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ABSTRACT 

 

Context. Short-period planets are influenced by the extreme tidal forces of their parent stars. These forces deform the planets causing 
them to attain nonspherical shapes. The nonspherical shapes, modeled here as triaxial ellipsoids, can have an impact on the observed 
transit light-curves and the parameters derived for these planets. 
Aims. We investigate the detectability of tidal deformation in short-period planets from their transit light curves and the instrumental 
precision needed. We also aim to show how detecting planet deformation allows us to obtain an observational estimate of the second 
fluid Love number from the light curve, which provides valuable information about the internal structure of the planet. 
Methods. We adopted a model to calculate the shape of a planet due to the external potentials acting on it and used this model 
to modify the ellc transit tool. We used the modified ellc to generate the transit light curve for a deformed planet. Our model is 
parameterized by the Love number; therefore, for a given light curve we can derive the value of the Love number that best matches 
the observations. 
Results. We simulated the known cases of WASP-103b and WASP-121b which are expected to be highly deformed. Our analyses 

show that instrumental precision ≤50 ppm min−1 is required to reliably estimate the Love number and detect tidal deformation. This 

precision can be achieved for WASP-103b in ∼40 transits using the Hubble Space Telescope and in ∼300 transits using the forthcoming 
CHEOPS instrument. However, fewer transits will be required for short-period planets that may be found around bright stars in the 
TESS and PLATO survey missions. The unprecedented precisions expected from PLATO and JWST will permit the detection of 
shape deformation with a single transit observation. However, the effects of instrumental and astrophysical noise must be considered 
as they can increase the number of transits required to reach the 50 ppm min−1 detection limit. We also show that improper modeling 
of limb darkening can act to bury signals related to the shape of the planet, thereby leading us to infer sphericity for a deformed planet. 
Accurate determination of the limb darkening coefficients is therefore required to confirm planet deformation. 

Key words. methods: analytical – techniques: photometric – planets and satellites: interiors 

 
 

1. Introduction 

The existence of planets with short-period orbits around their 
stars came as a surprise at the inception of exoplanet dis- 
coveries especially because the first case was a gas giant 
(Mayor & Queloz 1995) bearing no resemblance to the planet 
configuration in our solar system. Several of these planets have 
now been found as they represent some of the most easily 
detected planets using both the transit and radial velocity meth- 
ods. Planets reach their final shapes having attained hydrostatic 
equilibrium from balancing gravitational, pressure, and other 
external forces acting on them. Planet shapes are often assumed 
to be spherical for simplicity but they are triaxial in reality. For 

very-short-period planets (P < 1−2 days), the close proximity 
to their stars exposes them to strong tidal forces which deforms 
them and increases the triaxiality of their equilibrium shapes. 
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Contribution to deformation of a planet can also come from its 
rotation, making it oblate (Barnes & Fortney 2003). 

Planet shape can have noticeable effects on the light 
curve obtained from transit observations (Seager & Hui 2002; 
Carter & Winn 2010a,b). Analysis of the transit light curve of a 
planet assuming planet sphericity allows for a spherical radius 
Rspr to be obtained. However, Leconte et al. (2011) showed that 
planet deformation due to tidal and rotational forces lowers 
the observed transit depth in comparison to a spherical planet. 
This causes an underestimation of the radius when sphericity is 
assumed in the transit light curve analysis of a deformed planet. 
Since the density of a planet is calculated from the assumed 
spherical radius, the obtained density will consequently be over- 
estimated. Burton et al. (2014) therefore provided density cor- 
rections for some short-period planets expected to be tidally 
deformed based on the Roche approximation (Chandrasekhar 
1969). Tidal deformation is particularly significant for plan- 
ets orbiting close to their stellar Roche limits and a number 
of planets have been discovered to orbit so close to this limit 
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can deform under the influence of centrifugal and tidal poten- 
tials. For a tidally locked close-in planet with circularized orbit 
of radius r0, Correia & Rodriguez (2013) give the nonspherical 
contribution from the perturbing potential on the surface of the 
planet as 

1   2   2 3G M∗  2 

Vp = 
2 
Ω Z  − 2r3

 
X , (1) 

 

 

 

 

 

 

 

 
Fig. 1. Schematic of triaxial ellipsoid centered on the origin of the 
Cartesian coordinate system (X, Y, Z) with positive X-axis pointing 
towards the star. 

 

that they are bordering on tidal disruption (e.g., Gillon et al. 
2014; Delrez et al. 2016). For some of these planets, theoret- 
ical calculations have been done using the Roche model by 
Budaj (2011) to estimate the planet shape and correct the derived 
spherical radii and densities for the expected planet deforma- 
tion (e.g., Southworth et al. 2015; Delrez et al. 2016). Correia 
(2014) formulated an analytical model for computing the shape 
of a deformed planet based on the fluid second Love number and 
also showed the difference between light curves of deformed and 
spherical planets. 

Despite these efforts, there has been no observational detec- 
tion of tidal deformation in short-period planets which would 
provide better estimates of their parameters. We therefore inves- 
tigate the possibility of detecting deformation in the transit light 
curve of short-period planets with some current and near-future 
observational instruments. We modify the ellc transit tool by 
Maxted (2016)1 to incorporate the planet shape model by Correia 
(2014). The modified ellc is used to generate the light curve 
for a deformed planet based on its fluid second Love number. 
This allows us to obtain an estimate for the Love number of the 
planet that best matches the transit observations, which provides 
insights into the internal structure differentiation of the planet. 

In Sect. 2, we summarize the model used to compute the 
shape of the planet and modification of the transit tool used to 
generate the light curves. In Sect. 3 we apply the modified tool to 
investigate the detectability of planet deformation in a case study 
of a known short-period planet. In Sect. 4, we discuss the results 
and some useful considerations for detecting planet deformation. 
We present our conclusions in the last section. 

where G is the gravitational constant. The first term on the right- 
hand-side is the deformation contribution from the centrifugal 
potential resulting from the planet’s coplanar and synchronous 
rotation rate Ω about the Z-axis. The second term refers to the 
tidal contribution to the deformation along the X-axis by a star 

of mass M∗. 
Following Love (1911), Correia (2014) describes this defor- 

mation using a Love number approach such that the fluid second 
Love number for radial displacement hf is related to the radial 
deformation of the planet ∆R. The equilibrium surface deforma- 
tion is thus given by 

∆R = −hf Vp/g, (2) 

where g is the average surface gravity of the planet, and hf is a 
dimensionless quantity that quantifies the response (in terms of 
deformation) of a planet to a perturbing potential2. The magni- 
tude of hf depends on the mass distribution of the planet. More 
homogeneous planets have higher hf  whereas planets that are 
more centrally condensed have lower hf (Kramm et al. 2011, 
2012). For an incompressible homogeneous planet, hf = 2.5 
which is the theoretical maximum value (Leconte et al. 2011; 
Correia 2014). The physical values of hf range from 1 to 2.5 
where hf = 1 would represent highly differentiated bodies with 
high core mass like FGK stars and hf = 2.5 is only possible for 
significantly homogeneous bodies like asteroids. In comparison, 

Jupiter has hf ≈ 1.5 and Earth has hf ≈ 2 (Yoder et al. 1995). 
A first observational measurement of the Love number of Saturn 
was recently obtained by Lainey et al. (2017) leading to a value 
of hf  = 1.39 (from k f  = 0.39). 

Due to the synchronous rotation, the semi-principal axis a 
of the planet always points in the direction of the star leading 
to a tidal deformation along a. The shape of the planet is such 
that a > b > c and the deformation is kept constant along the 
circularized orbit. For the ellipsoid, we can define also the radius 
of a sphere that will enclose the same volume as the ellipsoid 

so that Rv = (abc)1/3. According to the formulation by Correia 
(2014), the semi-principal axes are related as a = b (1 + 3q) and 

c = b (1 − q). We can then write b as a function of Rv to first 
order in the parameter q as 

I 
2  

\ 

 
2. Modeling transit of deformed planets 

2.1. Planet shape 

b � Rv 

 

so that 

1 − 
3 

q 
, (3) 

Modeling the shape of a deformed planet follows the analytical 
formulation by Correia (2014) in which the planet is described 
by a triaxial ellipsoid centered at the origin of a Cartesian coor- 
dinate. As shown in Fig. 1, the semi-principal axes (a, b, c) of 
the ellipsoid are aligned with the X, Y, Z axes of the coordinate 

a = b (1 + 3q) � Rv 

 
and 
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(4) 

system, respectively. The equilibrium shape and mass distribu- c = b (1 − q) � Rv 1 − 
3 

q , (5) 

tion of a planet depends on the forces acting on it, namely the    
planet’s self gravity and other perturbing potentials. The planet 

 
 

1       Available at https://pypi.org/project/ellc/ 

2 hf  = 1 + k f where k f is the fluid second Love number for potential 
(Correia et al. 2014). Calculation of the different Love numbers can be 
found in Sabadini & Vermeersen (2004). 

https://pypi.org/project/ellc/
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Fig. 2. Quantification of tidal deformation as a function of distance to 
the star for two different hf  values. 

 

where q is an asymmetry parameter that relates to hf  according 
to 

Fig. 3. Comparison of ellipsoidal model light curves of different hf   val- 
ues with spherical model light curve for WASP-103b. 

 
Table 1. System parameters for WASP-103b. 

q = 
hf  M∗ 

I 
Rv 

\
 · (6) 

   Quantity (Unit)  Symbol  Value   

2 mp     r0 

The asymmetry parameter q quantifies the deformation of 
a planet, and is a measure of the difference between the semi- 
principal axes of the ellipsoid. Maximum deformation (hence 
maximum q) is attained for a given planet when it orbits at the 1/3 

 

 

 
   Roche radius (R0) rR 3.7534   

Roche radius (r0   = rR   = 2.46 Rv[M∗/mp] ). Therefore, for 

maximum hf   = 2.5, we have qmax  � 0.083. The equilibrium 
shape of a planet therefore depends on its radius, its fluid sec- 
ond Love number hf , the mass ratio between star and planet 

M∗/mp, and also the distance from the planet to the star, r0. 
Figure 2 shows how tidal deformation becomes negligible with 
semi-major axis (in units of its Roche radii) for a given body 
with hf = 2.5 and again with Jupiter’s hf  = 1.5. We see that 
far away from the star, irrespective of the value of hf , the planet 

does not deform (q � 0) and so its shape remains largely spher- 

ical (a � b � c from Eqs. (3)–(5)). In general, Eq. (6) shows 
that tidal deformation is more relevant for large planets orbiting 
very close to their Roche radii. Planets with the highest absolute 

deformation (highest product q × Rv) provide the best chance to 
detect deformation. 

 

2.2. Transit model 

Planetary features that change the shape of a planet (oblateness 
or rings) have the effect of modifying the transit light curves 
(e.g., Barnes & Fortney 2003; Akinsanmi et al. 2018). In the 
same vein, tidal deformation of a planet can modify the observed 
transit light curve. To model the transit of a deformed planet, the 
above ellipsoidal shape model by Correia (2014) was incorpo- 
rated as a subroutine into a new version of the ellc transit tool 
by Maxted (2016). The ellc light curve model allows the projec- 
tion of the ellipsoid and generation of the corresponding transit 
light curve. The projected shape of the ellipsoid on the stellar 
disk is an ellipse whose dimensions depend on the phase of the 
planet due to rotation of the ellipsoid with phase (see Fig. A.1 
in Correia 2014). The rotation of the ellipsoid causes the cross- 
section of the planet to vary during transit. It should be noted that 
the shape correction model by Budaj (2011) does not account 
for the varying ellipsoidal cross-section during transit, thereby 

 
 

making ellc a more complete model involving this observational 
effect. Detailed descriptions of the ellc tool and the input param- 
eters can be found in Maxted (2016). 

The modified transit model, in addition to the usual transit 
parameters, takes the value of hf and the ellipsoid’s volumetric 
radius Rv as inputs. Therefore, by fitting the ellipsoidal model to 
the transit observation, all the parameters of the transit can be 
obtained, including the shape of the planet, and hf is estimated 
from the best fit of the model. Therefore, rather than obtaining 
the usual transit radius Rspr from spherical planet models, we 
obtain the best-match dimensions a, b, c of the ellipsoidal planet 
and calculate Rv. 

 
2.3. The case of WASP-103b 

To illustrate the output of ellc for an ellipsoidal planet, we 
take the case of WASP-103b, an ultra-short-period planet (P = 
22.2 hr) reported to be bordering on tidal disruption (Gillon et al. 
2014) making it an ideal candidate to detect deformation. Based 
on revised parameters by Southworth & Evans (2016), WASP- 
103b has an average radius of 1.596 RJup and mass of 1.47 MJup 

(Table 1). It orbits its star at a semi-major axis (r0) of 0.01979 AU 
and an inclination (inc) of 88.2◦. It is assumed to be on the edge 
of tidal disruption due to its semi-major axis of only 1.13 times 
its Roche radius. Taking the quoted radius as the volumetric 
radius of the ellipsoid, Fig. 3 compares the spherical planet light 
curve for WASP-103b to its ellipsoidal counterparts with differ- 
ent hf values. It is seen that the light-curve of the ellipsoidal 
model changes noticeably for different values of hf and also 
compared to the spherical case. This is because the ellipsoidal 
planet projects only a small cross-section of its shape during the 
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Fig. 4. Spherical fit to simulated deformed WASP-103b light curve. 
The bottom plot shows the residual representing the signature of 
deformation with amplitude quoted as the maximum absolute resid- 
ual (max_abs_res). All length measurements are given in units of solar 
radii. 

 
transit thereby leading to a lower transit depth when compared 
to the spherical planet. The mid-transit phase has the smallest 

ellipsoidal cross-section of bc  � R2(1 − 7q/3) which is less 

Fig. 5. Residuals from spherical fit to ellipsoidal simulations of differ- 
ent short-period planets in comparison to WASP-19b, 12b, and 4b from 
Correia (2014). 

 
bottom panel and represents the signature of deformation for the 
simulated planet. The parameters derived from the fitting process 
are systematically incorrect as they adjust to mimic the signature 
of deformation. This also shows that the assumption of sphericity 
for a planet affects not only the radius derived but also the other 
transit parameters, and models that adjust only this radius are 

than the cross-section R2
 if the planet were spherical. There- incomplete. We see in the residuals that the signature of defor- 

fore, if a spherical model is used to make a fit to the observation 
of an ellipsoidal planet, the spherical radius Rspr derived will be 

smaller than the actual volumetric radius Rv = (abc)1/3 of the 
ellipsoid (see Fig. 4). This is in agreement with the result from 
Leconte et al. (2011). Differences in transit depth as hf  varies in 
Fig. 3 are due to the fact that higher hf for the same planet causes 
more deformation, which leads to even smaller projected cross- 
sectional area. In our code, we allow for a case where hf  = 0 
(although not physical) to imply no deformation for the planet so 
that the ellipsoidal planet model is equivalent to that of a spheri- 
cal planet and they produce the same light-curve with Rv = Rspr. 
This is important for the analysis we perform in the following 
section and allows us to use the same model to explain both a 
deformed and a spherical planet. Maxted (2016) already showed 
that the spherical light curve of ellc is in agreement with other 
transit tools like BATMAN (Kreidberg 2015). 

 
2.4. Signature of deformation in transit light curves 

Figure 1 in Correia (2014) showed difference plots between 
ellipsoidal and spherical light curves assuming both planets 
cover the same stellar area at the start of transit (full ingress). 
This perfectly captures the flux variation induced by deforma- 
tion as both planets transit but is not the signature one would 
obtain from real observations, since the transit parameters would 
initially be unknown and would be determined from a fitting 
process. The observable signature of planet deformation is the 
residual between the light curve of the deformed planet and the 
best-fit spherical model. In Fig. 4, we simulated the light curve of 
deformed WASP-103b using our ellipsoidal model with param- 
eters given in Table 1 and performed least-squares fitting using a 
spherical planet model. The residual from the fit is shown in the 

mation manifests in two regions. The first is at ingress and egress 
phases owing to oblateness (b > c) of the planet as identified 
in previous studies (e.g., Seager & Hui 2002; Barnes & Fortney 
2003). A second prominent feature is seen as a bump centered 
on the mid-transit phase due to the varying star eclipsed area 
caused by ellipsoid rotation as it transits. This second feature is 
as a result of tidal deformation which was not accounted for in 
the previous studies mentioned but manisfests in our model due 
to full projection of the ellipsoidal shape as it rotates with phase 
(Correia 2014). 

To compare the deformation signal obtained from the fitting 
process with the flux difference plot in Correia (2014), we per- 
form spherical fits to the ellipsoidal simulation of other short- 
period giant planets WASP-19b, WASP-12b, WASP-4b, and 
WASP-121b that were presented in the study and were expected 
to be deformed. The residuals are shown in Fig. 5. We see from 
Figs. 4 and 5 that the amplitude of the deformation signature 
is just about 40 ppm for the most deformed planets (WASP- 
103b and WASP-121b) while the amplitudes from the difference 
curves in Correia (2014) are up to 100 ppm. We reiterate that the 
latter should not be taken to imply high signal detectability. 

WASP-103b, WASP-121b, and WASP-12b have the highest 
residual amplitudes and therefore present the best possibility of 
detecting deformation. Other planets likely to be deformed are 
HATS-18b, WASP-76b, and WASP-33b, but they have lower 
residual amplitudes of 20, 14, and 12 ppm, respectively. 

 
3. Detectability of planet deformation and 

measurement of planet Love number 

The residuals of the spherical fit to the light curve of a deformed 
planet is informative in detecting deformation as it shows that the 
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spherical model does not fully explain the observation. However, 
 

2.5 Detectability plot for WASP-103b 

some of the signature of the deformation is masked in the errors Simulated hf value 

of the parameters obtained. To correctly estimate the planet tran- 
sit parameters, our ellipsoidal model can be used to fit the transit 
observation. In doing so, we also obtain a value for the Love 
number that best fits the observation if there is enough preci- 
sion in the data. The benefit of this approach is that we can fit 
the ellipsoidal model to any transit observation and, by the value 
of hf recovered, ascertain if planet deformation is detectable or 

not. If we cannot detect the deformation, we get h f ≈ 0 which 
as shown in Fig. 3 is equivalent to the fit of a spherical planet 
model. 

Therefore, detectability of tidal deformation using the ellip- 
soidal model relies on the ability to recover a nonzero value of 
hf  with statistical significance from a fitting process. Despite 

being able to infer deformation with only detection of hf   » 0, 
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we will need to have h f  ≥ 1 with some significance where the 
values give actual physical interpretation to astronomical bod- 
ies. To illustrate the detectability, we created simulated observa- 
tions of deformed WASP-103b with one-minute cadence using 
its parameters as stated above with hf = 1.5. We used the Limb 
darkening toolkit (ldtk) by Parviainen & Aigrain (2015) to com- 
pute quadratic limb darkening coefficients of [0.5343, 0.1299] 
and their uncertainties [0.0012, 0.0027] in the CHEOPS band- 
pass for the star with stellar parameters given in Gillon et al. 
(2014). We added random Gaussian noise of different levels to 
the simulated data in each test run. We then investigated how 
well we can recover the value of hf and at what noise level it 
would be impossible to distinguish between the light curve of a 
spherical planet and that of a deformed planet. This is important 
to know the instrumental precision necessary to detect deforma- 
tion in close-in planets. 

We performed Markov Chain Monte Carlo (MCMC) analy- 
sis to estimate the transit parameters and their uncertainties using 
the emcee package (Foreman-Mackey et al. 2013) with uniform 
priors on hf in the range [0, 2.5]. As shown in Appendix A.1, 
when a noise level of 30 ppm is added to the simulated obser- 
vation, hf is reliably recovered, with 99.7% of its samples 

(within � ±3σ) greater than 1. This proves that the result is 
statistically significant and implies that the planet is indeed 
deformed. Moreover, the residual from the fit does not show 
any structure related to the deformation signal. However, when a 
noise level of 100 ppm is added to the observation the median of 
the distribution suggests a deformed planet, but because its width 
encompasses hf = 0 (spherical model), planet deformation can- 
not be asserted (Appendix A.2). Figure 6 shows the detectability 
plot summarizing the results for the different noise levels added 
to the observation. We see that the significance of h f detection 
above 1 reduces as the noise level of the observation increases. 
For instance, at 50 ppm noise level, hf samples are well above 
zero, implying that the ellipsoidal model provides a better fit 
than the spherical model. However, the samples with hf  < 1 do 
not represent physical values for a planet but the detection still 

gives ∼95% of the samples above 1. Beyond 50 ppm, fitting the 
observation with a spherical model becomes increasingly more 
probable. With noise levels as high as 100 ppm, the spherical and 
ellipsoidal models produce comparable fits. 

 
4. Discussion 

The results show that noise levels below 30 ppm offer the best 
chance at detecting deformation for our test case of WASP-103b 

since we retrieve hf with ≥3σ significance above 1. However, 
we could define a lower limit on our detection confirmation such 

0.0
0 20 40 60 80 100 

Noise level [ppm/min] 
 

Fig. 6. Detectability of deformation in WASP-103b considering differ- 
ent noise levels. The black dashed line is the simulated hf  value. The 
points are the median of the hf   samples at each noise level. The red 

error bars show the 68% credible interval (� ±1σ) while the blue error 
bars show the 99.7% credible interval (� ±3σ). 

 

that we require to have (hf − 1σ) ≥ 1 which puts 84% of the 
recovered hf samples in physical values expected for planets. 
This is satisfied for noise levels of 50 ppm and below. 

A photometric precision of 50 ppm min−1 is not yet attain- 
able using current observational instruments. For our case sys- 
tem, WASP-103 is a twelfth-magnitude star and the photometric 
precision to be attained by the near-future instrument CHEOPS 

for this star is 855 ppm min−1. Attaining a reduced photon noise 

level of 50 ppm min−1 for this star using CHEOPS requires ∼293 
transit observations of WASP-103b. For the interesting candi- 
date WASP-121b, which orbits its star of magnitude mV = 10 
(Delrez et al. 2016), our  analysis  also  showed  detectability 
of deformation with 50 ppm min−1 noise level. CHEOPS pre- 
cision for a tenth-magnitude star is 319 ppm min−1 thereby 
requiring only 40 transit observations to detect deformation 
in this planet. Although information from the CHEOPS con- 
sortium indicates that WASP-121 might not be in the visibil- 
ity region, new interesting planet candidates with short period 
orbits may appear from future surveys targeting bright stars, 
such as PLATO (Rauer et al. 2014) and TESS (Ricker et al. 
2015). For these planets around stars brighter than mV = 9, 
we expect photon noise levels as low as 150 ppm min−1 with 
CHEOPS (Broeg et al. 2013) and <62 ppm min−1 with PLATO 
(Rauer et al. 2014) and thus require fewer transits to reach the 
50 ppm limit needed to detect planet deformation as reported in 
Table 2. For these stars, TESS will have a relatively higher noise 
level of 464 ppm min−1 (Sullivan et al. 2015) which is not desir- 
able for detecting deformation. Observations with the forthcom- 
ing JWST will also be immensely beneficial as it is expected to 

attain photon-noise floor ∼40 ppm (65 s) on its NIRCam instru- 
ment amongst others (Beichman et al. 2014). Attainment of this 
noise level implies that only one transit observation will be 
required in order to detect tidal deformation in a suitable short- 
period planet. 

Unfortunately, interesting short-period planets expected to be 
significantly deformed were not found within the original Kepler 
survey field which would have allowed several transit observa- 
tions of any found target. The WFC3 instrument on the Hubble 
Space Telescope (HST) achieved a noise level of 172 ppm (103 s) 

h
f
 



= 

0.08 

0.17 

Table 2. Number of transits required to reach 50 ppm min−1 noise level 
with CHEOPS and PLATO for different stellar magnitudes. 

 
 

CHEOPS PLATO 
 

 

mV Noise/min # transits mV Noise/min # transits 

Table 3. Results of LDC tests and hf  values recovered. 

 
 

LDC tests Values hf   recovered 
 

Fixed at 0.01 below [0.5243,0.1199] 0.12+0.11
 

− 
Fixed at 0.015 higher [0.5493,0.1449] 2.44+0.04

 
−0.06 

Gaussian priors Mean   [0.5343,0.1299], 1.56+0.31
 

−0.53 

σ = [0.01, 0.01] 
Gaussian priors Mean = [0.5343,0.1299], 1.59+0.18

 
− 

12      855 ppm 293          13      619 ppm 153      

Notes. Noise levels of CHEOPS were obtained from CHEOPS science 

team (priv. comm.) and that for PLATO was converted to ppm min−1 

from Rauer et al. 2014 (Table 2 and Fig. 14). 

 
 

for two full-orbit observations of WASP-103 (Kreidberg et al. 

2018). Therefore, with ∼40 transits of WASP-103b using 
HST, we can attain the required precision of 50 ppm min−1. 
However, some factors can still affect the detectability of defor- 
mation, some of which are mentioned below. 

Temporal resolution. We used one-minute cadence in our 
simulations to enable good resolution of the ingress and egress 
phases which have short durations especially for these short- 
period planets. A lower cadence than this reduces the preci- 
sion with which hf and other parameters are recovered. At the 
30 ppm noise level, changing the cadence from 1 min to 4 mins 
and 8 mins increases the error on hf  from ±0.12 to ±0.23 and 

±0.38, respectively. 

Orbital inclination. The inclination of the orbit plays a role 
in the signature of deformation. Lower inclinations indicate a 
shorter transit duration so the effects referred to in residuals 
of Fig. 4 and Sect. 2.4 will be shorter in time, making them 
more difficult to temporally resolve, especially at the ingress 
and egress phases. In addition, a longer transit duration allows 
the projected ellipse area to vary more (longer phase rotation 
of ellipsoid) making the light-curve more markedly different 
from that of the spherical planet thereby leading to a higher- 
amplitude bump around mid-transit (see also Fig. A.1 in Correia 
2014). The effects of deformation in light curves is maximal 
at an inclination of 90◦  where hf   is recovered with the best 
precision. 

Limb darkening coefficients (LDCs). As shown in Fig. 4, 
the signature of deformation is prominent at ingress and egress 
phases with a bump centered around the mid-transit phase. The 
stellar limb-darkening affects light curves similarly in these 
regions (see effects of LDC modeling in Neilson et al. 2017), so 
we tested the impact of inaccurate estimation of limb-darkening 
coefficients on the recovery of hf from the light curve. This was 
attempted on the 30 ppm noise level simulation in two ways 
and the results are summarized in Table 3. First we fixed the 
limb darkening coefficients to incorrect values that are slightly 
different from the true values used to generate the simulated 
observation. We found that for incorrectly fixed LDC values that 
are smaller than the true values, the signature of deformation 
gets damped as we recover lower hf values than those simu- 
lated. When the values are fixed at values up to 0.01 smaller 
than the true values, the entire hf distribution falls around zero 
and we infer a spherical planet (see left plot in Fig. A.3). On 
the other hand, hf values are amplified when LDCs are fixed 
at values higher than the true values. For LDC values fixed at 
0.015 higher than the true values, the recovered hf distribution 
is pushed towards the maximum of 2.5. In the latter case, we can 

σ = [0.0012,0.0027] 
 

 

Notes. The plots are shown in Figs. A.3 and A.4. 

 
 

infer that the planet is deformed but cannot ascertain the extent 
of deformation due to inaccurate estimation of hf which is evi- 
dent from the obtained marginalized distribution (see right plot 
in Fig. A.3). The other attempt was to fit the LDCs by including 
them in the hyperparameters. We use a Gaussian prior with the 
true LDC values as mean and σ = 0.01. The MCMC sampling 
produced a wide hf  distribution centered close to the true value 

but with errors as large as ±0.4 (left plot in Fig. A.4) making 
it difficult to ascertain planet shape. However, when tighter pri- 
ors (e.g., using errors obtained from deriving LDCs with ldtk) 
are imposed on the LDCs, hf  is well-recovered with errors of 

just ±0.18 to infer deformation (right plot in Fig. A.4). It should 
be noted that the LDC error estimates from ldtk are very small 
and have often had to be inflated in the literature during fitting 
to account for systematic errors in the atmospheric models (e.g., 
Raynard et al. 2018; Maxted & Hutcheon 2018). 

Alternatively, the power-2 limb darkening law has been rec- 
ommended for the analysis of transit light curves as it has 
been shown to provide remarkable agreement between stellar 
atmospheric models and observations, particularly for cool stars 
(Morello et al. 2017; Maxted 2018). The transformation of the 
two parameters of the power-2 law in Maxted (2018) reduces 
the correlation between them during fitting and small errors of 
[0.011, 0.045] can be obtained on them. The fitting process can 
attempt different LDC laws so that the law with the best match to 
the observation and that produces the least errors on the derived 
parameters will be preferred. 

Other noise sources. Our simulations considered the ideal 
situation where only photon (white) noise is present thereby 
allowing easy scaling of the noise with the number of obser- 
vations/transits. However, in practice, other sources of noise 
(Pont et al. 2006) will impact the estimates given above and 
act to increase the number of transits required to detect defor- 
mation. These other noise sources can be from instrumental 
effects (e.g., satellite jitter and thermal instability) and also 
from astrophysical sources such as stellar activity (occulted 
or unocculted active regions; Oshagh et al. 2013), stellar oscil- 
lations and granulation (Chiavassa et al. 2017). These effects 
always have to be mitigated in transit analysis (Oshagh 2018; 
Barros et al. 2014) but will still impact the detectability of shape 
deformation. Recent developments in Gaussian process analy- 
sis also provide a method for tackling astrophysical noise (e.g., 
Foreman-Mackey et al. 2017; Serrano et al. 2018). 

 

5. Conclusion 

Short-period planets, especially within two Roche radii from the 
host star, suffer from extreme tidal forces causing their shapes 
to depart from sphericity in a way that is difficult to detect in 
transit observations. With the increasing observational precision 

6.5 150 ppm 9 8 62 ppm 2 
8 186 ppm 14 10 209 ppm 17 
10 319 ppm 40 11 263 ppm 28 

 



of near-future instruments, detecting deformation becomes more 
feasible as planet shape will have a higher impact on the 
observed transit light curves. We demonstrate detectability of 
deformation for WASP-103b and WASP-121b (which have the 
highest deformation signatures as seen in Sect. 2.4 and are 
regarded as some of the most deformed planets; Delrez et al. 
2016) by employing a formulation from the literature in a way 
that allows an observational estimate of a planet’s fluid Love 
number to be obtained. Because the Love number tells us how 
a planet deforms in response to perturbing potentials, we used it 
as a measure of deformation in the planet. Detecting and mea- 
suring planet deformation provides more accurate estimations of 
the radius and density of these planets as opposed to the esti- 
mates derived from spherical models or corrections calculated 
from only expectation of deformation. Additionally, measuring 
the Love number provides information about the interior struc- 
ture of the planet. We showed that the instrumental precision 

needed to detect tidal deformation is ≤50 ppm which can be 
attained by CHEOPS with about 300 transits for WASP-103b 
and 40 transits for WASP-121b. The HST can also attain this pre- 
cision for WASP-103b in approximately 40 transit observations. 
Fewer transit observations will be required if such short-period 
planets are found transiting very bright stars. Additionally, the 
precision expected from JWST will present the best opportunity 
to detect tidal deformation since only one transit of a suitable 
planet will be required. 

The chances of detecting deformation are increased for plan- 
ets with inclinations of 90◦ and also when the observations 

are taken with temporal resolution of ∼1 min. However detec- 
tion can be severely hampered by improper modeling of the 
limb darkening which, in some cases, can cause the signature 
of deformation to be subdued, leading us to infer sphericity 
from the observations. Using the quadratic limb-darkening law, 
LDC errors smaller than 0.01 are required in order to con- 
firm planet deformation. Proper treatment of noise sources will 
also be pertinent in order to identify the signature of shape 
deformation. 
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Appendix A: Additional figures 
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Fig. A.1. Left panel: posterior distributions for parameters of simulated deformed WASP103b with 30 ppm noise added. The values quoted on the 

diagonal histograms indicate the median marginalized distribution of each parameter (red lines) with the surrounding 68% credible interval (±1σ). 

The dashed vertical lines indicate the ±3σ limits calculated as the 0.15th and 99.87th percentiles. Blue lines indicate the true simulated values. 
Right panel: fit of simulated light curve of ellipsoidal WASP-103b with parameters retrieved from the sampling. 
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Fig. A.2. As in Fig. A.1 but with 100 ppm noise added to the simulated observation.  
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Fig. A.3. Left panel: as in Fig. A.1 but with LDCs fixed at incorrect values 0.01 smaller than the true values. Right panel: as in Fig. A.1 but with 
LDCs fixed at values 0.015 higher than the true values. 
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Fig. A.4. Left panel: posterior distributions of parameters when Gaussian prior with σ = 0.01 is used on the LDCs (u1, u2). Right panel: posterior 
distributions of parameters when tighter Gaussian priors from ldtk errors are used for the LDCs. 
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