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Abstract

Simulations are progressively becoming an everyday tool for the understanding of

materials. DFT is without any doubt the working horse in the vast majority of cases

in which quantum mechanical effects need to be included for a correct description of

the chemical problem. However, unlike other quantum-mechanical methods, DFT ap-

proaches cannot be improved in a systematic manner. This leads to distrust and the

feeling that calculation parameters can be tuned with the explicit aim of matching the

experimental results, even at the expense of the quality of the simulation. More specifi-

cally, it would appear that changing the functional can provide any desired quantity to

match the experiment. Hereby, we focus on the nature of systematic simulation errors

as compared to reproducibility-experimental ones. We show that DFT errors need to be

estimated from bracketing physical descriptions. Highlighting the role of the main error

affecting DFT calculations, the delocalization error, we show that HF and LDA pro-

vide bracketing limits and we develop a simple and robust procedure to quickly provide

error bars that help understanding the inherent error of a given calculation. Moreover,

for challenging experimental quantities, the experimental and computational error bars

become of the same order of magnitude. Overall, this approach should help overcom-

ing distrust in solid state simulations through a detour to the overwhelming question:

“which functional to choose?”.

Introduction

A close collaboration between simulation and experiment has become routine in the mutual

validation of data. One of the main reasons behind this collaboration is the fact that with

the increase in computing power, larger and more complex systems can be calculated at the

quantum mechanical level. What often hinders this joint effort is the lack of a degree of

uncertainty associated with simulated data, which are usually presented as naked numbers

without an associated precision, contrarily to experimental values which are generally ac-

companied by a range that estimates the precision of the measurement. This often leads,
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in the comparison of experimental and calculated results, to shady situations in which ob-

jectiveness succumbs to personal interpretation (and wishful thinking): is it acceptable to

assert a good agreement between theory and experiment when the calculated value falls just

narrowly out of the experimental error range? The temptation to tamper with simulation

parameters to have the calculated value nicely falling within the experimental range is hard

to resist and gives rise to suspicion in the interaction between computational and experimen-

tal chemists.1,2 Additionally, in light of the incipient fourth industrial revolution of artificial

intelligence, the increasing demand of scientific data is accompanied by a growing concern on

their reproducibility and error,3 which is a sore spot for calculated data, chronically lacking

an uncertainty estimation. In this work, we aim at changing the paradigm of the experiment-

computational interaction, presenting in a clear way how much of the uncertainty on selected

properties depends on the method employed in the calculations.

Figure 1: Number of publications (in thousands) per year containing the keywords Hartree-
Fock (in blue), DFT (in red), Coupled Cluster (in green), Zeolite (in magenta) and Liquid
Crystal (in orange). Results extracted from the ISI Web of Science as of May 2018.

Due to its favorable scaling, DFT is the method of choice in the vast majority of these

cases. Figure 1 illustrates the huge preponderance over other methods (more accurate or

similar in cost) in terms of number of publications. Some hot topic materials have also been

included for reference (e.g. zeolites and liquid crystals), showing that the trend in DFT

follows an exponential increase. In this framework, the "random" results imposed by the

functional are not an acceptable scientific frame.
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Results and discussion

To introduce the problem, we will start with one of the simplest features of a crystal: its

cell parameters. Nowadays, a routine X-ray diffractometer measurement provides the cell

parameters with an excellent precision, the uncertainty being as low as some parts in 10-4,

even for organic crystals, which can be lessened by a further order of magnitude by employing

special techniques.4 The case of NaCl is emblematic. In the first work by Bragg, dating back

to 1913, the value of the cell parameter aexpt was set to 4.45 Å, only to be corrected in the

same year to the value of 5.62 Å, which is extremely close to the currently accepted value

of 5.6401 Å.5,6 Owing to its simplicity, the geometry of the unit cell is often one of the first

quantities that are checked in the comparison between computation and experiment. In this

situation, what is the result of the comparison between aexpt = 5.6401 Å and an hypothetical

calculated value acalc = 5.7835 Å with no error bar? With such a difference between acalc

and aexpt, can we trust the computational technique employed to acceptably represent the

real crystal, and therefore draw conclusions based on the physical insight provided by the

simulation?

To answer this question we have to investigate the sources of error that affect the value

of the calculated cell parameter. A first consideration is that the geometry optimization of a

solid, which yields the cell parameters, does not have an associated random error except the

numerical one associated to arithmetic operations, which is negligible. This means that irre-

spective of the number of repetitions, a geometry optimization with the same starting point,

method and simulation parameters will always converge to the same structure, and thus to

the same acalc value. As a consequence, all the errors in this kind of calculation are systematic

and therefore hard to eliminate. The main sources of systematic error are the level of theory

employed (the combination of method and basis set) and other less evident variables, such as
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integral truncation criteria and grids. We can group these errors into two groups, which we

will call discretization and modelization errors. Discretization errors cover those errors com-

ing from the finite treatment of infinite series: basis set, sampling and truncation.7 Model

errors refer to the method - the physical model used to describe a real system. Under this

umbrella we have two quantum mechanical models: wavefunction and Density Functional

Theory (DFT) methods. Whereas the former can build systematic improvements adding cor-

relation on top of Hartree-Fock (HF), the latter are not prone to systematic improvement.

However, wavefunction correlated methods are not generally available for solid state, so that

basically all material science computations are done within the DFT framework. Within this

framework, many exchange-correlation functionals are available. However, the increase in

computational cost and theoretical involvement of the functional does not necessarily yield

better results. This means that computational material scientists are left with the choice

of functional and no security whatsoever of how the method is affecting the results (i.e. a

more expensive functional will not necessarily lead to a better result). Having fixed all the

remaining degrees of freedom of the simulation (which can be systematically improved), we

will focus on the uncertainty related to working within the DFT framework, which is not

predictable in advance, trying to answer the question: how is the model (functional) affect-

ing the results? For this, one first needs to understand the main errors coming from solid

state computations. These have been summarized as difficulties in modeling non-covalent

interactions, strongly correlated systems and delocalized/fractional charges.8 In the absence

of non-covalent interactions or strongly correlated systems (which are easy to identify), the

main source error in DFT simulations is the ever-present delocalization error.9

Delocalization error

Delocalization error is the tendency of approximated methods to over-localize or over-

delocalize electron density. The extreme behavior of over-delocalization is given by the

Local Density Approximation (LDA). LDA describes the homogeneous electron gas. Hence,
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it tends to delocalize electrons like in a metal. Semilocal improvements of DFT build on

the Local Density Approximation, partially correcting for this feature, but still leading to

over-delocalization. On the other extreme, Hartree-Fock (HF) is built to promote electron-

pairing, yielding over-localized electrons. It is then easy to see that HF and LDA provide the

upper and lower bounds to electron localization; this electron localization, in turn, affects

physical and chemical properties. Let us see one prototypical example; conjugated double

bond chains are especially prone to this error: whereas HF tends to localize electrons leading

to stronger double bonds and weaker single bonds, LDA tends to make single and double

bond distances similar to each other. These deviations can be summed up in one single

number known as Bond Length Alternation (BLA):10

BLA =

∑
i ldb,i − lsb,i

i
(1)

where ldb,i and lsb,i are the lengths of adjacent double and single bonds. Large BLAs reveal

that double and single bonds are very different in length and vice-versa. The effect of delocal-

ization error can be easily grasped in Figure 2, where the evolution of BLA with the number

of CH CH units is calculated with different methods. HF provides the least delocalized

and LDA the most delocalized conjugated system. The reference value, CC2 (Second-Order

Approximate Coupled-Cluster), as well as all other methods, fall within the HF/LDA range.

The difference between the HF and LDA value, which already at two CH CH units

represents 30% of the absolute value, is not constant, but increases with the length of the

chain, leading to a dramatic difference between the two methods. In other words, this error

is size-dependent, becoming crucial for big systems and solid state. Moreover, the lack of

regularity of this error implies that a systematic scheme for correcting this problem is diffi-

cult to implement. However, knowing the limiting cases, we will see that an estimation of

uncertainty can be designed for any crystal.
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Figure 2: Bond Length Alternation (Å) in a chain of conjugated double bonds as the length
of the chain increases. Calculations carried out with different functionals, Hartree-Fock and
CC2.

As a limiting example, we will consider the crystal structure of boric acid, belonging

to space group P 32, whose primitive cell is shown in Figure 3. B(OH)3 molecules are

organized in sheets, parallel to the a, b plane and perpendicular to the c axis. The crystal is

stabilized by a strong network of hydrogen bonds, while across-sheet contacts are regulated

by electrostatic and dispersion interactions. Hence, we expect the results to be affected both

by dispersion and delocalization error. Table 1 reports the experimental, HF and LDA values

of: (i) intramolecular B O bond distances (bn), (ii) intermolecular O · · ·H hydrogen bonds

(hbn), (iii) inter-sheet B · · ·O distance (BO) and (iv) lattice constants a, b and c.

Figure 3: Structure of the B(OH)3 crystal. Main distances have been labelled as in Table 1.

Results clearly show that intramolecular distances are only slightly affected by the method
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(b1 to b3). HF over-localization leads to shorter intramolecular bonds than LDA, but the

overall accuracy is good and not subject to important deviations. However, both delocal-

ization and dispersion errors add up in the same direction to give a wrong description of

the non-bonded network. Too long intermolecular distances are obtained. The difference

between the values is as large as 0.4 Å for the hydrogen bonds (hb1 to hb3) and is even

more dramatic when looking at the B · · ·O distance (along c axis), which accounts for across

sheet contacts: HF predicts a distance almost 1 Å larger than LDA. This huge error in the

non-bonded contacts leads to completely wrong cell parameters in the crystal. The result is

reflected in cell parameters, where the difference between HF and LDA along c, where both

dispersion and delocalization errors are present, is much larger than that along a and b.

Table 1: Geometrical parameters of the B(OH)3 crystal: intermolecular distances
and lattice constants. Bond labels refer to Figure 3. Distances are in Å. The
structure was resolved at T=297 K. Basis set: TZVP for O and B and 3-1p1G
for H.11,12

Distances HF LDA expt.13

b1 1.359 1.368 1.377
b2 1.358 1.364 1.351
b3 1.357 1.364 1.349
hb1 1.874 1.398 1.822
hb2 1.882 1.416 1.843
hb3 1.880 1.411 1.911
B-O 3.697 2.758 3.187
a, b 7.244 6.628 7.045
c 11.080 8.412 9.561

This result is particularly significant because, as we will see, it persists when dispersion

is included in the calculation and it also applies to a wide range of extended (covalent, ionic)

systems, highlighting the relevance of the wrong energy description as a functional of the

density and its consequences for computation.

8



Results and discussion

Ionic solids

With the aim of testing the hypothesis that HF and LDA can be used to assess the uncertainty

of a calculation, we will start by discussing the properties of a set of ionic solids, where

dispersion is expected to play a minor role. The HF and LDA values of cell parameter a

are reported in Figure 4 (full set of structures and computational data available in ESI).

They are invariably the upper and lower bound, respectively, for the experimental data,

proving a robust computational error bar. The green and black bars represent the absolute

and normalized amplitude, respectively, of the error bars associated to each structure. Let

us have a look at the LiF-KI family of rocksalt structures. Whereas the absolute error bar

in general increases with the size of the cell parameter, the normalized error bar remains

fairly constant along the family (with the exception of the smallest structure, LiF). Similar

considerations can be drawn for the other families reported in Figure 4, further suggesting

that the delocalization error at the origin of the amplitude of the error bar is constant within

a given family of structures. This is extremely interesting because it means that once that the

effect of the delocalization error on one member of a given family is known, the corresponding

uncertainty for different members of the same family can be quickly estimated (see ESI for

an example). To the best of our knowledge, this is the first time that computational errors

can be estimated from another compound. Moreover, such estimations are done on the basis

of only one compound and can then be applied to other members of the family, meaning

that quick a priori estimations can be done just based on the symmetry of the structure.

We also tested the HF-LDA bar on less common compounds, such as CuBr. For the III,

V and VI phases, HF and LDA parameters have been compared with the accepted reference

value, which is itself calculated (Tersoff potential).14 CuBr III and VI have a B3 and a B1

structure, respectively, and CuBr VI crystallizes in the SC16 tetragonally bonded structure.

CuBr shows the highest error bar among the set of ionic compounds in Figure 4, more than
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Figure 4: Calculated HF (top) and LDA (bottom) cell parameter a for 28 binary ionic solids
with indication of the experimental reference value. Green bars represent the width of the
error bar, black bars the same quantity normalized by the experimental cell parameter.

1 Å. This means that CuBr is extremely sensitive to the computational method, and a much

more careful calibration is required than for studying a heavier binary compound like CaTe.

Hence, this approach enables to identify those compounds whose computational simulation

is more complicated (larger delocalization error) and whose choice of method should be dealt

with care.

Molecular solids

The discussion of molecular solids is more complex due to several factors, among which ther-

mal expansion and non-covalent interactions are particularly relevant. For small molecules,

whose intermolecular distances contribute to the cell size (and thus the cell parameters) to

a large extent, thermal expansion is significant and can involve volume expansion up to 8%

moving from 0 K to room temperature.15 The standard calculation of cell parameters, which

involves a minimization of the potential energy of the crystal, does not account for these

thermal effects, that are included separately, usually by means of the Quasi-Harmonic Ap-

proximation (QHA). Additionally, DFT methods are plagued by an insufficient description

of dispersion interactions, whose effect can be accounted for with a variety of methods.16

Dispersion interactions are attractive, and therefore shrink the cell. Overall, these two con-
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tributions, thermal expansion and dispersion, go in opposite directions and partially cancel

out (see ESI for a full discussion). This is evident when looking at Figure 5, which shows

the experimental values and HF-LDA error bars calculated for a series of molecular solids

without accounting for thermal or dispersion effects. In spite of the other model errors

(dispersion), all experimental values of cell parameters fall within the error bars, with the

only exception of acetylene crystals. For acetylene crystals, both cubic and orthorhombic,

the failure of the HF/LDA error bar can be attributed to an important discretization error

related to the basis set, as discussed in the ESI.
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The width of the error bar is much larger for molecular solids than for ionic ones (Figure

5). As already discussed for Table 1, this is due to the dependence of intermolecular distances

on the method employed. As mentioned, dispersion and thermal effects have opposite effects

on lattice constants and therefore partially cancel out. An extensive analysis of these two

effects and their interplay is reported in the ESI and shows that their combined effect on

cell parameters is significantly inferior to the HF/LDA separation. This implies that our

simple HF/LDA model, which uses the potential energy and does not account for thermal

or dispersion effects, can also be applied to molecular solids for assessing the sensitivity of

the system to delocalization error.
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Transition pressures

We have shown that the uncertainty associated to DFT calculated cell parameters can be

expressed in terms of the HF and LDA values, and that this error is some orders of magni-

tude higher than the corresponding experimental uncertainty. In this sense, the case of cell

parameters is: (i) a proof-of-concept of the validity of our model, (ii) an inductive proof of

how this difference can be used to estimate how much a given computation depends on the

model (functional) chosen. However, it is not useful in the experiment-theory validation due

to the extremely low experimental uncertainty.

The mutual validation of measured and simulated quantities along with their error bars

can be recovered when tackling experimentally less accessible quantities, such as transition

pressures. Transition pressures are commonly used to assess the quality of DFT function-

als,17 and they can have an associated experimental uncertainty up to 2.9 GPa even for

simple structures.18 This uncertainty derives from a complex set of factors, including the

accuracy of the pressure and temperature readings of the sample during the crystallographic

measurement.19

What happens when we look at HF and LDA derived transition pressures? Similarly to

what was reported for cell parameters, LDA and HF bracket the experimental values. Which

one overestimates and which one underestimates the correct value depends on the relative

nature of the phases involved. In the cases that we tested, essentially B1 to B2 transitions

of alkali halides, HF overestimates and LDA underestimates transition pressures; this is due

to the fact that the B2 phase of alkali halides is more compact and thus more favored by

LDA that the B1 phase. If the situation was opposite, i.e. a structure with a more localized

bonding picture in the second phase, then we would expect the opposite behavior, with LDA

the upper and HF the lower bound of the bar. In both cases, we expect functionals to fall

within the HF/LDA bar. Figure 6 shows the HF and LDA values of a series of transition

pressures. For the B1 to B2 transition of alkali halides, we see that again the experimental

value falls between the HF and LDA values.18 This holds even for large systems (KCl to KI),
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which are characterized by very low transition pressures. In these cases, LDA inverts the

order of stability of the two phases, which has been plotted as a transition pressure of zero.

In these cases, the error bar becomes crucial to determine the transition sequence. Just like

for the cell parameter, it is easy to see that the choice of functional should be handled with

much more care for ZnS (B3 to B1 transition) than for alkali halides.20 But what is more

interesting, in all cases, our computational uncertainty is of the same order of magnitude as

the experimental one. Hence, the delocalization error based computational uncertainty can

be directly compared with the experimental error bar to mutually assess the quality of the

results.
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Conclusions

Summarizing, we carefully constructed an extensive database of experimental data (cell

parameters and transition pressures) at low temperature that is available in ESI and should

be of large use in the comparison of experimental and theoretical data. We used these

data to show that the choice of DFT functional for the simulation of solid systems greatly

affects both cell parameters and transition pressures. This is attributed to the well-known

delocalization error of DFT, and it has been shown that HF and LDA provide a robust error
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bar for the calculated values. After validating our model on cell parameters, we focused on

transition pressures, and showed that for experimentally less precise data, HF and LDA can

yield an error bar of the same order of magnitude as the experimental one.

The general picture that emerges from this study is that a paradigm shift in the interac-

tion between experimental and computational chemistry is needed. The different nature of

the errors involved requires a different approach for error estimation. Experimental measures

require several repetitions to assess their reproducibility. Since simulation errors are system-

atic, the estimation of the error must go through the repetition under different conditions

and the search of limiting behaviors.

Too often simulation parameters are tuned case by case, according to the so-called cali-

bration,21 to match as closely as possible a given available experimental value, when there

is no guarantee that the agreement is not the result of error cancellation, and, consequently,

that this same agreement will be preserved for a property outside the calibration set. Rather,

we propose a property-specific approach that provides an a priori assessment of the method

dependence with two calculations for each property. The idea is to compute the overall

HF/LDA separation for the given property and compare it with the separation between the

experimental value and the functional that one wants to test.

The advantage of this approach over a plain comparison of DFT and experimental values

is that we are no longer looking at the absolute DFT-experimental difference, which will

largely depend on the property under scrutiny (e.g. small for cell parameters and large for

transition pressures), but rather at the ratio between it and the maximum method-dependent

error corresponding to the HF/LDA bar. When the basis set and all other simulation pa-

rameters except the method are kept fixed, we can attribute the difference in the results to

the method only. Thus, in practice, if the DFT-experimental difference is much smaller than

the HF/LDA bar, it means that the method provides, among the many possible functionals,

a good description of the property under study; on the other hand, the DFT-experimental

separation is almost as large as the HF/LDA bar, it means that we are making a significant
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error, and the corresponding functional should be discarded. A limitation of this approach is

that it involves performing a HF calculation, which is quite expensive when using plane wave

basis sets. However, when using a plane wave code hybrid functionals are not accessible for

complex systems for the same reason, i.e. the cost of calculating the exchange integrals, and

thus the choice of DFT functionals is intrinsically limited.

Overall we have devised a simple and robust indicator to guide the computational chemist

in the choice of the simulation setup for materials science.
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