations, as well
as their driving data. The multi-model ensembles and individual simulations were evaluated
against two or three observed gridded datasets for 2-meter temperature and total precipitation,
respectively. We performed the analysis on a seasonal basis, for austral summer and winter, over
a common period ranging from 1990 to 2004.

Generally speaking, all multi-model ensembles can reproduce main features of summer and
winter climatologies. However, individual simulations exhibit a large inter-model spread, espe-
cially for precipitation, suggesting the need for assessing models individually. The ensembles also
have some common model biases, as it is the overestimation of precipitation intensity along the
Andes Cordillera. An important bias is found during the warm season since the ensembles differ
substantially in their representation of location and intensity of the maximum monsoon rainfall.
Regarding surface air temperature, models tend to simulate lower temperatures than the ob-
served, as shown by in the bias fields and the box-and-whisker plots. This cold bias is maximized
by ERAi and RCMs-fCMIP5 over the Amazon Basin region. Over the tropical and subtropical
latitudes, CMIP5 models show a large spread among simulations in reproducing the surface air
temperature climatology for both winter and summer seasons.

Solman et al. (2013) assessed the capability of a set of 7 hindcast RCMs, performed in the
framework of the CLARIS-LPB Project, in reproducing the mean climate conditions over the
South American continent. If we compare the CLARIS-LPB simulations with the ones shown
here for CORDEX, we find that the distribution and intensity of biases are very similar (see
Figs. 2 and 3 from Solman et al.). However, some improvements are found for CORDEX such as
a reduction of the precipitation bias over LPB during winter, and a reduction of the warm bias
over central SA in the same season. Also, our results are consistent with Solman et al. (2013)
in terms of spread among simulations, both showing that the inter-model uncertainty is larger
than the observational uncertainty.

We performed a regional assessment in several key areas of the whole continent in summer and
winter. In summer, RCMs-fERAi ensemble shows a better reproduction of observed precipitation
and surface air temperature when compared to ERAi. However, some opposite results can be
found for precipitation when conducting the comparison individually. There is a clear warning
message on the practice of only analyzing the multi-model ensemble, especially over regions
with large inter-model spread. Surface air temperature exhibits some encouraging results, with
a general improvement when compared to ERAi. Regarding historical simulations with RCMs
driven by CMIP5, results are inconclusive, since added value is only found in certain regions
and in limited simulations. It is important to highlight that the complexity to be considered is
increased when assessing the AV of RCMs in their historical simulations, as it should include
GCM/RCM physical compatibility. We need to consider different GCM/RCM configurations to
understand if biases are inherited from GCM through boundary conditions. During winter, RCMs
do not noticeably improve the representation of precipitation or surface air temperature. As a
matter of fact, they even tend to degrade the winter climatology.
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We are aware that the direct comparison between the modeled field and the observed field
include some additional sources of error independent of model performance. Thus, model error
is associated to model performance only in those regions where e, £, and €,45 are negligible. In
general, model error, )y, is the largest one over full SA continent, allowing a direct evaluation
of climate models. However, we have identified some areas where other sources of error are
not at all negligible. e has its highest values over regions with strong surface forcing, such as
the Andes Cordillera. €; also showed the same behavior. €,,5 is also large over complex-terrain
regions, especially for surface air temperature. This last result is probably due to the scarcity of
surface meteorological stations over isolated mountainous regions and to different interpolation
techniques used in each dataset.

There is a general disagreement over literature regarding added value of RCMs for large-scale
mean values, as some works find an improvement on representing the mean climatic features
(Kerkhoff et al., 2014, Llopart et al., 2014, Nikulin et al., 2012, Torma et al., 2015, Fotso-Nguemo
et al., 2017, Veljovic et al., 2010, Prein et al., 2016), while others find a deterioration (Coppola
et al., 2014, Feser, 2006, Giorgi et al., 2014, Roads et al., 2003, Mishra et al., 2017). Our results
are consistent with this general uncertainty since they suggest that added value of RCMs depends
on the different driving fields (i.e., hindcast or historical), the surface properties of the area, the
season and the variable analyzed. The dependency of AV to diverse factors was already noted by
Torma et al. (2015). The methodology used throughout this paper leaves an important message
about comparing RCMs with its coarser-resolution driving data, as the model assessment should
not only consider model performance but also the resolution of the model and the uncertainty
in observations. As stated in the Introduction, the present work is a first step to assessing the
AV of state-of-the-art RCMs over SA. However, to understand the potential added value of
RCMs, further investigation should include the analysis of high-frequency temporal scales and
small-scale spatial scales.
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