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DYNAMICS AND CONTROL FOR MULTI-AGENT

NETWORKED SYSTEMS: A FINITE DIFFERENCE APPROACH

UMBERTO BICCARI1,2, DONGNAM KO1,2, AND ENRIQUE ZUAZUA1,2,3,4

Abstract. We analyze the dynamics of multi-agent collective behavior models

and their control theoretical properties. We first derive a large population limit
to parabolic diffusive equations. We also show that the non-local transport
equations commonly derived as the mean-field limit, are subordinated to the

first one. In other words, the solution of the non-local transport model can be
obtained by a suitable averaging of the diffusive one.

We then address the control problem in the linear setting, linking the
multi-agent model with the spatial semi-discretization of parabolic equations.

This allows us to use the existing techniques for parabolic control problems
in the present setting and derive explicit estimates on the cost of controlling
these systems as the number of agents tends to infinity. We obtain precise

estimates on the time of control and the size of the controls needed to drive
the system to consensus, depending on the size of the population considered.

Our approach, inspired on the existing results for parabolic equations,

possibly of fractional type, and in several space dimensions, shows that the
formation of consensus may be understood in terms of the underlying diffusion
process described by the heat semi-group. In this way, we are able to give

precise estimates on the cost of controllability for these systems as the number
of agents increases, both in what concerns the needed control time-horizon and
the size of the controls.

1. Introduction

1.1. Problem formulation and main results. In the last decades, there has
been a tremendous surge of interest among researchers from various disciplines of
engineering and science in problems related to multi-agent networked systems. This
is partly due to the large spectrum of applications in many different areas including
subjects such as consensus ([3, 9, 51]), collective behavior of flocks and swarms
([63, 65, 71, 84]), sensor fusion ([35, 68]), random networks ([38]), synchronization
of coupled oscillators ([43, 69, 70]), asynchronous distributed algorithms ([30, 59]),
formation control for multi-robot systems ([67, 85]), and dynamic graphs ([60]).

For the description of these phenomena, several mathematical models have
been introduced with different levels of complexity. From the viewpoint of each
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individual, the dynamics of the agents can be described in a microscopic way as
a system of ordinary differential equations (ODEs). The challenge is to describe
complex behaviors by means of simple and local interaction rules.

One of the prevalent models in collective dynamics is the so-called consensus
model ([10, 45]) describing the evolution of opinions which tend to have similar
beliefs among close neighbors. In it, each opinion is represented by a quantity
xi ∈ Rd, d ≥ 1, and evolves according to the following equations:

ẋi(t) =

N∑
j=1

ai,j(xj(t)− xi(t)), i = 1, . . . , N. (1.1)

Here, the parameters ai,j mainly describe the interaction between the agents xi
and xj . In this work, we will consider two types of choices for ai,j , generating two
different classes of models: the linear networked model, where ai,j are constants,
and the nonlinear alignment model in which ai,j = a(|xj − xi|) (the terminology
will be made clear in Section 2).

One of the principal aspects of interest in collective behavior models is the limit
behavior as the number of agents N tends to infinity. When considering a large
amount of individuals, to follow each trajectory separately may become a prohibitive
task. To overcome this difficulty, one classical approach is to replace (1.1) with a
suitable partial differential equation (PDE). Depending on the type of interactions
ai,j , this is done with different techniques.

On the one hand, one can employ the so-called graph limit method ([57]) to
describe the limit of (1.1) as N → +∞ by means of non-local diffusive models in
the form

∂tx(s, t) =

∫
I

W (s, s∗)(x(s∗, t)− x(s, t)) ds∗. (1.2)

When (1.1) is a (linear) networked system, the limit (1.2) is linear as well and
the kernel W (s, s∗) reflects the connectivity of the network and its interaction
coefficients ai,j .

We anticipate that, as expected, the structure of the network beneath (1.1) is of
great relevance when performing the graph limit. This fact is reflected in the form
of the limit interaction kernel W (s, s∗).

Indeed, as we shall see in Section 3, in order not to have a trivial dynamics in
(1.2) (that is, W (s, s∗) ≡ 0) the network has to be sufficiently dense, meaning that
each agent needs to communicate with a large percentage of the whole population.

This fact is not surprising: if the interactions in the model are very mild, the
inclusion of more and more agents into the system deteriorates the communications
to a point in which the individuals are nearly disconnected.

For alignment models, the same technique can be applied leading to a nonlinear
non-local diffusion model of the form

∂tx(s, t) =

∫
I

a(|x(s∗, t)− x(s, t)|)(x(s∗, t)− x(s, t)) ds∗. (1.3)

On the other hand, for alignment models, apart than the graph limit approach
leading to (1.3), one can also use a mean-field procedure ([64]) leading to a non-local
transport equation

∂tµ(x, t) = ∂x

(
µ(x, t)

∫
X

a(|y − x|)(x− y)µ(y, t) dy

)
. (1.4)
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Our first main objective in the present paper is to explain the relations between
these possible limits (1.3) and (1.4). In particular, we will show that there is a
subordination relation allowing to obtain (1.4) from (1.3) through an averaging
process.

Once this first aspect is fully clarified, we will give a deeper insight to the role
of N in collective-behavior models. With this regard, we will show that certain
characteristic properties of multi-agent systems are badly behaved when analyzing
the infinite-agents dynamics.

For doing that, we first focus on a simple example of the collective behavior
systems, related to the spatial discretization of the heat equation. This allows to
reinterpret and explain several fundamental properties in a very intuitive and easily
comprehensible manner.

We will be particularly concerned with the controllability of (1.1) which, in this
context, is interpreted as the possibility of steering the system to a state in which
all the agents agree on a common opinion (the so-called consensus state) and to do
it in a finite time by means of the action of one control acting on one of the system
components.

The second main result of our work will be to provide estimates on the control
properties of this system in terms of the number of agents N . In particular, we
shall realize that the cost of controlling (1.1) in finite time blows up exponentially
when N → +∞. This, of course, means that the corresponding infinite-dimensional
averaged non-local dynamics will fail to be controllable in finite time.

Inspired on this example, we can analyze others related to multi-dimensional or
fractional heat processes, which allow to build networks in which the (divergent)
control properties can be quantified as N → +∞. We also analyze other networks,
not directly linked to parabolic models, in which the connectivity is rather dense.

To simplify the presentation we will mainly be concerned with networks in which
the control acts on some of the external nodes. But similar results apply when the
network is controlled in some interior nodes/agents, and in particular in the case
where the number of controlled nodes preserves a constant ratio with respect to N .

The analysis presented in this paper is non-exhaustive. There is plenty to be
understood in what concerns the control of systems of the form (1.1). But the
approach presented here may be useful to exploit the existing techniques and results
on the control of numerical approximations of PDEs in this context, and to orient
future efforts.

The rest of this paper is organized as follows. First of all, in Section 1.2 we give a
general bibliographical overview of the modeling of many-particle systems. Section
2 provides a deeper insight on collective dynamics. We first clarify the distinction
between networked and alignment systems, and we introduce a general discussion
on the control properties of consensus models. In Section 3, we describe in detail
the mean-field and graph limit processes leading to the non-local transport and
diffusive equation (1.4) and (1.2). In addition, we show a subordination principle of
the non-local transport equation (1.4) to (1.3), and we briefly discuss the case of
second-order models. In Section 4, we show how (1.1) may be related to the finite
difference discretization of the heat equation, and we use this for analyzing control
properties of collective behavior models with the help of some specific examples.
Finally, Section 5 is devoted to some final remarks and open problems.
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1.2. Modeling aspects. The dynamics of many-particle systems may be described
into three scales: microscopic, mesoscopic (sometimes referred to as kinetic), and
macroscopic.

At a microscopic level, relevant models, composed by a limited number of particles,
may be described in terms of ODEs as in (1.1). At a mesoscopic and macroscopic
level, infinite-dimensional models described by PDEs or integro-differential equations
are needed. In the first case, these models describe the evolution of the distribution of
particles over a phase space. In the second one, they involve macroscopic observable
quantities obtained by weighted moments of the distribution functions.

There is a well-defined subordination among these scales, and there are different
approaches for describing it.

In this framework, the most classical results date back to the works of Hilbert
[39, 40] who, as an example in his sixth problem on the axiomatization of physics,
translated into a mathematical setting the concepts of hydrodynamic limits intro-
duced by Boltzmann and Maxwell some years before.

This seminal approach has then been extended in several directions, with a special
concern toward the derivation and qualitative analysis of different kinetic models
(see [2, 13, 34]).

In this context, a widely used technique nowadays is the mean-field limit ([33, 73]),
which refers to the problem of passing from a particle description to continuum
models of Vlasov-type ([4, 12, 17, 18, 24, 64]), namely

∂tf = −v · ∇xf +∇v · (a[f ]f). (1.5)

In particular, in the context of collective behavior models, a[f ] is typically of the
form ([37])

a[f ](x, v, t) :=

∫
R2d

r(x, y)(v − v∗)f(y, v∗, t) dv∗dt,

with an inter-particle interaction kernel r, and (1.5) is the kinetic equation cor-
responding to a second-order model, in the same spirit as (1.4) corresponds to
(1.1).

Mean-field theory originally arose in physics to describe phase transitions ([44,
82]), and was later extended toward several areas including queueing theory ([1]),
computer network performance and game theory ([49]), and epidemic models ([50]).

The term mean-field comes from the fact that the limit equation describes a
distribution function of the representative particle which is affected by a kind of
averaged version of the interactions.

The strategy is essentially to consider the continuity equation of a representative
one-particle distribution, which can be obtained from the BBGKY hierarchy of the
Liouville equations.

The principal limitation of the mean-field approach is that it does not allow
to treat all those situations in which underneath (1.1) there is a graph structure,
because particles are indistinguishable.

Nonetheless, models on graphs are relevant in different applications throughout
the natural sciences and technology. Examples range from synchronization of
neuronal networks in biology ([48]), to Josephson junctions in physics ([80]), or to
transient stability in power networks ([25]).

Hence, in some recent works (see, e.g., [57, 58]) a graph-limit strategy based on
seminal results of graph theory ([53, 54]) has been developed.
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In the context of the consensus model (1.1), this leads to the non-local diffu-
sive equation (1.2), representing the opinion distribution of an infinite number of
individuals over a dense network.

In conclusion, these two general limit approaches, strongly rooted in the historical
development of multiscale modeling, that we just introduced above, allow to describe
the infinite-agents dynamics of a large spectrum of consensus models.

In the following sections, we will present them in detail and we will clarify their
analogies and differences.

2. General overview of consensus models

This section is devoted to a general discussion on some fundamental aspects of
the consensus model (1.1) and on its most relevant properties, in particular from a
control theoretical perspective.

2.1. Description of the models. Thanks to the development of social media,
the dynamics of opinion formation has lately become a hot topic in the scientific
community ([5, 6, 81, 86]). A complex network of interactions leads to the emergence
of groups with various opinions, and such behavior raises several questions, including
how groups are formed and how many of them survive throughout time.

In this work, we focus on the consensus model (1.1). As their name suggests, it is
typically employed to describe the opinion formation in a group. In it, the variables
of interest represent the different viewpoints of the agents with respect to certain
topics and their evolution along time through the influence of the neighboring
opinions in the state space.

Let xi ∈ Rd, d ≥ 1 be the opinion of the i-th agent, which evolves according to
the equation (1.1):

ẋi(t) =

N∑
j=1

ai,j(xj(t)− xi(t)), i = 1, . . . , N.

Note that the nature of the interaction, namely of ai,j ∈ R, plays a key role. In
some models (see [66]) the interactions ai,j are simply assumed to be constants,
according to the adjacency matrix of an weighted undirected graph, with nodes xi,
describing the connections between the agents. In more detail,

ai,j :=

{
aj,i > 0, if i 6= j and xi is conncected to xj ,

0, otherwise.
(2.1)

Then, the matrix A = (ai,j) is symmetric and it describes the behavior of a
network of individuals, which are connected if ai,j > 0 and disconnected if ai,j = 0.
These are the so-called networked multi-agent models.

In other situations, ([64]), these interactions depend nonlinearly on the difference
of opinions among the agents, and can be defined as

ai,j =
a(|xj − xi|)

N
. (2.2)

Here, the function a : R+ → R+ is the so-called influence function acting on the
magnitude of relative opinions |xj − xi|, which measures how much the behavior of
each agent xi is affected by the presence of xj . In what follows, taking inspiration
from the work [64], we shall refer to this class of systems as alignment models.
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We may immediately notice a substantial difference between the two classes
of models presented. Indeed, networked systems are linear while the alignment
is necessarily nonlinear since the interaction matrix depends on the contrast of
opinions |xj − xi|.

In addition, there is another important distinction between these two situations
which, however, is not clearly detectable at first glance. In the first case of networked
models, the interactions ai,j given by (2.1) are fixed and the connectivity between
two agents depends only on their indices, identifying their own position in the
network. For the alignment models, instead, the interactions ai,j depend on the
mutual difference of opinion between the different agents, |xj−xi|, but not explicitly
on their indices i and j.

2.2. The notion of consensus. For linear consensus models (1.1)-(2.1) we can
introduce the matrix notation

ẋ + Lx = 0, (2.3)

where x = (x1, . . . , xN ) and L = (`i,j)
N
i,j=1 = D −A with

A = (ai,j)
N
i,j=1

and

D = diag(d1, . . . , dN ), dk =

N∑
j=1

ak,j .

The matrix L in (2.3) is usually called the Laplacian of the adjacency matrix A.
Since A is symmetric, it is evident by construction that L is real and symmetric.
Besides, it is always positive-semidefinite (which in particular implies the non-
negativity of all its eigenvalues), with all the row and column sums vanishing. As a
consequence, L always has a zero eigenvalue, whose corresponding eigenvector is
v0 = (1, 1, . . . , 1)T (since it satisfies Lv0 = 0).

Therefore, a constant state of the form xeq = (x̄, . . . , x̄)T is an equilibrium of
system (2.3) for which the mean-opinion

x̄ :=
1

N

N∑
i=1

xi(0)

is time-invariant. Indeed, one can easily check that

1

N

N∑
i=1

ẋi(t) =
1

N2

N∑
i,j=1

ai,jxj(t)−
1

N2

N∑
i,j=1

aj,ixi(t) = 0.

This equilibrium xeq is a state in which all the agents agree on a common opinion,
the so-called consensus state.

It has been observed that large groups of autonomous agents have the tendency to
look for some sort of uniform configuration, even when the individuals interact only
locally. This is usually referred as self-organization, and the resulting phenomenon
is called emergent behavior ([21, 42, 64]). From a mathematical point of view,
consensus is then a pattern to which the system tends naturally to be attracted.

When and how consensus emerges from the consensus models (1.1), and what
types of communication rules influence their formation are natural questions to be
considered. In [66, Section I.D] the authors provide an extended account of these



DYNAMICS AND CONTROL MULTI-AGENT NETWORKED SYSTEMS 7

real word applications, including fast consensus in small-worlds ([87]), distributed
sensor fusion in sensor networks ([68]), and a nonlinear extension of (1.1) such as
the Kuramoto model ([36, 72]).

2.3. Controllability properties of consensus models. When the consensus is
not achieved by self-organization, it is natural to ask whether it can be generated
by means of an external action. This is the so-called notion of organization via
intervention.

We analyze this issue from a control theoretical perspective. We do it in a
standard way, by adding the control function as an external action described by
some given constant parameters bi,j :

ẋi(t) =

N∑
j=1

ai,j(xj(t)− xi(t)) +

M∑
j=1

bi,juj(t), i = 1, . . . , N. (2.4)

Notice that, following the above presentation, in the linear networked case (2.4)
may be rewritten in matrix form as

ẋ + Lx = Bu. (2.5)

In some seminal papers (see, e.g., [66]), the authors proposed controls acting on
all the components of the system. While this strategy is certainly effective, in many
situations it is not optimal and, in the last years, other more efficient approaches
have been introduced: Sparse control strategies, concentrating their action only
on a small number of agents at each time (see for instance [14]), and the control
through leadership, which consists in looking for a single leader to act on a whole
group and steer it to the desired configuration ([29, 83]).

As far as the authors know, the aforementioned methods need the whole time
interval [0,∞) for the opinions xi to form a consensus in an asymptotic manner,
the object being to stabilize a specific equilibrium of the system. Besides, this
is reflected on the infinite dimensional transport model (1.4), whose stabilization
properties have been studied, for instance, in [15, 26, 27].

But it is natural to investigate whether a suitable control strategy can drive the
system to consensus in finite time.

For finite-dimensional linear systems of the form (2.5) controllability in finite
time is equivalent to the so-called Kalman rank condition:

rank[B,LB, . . . , LN−1B] = N.

Note however that this rank condition in itself does not yield any estimate on
the cost of controlling the system as the dimension N → +∞, which will constitute
one of the main focuses of this paper. This has been partially done for the non-local
diffusion model (1.2) in the special case

I = R and W (s, s∗) = cα|s∗ − s|−1−2α, α ∈ (0, 1),

corresponding to the heat equation with fractional Laplacian (see [7, 62, 79]).
Notwithstanding, to the best of our knowledge, analogous results for more general
kernels W (s, s∗) are not available in the literature.

In Section 4, we will give a partial answer to this question, by discussing some
specific example of linear networked consensus models (1.1)-(2.1). We will relate
these models to spatial semi-discretized parabolic equations and, in this way, we
will characterize their controllability properties through well-known results in PDE
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control theory and its numerical analysis. For simplicity, we will focus there on the
case of sparse controls.

Note that the controllability property refers to the possibility of steering the
system to any final state. Here we are mainly concerned with the control to the
consensus configuration, which is a desirable target whatever N is.

In particular, we will distinguish two situations. In a first moment, we will
consider models on a sparse graph, whose infinite agent dynamics (1.2) is trivial
(that is, W (s, s∗) ≡ 0). As we will see, in this case the system cannot be controlled
to consensus in a uniform, with respect to N manner. We shall prove that, to
control the system, either the time of control or the size of controls has to diverge.
More precisely, we shall prove that controllability may be achieved:

• When the time of control is of the order of T ∼ N2, in which case the size
of the needed control is independent of N .
• When the time T is independent of N but with controls of size that blows-up

exponentially as N → +∞.

This is a consequence of the fact that, in the considered model, the interaction
among agents is weak, implying that (1.1) requires either a large time or a very
costly control strategy in order to be controlled.

As we shall see, this type of results will be shared by a number of graph models
for which the control to consensus cannot be expected to be uniform with respect
to N .

Secondly, we will focus on non-trivial limit diffusion equations (1.2), with
W (s, s∗) 6≡ 0, for which we may expect that the stronger level of interaction
among the agents produces better controllability properties.

Nevertheless, we will see that this is not necessarily the case, because of possible
spectral accumulations. To clarify this aspect, we will present a couple of examples
of dense graphs that behave differently from a control perspective.

3. Infinite agents dynamics

In this Section, we are interested in the large population limit (N → +∞) of the
consensus model (1.1).

As we anticipated in Section 1.2, for collective dynamics, this is generally ad-
dressed either through the mean-field or graph limit approach. We introduce here
the main ingredients for these two procedures.

3.1. The mean-field limit of alignment models. We present here in a schematic
manner the mean-field procedure applied to nonlinear models ((1.1) with ai,j given
by (2.2)). The interested reader may find a more detailed description in [33, 37, 74]
and the references therein.

The process works as follows:
Step 1. The starting point is to consider the empirical measure

µN = µN (x, t) :=
1

N

N∑
i=1

δxi(t)(x), x ∈ Rd, (3.1)

which identifies which portion of agents have an opinion x at time t.
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Step 2. Secondly, it can be shown that the density function µN satisfies the equation
∂tµ

N (x, t) = ∂x

(
µN (x, t)

∫
Rd
a(|y − x|)(x− y)µN (y, t) dy

)
,

µN (x, 0) = µN0 (x), x ∈ Rd, t > 0,

(3.2)

in which the initial datum µN0 (x) is determined by (3.1) and the initial data of
(1.1).

This is a non-local transport equation in which the presence of the convolution
kernel describes how the interactions among the agents during the time evolution of
the dynamics mix their opinions, thus influencing the general behavior of the whole
group.
Step 3. Let µ0 ∈ Pc(Rd), the space of probability measures with compact support
in Rd, and denote d1 the Wasserstein one-distance (see Definition 2.1 in [16]). If
we assume that limN→+∞ d1(µN0 , µ0) = 0 and the interaction function a is enough
regular to ensure some compactness property, then according to Theorem 2.1 and
Corollary 2.1 in [16], there exists µ ∈ C([0,+∞);Pc(Rd)) satisfying (3.2) such that,
for any T > 0,

lim
N→+∞

[
sup
t∈[0,T ]

d1(µN , µ)

]
= 0.

Notice that from the definition of µN and the equation (3.2), we are assuming
that the agents are indistinguishable since any opinion at x has the same dynamics.
Therefore, this limit process is appropriate only in the case (2.2), where the interac-
tions ai,j measure the contrast of opinions, but do not take into account from which
agents they originate. This reflects the fact that there is no network structure at
the basis of alignment models.

3.2. Role of the underlying networks. As we already mentioned in the previous
sections, for the linear networked models we are analyzing, in which ai,j depends
on the indices i and j but not on the difference of opinions |xi − xj |, the classical
mean-field limit process is not suitable anymore. For this reason, the mean-field
limit procedure cannot be applied to a networked collective behavior model in which
the interactions are given as in (2.1).

To better clarify this key aspect, we present below a simple example which
highlights the role of the graph structure underlying consensus models.

Example 3.1. Consider a linear networked model with three agents, whose equation
is given by

ẋ + Lx = 0 and L =

 1 −1 0
−1 2 −1
0 −1 1

 .

Let x 1 and x 2 be two solutions of this model with initial data x 1
0 = (1, 0,−1) and

x 2
0 = (1,−1, 0), respectively. Note that they have the same initial density function:

µ3(x, 0) =
1

3
δ−1(x) +

1

3
δ0(x) +

1

3
δ1(x).

However, their dynamics are not identical. In particular (see also Figure 1),

ẋ 1(0) = (−1, 0, 1), but ẋ 2(0) = (−2, 3,−1).
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Figure 1. Graphical representation of Example 3.1: two different
states x 1 (left) and x 2 (right) generating the same density function
µ3.

Example 3.1 shows clearly how, for networked systems, in order to describe
completely the dynamics, it is not enough to consider the density of opinions as in
model (3.2). Instead, one should adopt a different approach, representing the state
as an opinion distribution function whose dynamics will rather be described by a
non-local parabolic problem of the form (1.2).

This idea goes back to the pattern formation theory of collective behavior models,
for example [46]. Recently its convergence and regularity has been analyzed in [57].
Their relationship is exactly the same as for random variables and their density
functions.

This is the basis of the graph limit procedure, which we describe in the next
section.

3.3. The graph limit. Recall that (1.1), (2.1) can be seen as a set of N coupled
equations on a graph. To analyze the limit when N → +∞, we adopt the graph
limit method presented in [57], where the author combines techniques from the
theory of evolution equations and the recent theory of graph limits ([11, 53]) to
rigorously justify the possibility of taking the continuum limit for a large class of
dynamical models on deterministic graphs.

First of all, let us consider the sub-intervals of I = [0, 1] given by

Ii :=

[
i− 1

N
,
i

N

)
, i = 1, · · · , N.

Let (xNi )Ni=1 be the solution of the consensus model
ẋNi =

1

N

N∑
j=1

aNi,jψ(xNj − xNi ),

xNi (0) = gNi i = 1, · · · , N,

(3.3)

where aNi,j = aNj,i and gNi are constants and ψ is a Lipschitz continuous function.
Notice that (3.3) contains both the linear dynamics (2.1) and the nonlinear one

(2.2). The first one corresponds to take ψ as the identity, while the second one
corresponds to aNi,j = 1 for all i, j = 1, . . . , N and

ψ(xNj − xNi ) = a(|xNj − xNi |)(xNj − xNi ).
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Let xN (s, t) be the opinion-valued distribution function

xN (s, t) =

N∑
i=1

xNi (t)χIi(s), s ∈ I, (3.4)

where χIi denotes the characteristic function on Ii.
Figure 2 shows a diagram representing the relationship between xNi (t) and

xN (s, t).

Figure 2. The opinions (x201 , . . . , x
20
20) and their distribution x20(s, t)

We have the following result.

Theorem 3.2. [57] For each N ∈ N, let (xNi )Ni=1 be the solution of (3.3). Suppose
that both the interaction kernel

WN (s, s∗) :=

N∑
i,j=1

aNi,jχIi(s)χIj (s∗), s, s∗ ∈ I, WN ∈ L∞(I2)

and the initial datum

gN (s) :=

N∑
i=1

gNi χIi(s), s ∈ I, gN ∈ L∞(I)

are uniformly bounded in L∞ and converge in L2 sense to W and g, respectively.
Then, for every finite T > 0, the distribution function xN defined in (3.4) converges
in C(0, T ;L2(I)) to the solution x(s, t) of∂tx(s, t) =

∫
I

W (s, s∗)ψ(x(s∗, t)− x(s, t)) ds∗, s ∈ I, t > 0

x(s, 0) = g(s), s ∈ I.
(3.5)

Model (3.3) includes a scaling factor 1/N which, as we mentioned before, is
natural in opinion formation since each agent has to make a compromise of the
various opinions of all the other agents in interaction. Hence (see [57]), to ensure
that the limit equation (3.5) is not trivial (W (s, s∗) 6≡ 0) we need a network with
the property

(# of nonzero aNi,j) ∼ N2 as N → +∞. (3.6)
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In what follows, adopting the terminology of [23], we are going to refer as dense
graph to a network fulfilling (3.6). On the contrary, if the network does not satisfy
this condition, we will call it a sparse graph.

It is worth to mention that (3.6) is compatible with collective dynamics, since
the linearization around consensus of the alignment model (2.2) often leads to a
dense network. This has been done, e.g., in [14], where the authors obtained local
controllability around a consensus point for the linearized alignment model by means
of the Kalman’s rank condition.

3.4. An example on a dense graph. To illustrate the importance of the hy-
pothesis (3.6), we describe here the graph limit procedure for a model on a dense
graph.

Let us then consider the following system

ẋi =
1

N

i+∑̀
j=i−`

(xj − xi), (3.7)

with ` = [rN ], r ∈ [0, 1], where [rN ] denotes the closest integer to rN .

• • • • • • • • • • •� � � � � �
i− 1. . . . . .i− ` i i + 1 . . . . . . i + `

Figure 3. Scheme of the interactions in (3.7). The ith agent
communicates with the jth, j = i− `, . . . , i+ `, ` = [rN ].

Recall that (3.7) can be rewritten in the form

ẋ + Lrx = 0 (3.8)

with Lr = 1
N (Dr −Ar), where the adjacency matrix Ar is

Ar = (aNi,j)
N
i,j=1, aNi,j =

{
1, if j = i− `, . . . , i− 1, i+ 1, . . . , i+ `,

0, otherwise,
(3.9)

and Dr is a diagonal matrix indicating the number of connections with each agent
in the network, that is

Dr = diag(deg(x1), . . . ,deg(xN )) deg(xi) :=
∑
j 6=i

|ai,j |.

Following the procedure described in Section 3.3, we need to construct an opinion
distribution out of the points xi.

For doing that, let us denote {si}Ni=1 a uniform mesh of the space interval
I = [0, 1]. For instance, we set

si =
i

N
− 1

2N
, i = 1, . . . , N,

and consider the intervals

Ii :=

[
si −

1

2N
, si +

1

2N

)
=

[
i− 1

N
,
i

N

)
,
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so that ∪Ni=1Ii = [0, 1). Out of this, let us define the distribution of phase-values
xN (s, t)

xN (s, t) =

N∑
i=1

xNi (t)χIi(s), s ∈ I, t > 0, (3.10)

and assume that gN :=
∑N
i=1 x

N
i (0)χIi(s) satisfies the assumptions of Theorem 3.2.

Then, it is possible to show that (3.10) satisfies the equation
∂tx

N (s, t) =

∫
I

N∑
i,j=1

aNi,jχIi(s)χIj (s∗)(x
N (s∗, t)− xN (s, t)) ds∗, s ∈ I, t > 0

xN (s, 0) = gN (s), s ∈ I.
Consider the sequence of the interaction kernels

WAr (s, s∗) :=

N∑
i,j=1

aNi,jχIi(s)χIj (s∗) : I2 → R.

From (3.9) it follows immediately that |WAr(s, s∗)| < 1. Moreover, we can
readily check that∫

I2

(
WAr (s, s∗)− χ[0,r](|s∗ − s|)

)2
ds∗ds ≤

4

N
→ 0, as N → +∞.

Hence, WAr (s, s∗) satisfies the assumptions of Theorem 3.2 and converges in L2

to the function χ[0,r](|s∗−s|). We then conclude that xN converges in C(0, T ;L2(I))
to some distribution x satisfying the equation

∂tx(s, t) =

∫
I

χ[0,r](|s∗ − s|)(x(s∗, t)− x(s, t)) ds∗, s ∈ I, t > 0

x(s, 0) = g(s), s ∈ I.
(3.11)

3.5. Subordination of the mean-field transport equations. For the sake of
completeness, we conclude this section with a brief discussion on the relations
between the non-local diffusive models coming from the graph limit of nonlinear
aligned systems and the non-local transport ones, obtained through the mean-field
limit process ((1.3) and (1.4), respectively).

We start by considering the finite-dimensional nonlinear alignment model

ẋi =
1

N

N∑
j=1

a(|xj − xi|)(xj − xi). (3.12)

Recall that (3.12) can be written in the form (3.3) by taking aNi,j = 1 for all
i, j = 1, . . . , N and ψ(xj − xi) = a(|xj − xi|)(xj − xi).

We may follow the graph limit method (see Theorem3.2), from which we obtain
the integro-differential equation

∂tx(s, t) =

∫
I

a
(
|x(s∗, t)− x(s, t)|

)(
x(s∗, t)− x(s, t)

)
ds∗, (3.13)

where x(s, t) is the distribution of the opinion xi over a set I of infinite indices:

x(s, t) = lim
N→+∞

xN (s, t), xN (s, t) :=

N∑
i=1

xi(t)χIi(s), s ∈ I, t > 0.
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Note that, this time, the non-local limit (3.13) defines a non-trivial dynamics as
soon as a is non-trivial.

On the other hand, the mean-field approach in [64] on the equation (3.12) leads
to the following non-local transport PDE:

∂tµ(x, t) = ∇x(V [µ]µ), where V [µ] :=

∫
Rd
a(|x∗ − x|)(x− x∗)µ(x∗, t) dx∗.

(3.14)

Here µ(x, t) describes the density of opinions:

µ(x, t) = lim
N→+∞

µN (x, t), µN (x, t) :=
1

N

N∑
i=1

δ(x− xi(t)), x ∈ Rd, t > 0.

Although equation (3.13) is parabolic and (3.14) is hyperbolic, there is a relation-
ship among them through the following transformation:

µ(x, t) =

∫
I

δ(x− x(s, t))ds. (3.15)

Indeed, by employing (3.15), we can firstly rewrite the time derivative xt in
terms of µ as

∂tx(s, t) =

∫
I

a
(
|x(s∗, t)− x(s, t)|

)(
x(s∗, t)− x(s, t)

)
ds∗

=

∫
Rd
µ(x∗, t)a

(
|x∗ − x(s, t)|

)(
x∗ − x(s, t)

)
dx∗ = −V [µ](x(s, t)).

Then, given a test function φ = φ(x), consider the inner product

(µ, φ) :=

∫
Rd
µ(x, t)φ(x) dx =

∫
I

φ(x(s, t)) ds.

We have:

d

dt
(µ, φ) =

d

dt

∫
I

φ(x(s, t)) ds =

∫
I

〈
xt(s, t),∇xφ(x(s, t))

〉
ds

= −
∫
I

〈
V [µ](x(s, t)),∇xφ(x(s, t))

〉
ds

= −
∫
Rd
µ(x, t)

〈
V [µ](x, t),∇xφ(x)

〉
dx

=

∫
Rd

〈
∇x(V [µ](x, t)µ(x, t)), φ(x)

〉
dx =

(
∇x(V [µ]µ), φ

)
,

which constitutes the weak version of (3.14).
Therefore, for the alignment model (1.1), (2.2), the non-local diffusive equation

(3.13) includes, in particular, the dynamics of the non-local transport equation
(3.14), which is subordinated to the first one.

In the latter, the opinion-valued distribution function is projected into the opinion
space to get the density over opinions as in (3.15). During this process, we lose
information of the position of the agents.

Finally, note that this subordination principle is significantly different from others
such as the Kannai transform (see [28] and the references therein) from the wave to
the heat equation.
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3.6. Graph limit of second-order models and subordination of mean-field
equations. The same methodology that we introduced for the graph limit of (1.1)
may be applied also to the study of second-order collective behavior models such
as the classical Cucker-Smale system appearing in flock dynamics ([21]), or the
second-order Kuramoto equation used for the synchronization of oscillators ([75]).

In particular, the latter one is in the form

ẍi(t) + ẋi(t) =
1

N

N∑
j=1

ai,j(xj(t)− xi(t)), i = 1, . . . , N. (3.16)

In analogy with what we did before, for the sake of completeness, we are going
to present here an heuristic description of the process for computing the graph limit
of (3.16) and of the subordination to the corresponding mean-field equation. The
approach is analogous to the first-order system (1.1). We first need to construct
the distribution

xN (s, t) =

N∑
i=1

xi(t)χIi(s), s ∈ I, t > 0. (3.17)

Then, as N → +∞, we expect xN to converge to some distribution x satisfying
the equation

∂ttx(s, t) + ∂tx(s, t) =

∫
I

W (s, s∗)(x(s∗, t)− x(s, t)) ds∗, (3.18)

which is a second-order damped wave-like integro-differential equation where, as in
(1.2), the kernel W (s, s∗) inherits the graph structure underneath (3.16).

Notice that, once again, the interactions among the xi in (3.16) generate a
non-local term in the limit equation, which this time is in the form of an integral
potential.

Besides, also in this case, one can formally establish a relationship among
(3.18) and the corresponding mean-field model, by projecting (3.17) into the posi-
tions/velocity space. The subordination process works as follows.
Step 1. First of all, we introduce the nonlinear alignment model corresponding to
(3.16):

ẍi(t) + ẋi(t) =
1

N

N∑
j=1

a(|xj − xi|)(xj(t)− xi(t)), i = 1, . . . , N. (3.19)

Step 2. By substituting (3.17) into (3.19) we have that, for any s ∈ I and t > 0,
the distribution xN (s, t) satisfies the nonlinear equation

∂ttx
N (s, t) + ∂tx

N (s, t) =

∫
I

a
(
|xN (s∗, t)− xN (s, t)|

)(
xN (s∗, t)− xN (s, t)

)
ds∗.

(3.20)

Then, in the same spirit of Theorem 3.2, we may formally see that, as N → +∞,
xN (s, t) converges to a distribution x(s, t) which satisfies the nonlinear non-local
wave model

∂ttx(s, t) + ∂tx(s, t) =

∫
I

a
(
|x(s∗, t)− x(s, t)|

)(
x(s∗, t)− x(s, t)

)
ds∗. (3.21)
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Step 3. Through the transformation

g(x, v, t) =

∫
I

δ(x− x(s, t))δ(v − ∂tx(s, t))ds,

with a similar procedure as in the first-order case, from (3.21) we recover the kinetic
equation 

∂tg = −v · ∇xg +∇v ·
(
F [g]g

)
F [g] =

∫
V

[
a(|x∗ − x|)(x− x∗) + v

]
g(x∗, v∗, t) dx∗dv∗.

(3.22)

Moreover, this three-step process is not specific to (3.22), but may be extended to
other kinetic models. Nevertheless, we have to stress that this is a merely heuristic
procedure, which may be difficult to justify rigorously.

In contrast with the first-order case, the equation being of wave-like form the
limit process in Step 2 may be hard to be performed. Indeed, in the present case, in
the absence of regularizing effect, passing to the limit in the nonlinear term is not
trivial, as it often occurs in nonlinear wave theory.

Nonetheless, despite of the fact that the limit process is purely formal, the
subordination of (3.22) to (3.21) is in itself a good indication of the interest of the
approach.

4. Dependence of control properties on the number of agents N

In this section, we analyze the impact of the number of agents N on the dynamics
of the consensus model (1.1). Our principal scope is to discuss to which extent the
number of individuals N involved in the model affects its general behavior and
control properties.

As we anticipated, this will be done by interpreting (1.1) as semi-discretized
parabolic equations and by using classical PDE techniques to identify the role that
N plays. This will allow to describe how the time scale and the control cost evolve
with respect to N .

4.1. From opinion dynamics to semi-discretized PDEs. We start with an
example of network dynamics on a sparse graph, which is closely related to the
one-dimensional semi-discretized heat equation.

Recall that, according to the discussion at the end of Section 3.3, this case
corresponds to a trivial limit dynamics (1.2), in which W (s, s∗) = 0.

Let us consider the consensus formation model (1.1), and assume for simplicity
that the opinions are described by scalar functions xi(t) ∈ R, i = 1, . . . , N , and that
the agents (denoted by the index i) are aligned along the same line. In addition, let
us define the interactions by

ai,j =

{
1, if j = i− 1, i+ 1,

0, otherwise.
(4.1)

In other words, the agent i is communicating only with the left and right neighbor
i − 1 and i + 1, meaning that the graph describing these interactions has a very
simple structure in which all the nodes are aligned on the same line and ordered in
a chain (see Figure (4)).

To some extent, one can relate i = 1, . . . , N with the indices of the points of a
uniform mesh discretizing the real line or a sub-interval of it.
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• • • • • • • • • • •� �
1 2 i− 1 i i+ 1 N. . . . . . . . . . . .

Figure 4. Scheme of the interactions corresponding to (4.1). The
agent i communicates only with j, j = i± 1.

In view of the structure of the interaction matrix (4.1), if we denote x :=
(x1, . . . , xN )T , we can easily see that system (1.1) may be written in matrix notation
as

ẋ + Lx = 0 (4.2)

where the Laplacian matrix L is given by

L =



1 −1 0 . . . . . . 0
−1 2 −1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . −1 2 −1
0 . . . . . . . . . −1 1


N×N

, (4.3)

uniformly bounded on N .
There is a clear similarity between (4.2)-(4.3) and the classical finite difference

discretization of the one-dimensional heat equation with homogeneous Neumann
boundary condition on a interval I ⊂ R, say [0, 1], which is given by

ẋ +Dx = 0 (4.4)

and

D = N2L. (4.5)

In (4.4), we immediately recognize the finite difference semi-discretization of the
one-dimensional heat equation. Accordingly, (4.2) can be seen as a finite-difference
discretization of the heat equation

ut − σuxx = 0, (4.6)

with diffusivity σ = σ(N) := N−2.
The heat equation is one of the paradigmatic models for which the existing PDE

control theory is rather complete (see [28, 90]). In the present one-dimensional
setting the heat equation is null-controllable in any positive time by means of
controls acting on the boundary or in interior measurable sets with positive measure.
But, of course, the fact that the diffusivity σ(N) = N−2 vanishes asymptotically
has a significant impact on the cost of controlling the system. These properties are
inherited by the finite difference semi-discretized models ([89]).

Systems (4.2) and (4.4) are equivalent up to a change of variables of time-scale
t 7→ σ(N)t = N−2t:

ẋ +Dx = 0, t ∈ [0, T/N2]. (4.7)
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Figure 5. Solution of (4.4) (left) and (4.2) (right) on the time
interval [0, T ]. with T = 0.2s and N = 50.

A standard way of characterizing controllability properties is through the control
cost which, roughly speaking, measures how expensive is the control strategy that
one adopts to steer any given initial datum to consensus in a given finite time.

In the finite-dimensional context, the classical Kalman’s condition assures that
models (4.2) and (4.4) can be controlled by acting only on one of their components.
Besides, the results in [90] show that the cost of controlling (4.2) is of the order
of exp(CN2/T ). This means that to control the system with controls uniformly
bounded on N one needs to take a control time of the order of T ∼ N2.

If instead the time horizon T is fixed, independent of N , then the cost of
controlling system (4.2) increases exponentially: c(T ) ∼ exp(CN2/T ).

This discussion may be summarized in the following result.

Proposition 4.1. Let us consider the following control problem associated to (4.2):

ẋ + Lx = Bu, (4.8)

with L given by (4.3) and

B = (1, 0, . . . , 0)T . (4.9)

The controllability properties of (4.8) can be characterized in terms of the number
of agents N in the following way:

(1) When the time of control is of the order of T ∼ N2, controllability to
consensus is achievable by acting only on one agent with a control uniformly
bounded on N .

(2) When the time T is independent of N , controllability to consensus requires
controls of size that blows-up exponentially as N → +∞.

Notice that the choice of B in Proposition 4.1 corresponds to controlling the
network only through one control acting on the agent placed in one of the extremes
of it. Nevertheless, the same result would be true in the context of interior control
acting on all agents j so that j/N lies in a given sub-interval (a, b) of the network,
corresponding to a N × j control matrix B in the form

B = (0, Ij , 0)T , (4.10)

where Ij indicates the j × j identity matrix.
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In fact the network in which the control acts in all nodes j such that j/N belongs
to (a, b) can be seen as two networks, one to the left of a, and the other one to the
right of b, connected by the intermediate control zone (a, b), so that each of them is
controlled in the corresponding end-point a or b.

The bad behavior of (4.2) in terms of controllability as N → +∞ can be further
explained through the analysis of the spectrum of (4.3).

Following the classical methodology presented in [41, Chapter 9, Section 1.1], we
can easily compute the eigenvalues of (4.3) and (4.5), which are given respectively
by

λLk = λLk (N) := 4 sin2

(
π(k − 1)

2N

)
, k = 1, . . . , N (4.11)

and

λDk = λDk (N) = N2λLk (N), k = 1, . . . , N. (4.12)

The systems under consideration have a spectrum composed by N real eigenvalues.
We are interested here in their control properties as N tends to infinity. To address
this we make use of the existing theory of families of dynamical systems that can
be represented in Fourier series by a sequence of real exponential, as it occurs in
the context parabolic equations. When the spectrum of the system is given by real
eigenvalues {λk}k≥1, the controllability of the corresponding parabolic dynamics
requires the following two properties to hold:

1. There exists a constant γ > 0 such that λk+1 − λk ≥ γ for all k ≥ 1.

2. The sum
∑
k≥1
λk 6=0

λ−1k is finite. (4.13)

In this paper we consider systems depending on the parameter N . Thus, the
spectrum also depends on N . But it is well known (see [90]) that the corresponding
systems are uniformly controllable provided the former gap and summability condi-
tions are uniform on the index N . Here uniformity means that, for a fixed initial
datum (or a family of data converging to a given datum as N tends to infinity) and
for a fixed consensus target and a time horizon T , the controls remain uniformly
bounded as N tends to infinity. The families of eigenvalues under consideration are
finite, consisting on N eigenvalues. They can be extended to an infinite sequence
by simply setting λj = j2 for j ≥ N + 1.

It is easy to see that (4.13) are satisfied uniformly by the eigenvalues (4.12) of
the semi-discrete heat equation (4.4), but not by the ones of the consensus model
(4.2) (see also Figure 6).

This gives a further explanation of the bad controllability properties of (4.2) (see
Proposition 4.1).

For completeness, we have to mention that spectral accumulation phenomena
similar to the ones observed for (4.2) arise in other classes of models, such as PDEs
with memory terms ([8, 19, 55]), the structurally damped wave equation ([56]), or
the Benjamin-Bona-Mahony equation ([61]).

4.2. The network dynamics of the 2d semi-discrete heat equation. A sec-
ond example of model on a sparse graph to which our previous analysis applies is
related the finite difference semi-discretization of the two dimensional heat equation
on a square domain, for instance [0, 1]× [0, 1].
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Figure 6. First twenty eigenvalues of (4.3) (top-left) and (4.5)
(top-right) for N = 100. The corresponding spectral gap is plotted
at the bottom.

Let us consider the following interaction graph in Figure 7 and let

• • • • • • • • • •
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(1, 1) (1, 2) (1, N)(1, j − 1) (1, j) (1, j + 1)

(i, j − 1) (i, j) (i, j + 1)

(i− 1, j)

(i+ 1, j)

. . . . . . . . . . . .

Figure 7. Disposition on the N2 agents of the model. Each agent
(i, j) interacts with the four agents connected to him. The control
acts on the blue nodes in the box.

ẋ + Lx = Bu (4.14)

describe the control problem corresponding to the collective dynamics (1.1). In
(4.14), we consider theN2 × N control matrix B = [I, 0, . . . , 0]T , where I is the
N ×N identity, while the Laplacian matrix L is given by

L =


P1 −I 0 . . . 0
−I P2 −I . . . 0
...

. . .
...

0 . . . −I P2 −I
0 . . . . . . −I P1


N2×N2

, (4.15)
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with P1 and P2 defined as

P1 =


2 −1 0 . . . 0
−1 3 −1 . . . 0
...

. . .
...

0 . . . −1 3 −1
0 . . . . . . −1 2


N×N

, P2 =


3 −1 0 . . . 0
−1 4 −1 . . . 0
...

. . .
...

0 . . . −1 4 −1
0 . . . . . . −1 3


N×N

.

As in the one-dimensional case, this is associated with the five-points finite dif-
ference semi-discretization of the two-dimensional heat equation with homogeneous
Neumann boundary condition, which is given by

ẋ +Qx = Bu, Q = N2Lc. (4.16)

Hence, once again, the controllability properties of (4.14) can be analyzed in
terms of the ones of (4.16).

It is classically known (see [20, 88, 89]) that in order to obtain the controllability
of (4.16) the control region has to be ‘‘large enough’’, for instance, a neighborhood
of one side of the boundary (marked with blue diamonds in Figure 7).

When addressing the controllability problem for (4.14), other issues analogous to
the one-dimensional case previously discussed arise. In particular, we find again that
the control cost associated to (4.14) is exp(CN2/T ). Thus, the discussion in Section
4.1 applies again, and we can conclude that also in this case the controllability
properties of (4.14) are badly behaved as N → +∞.

This gives a further account of the pathologies that may arise when considering
a model on a sparse graph. Of course this example can be generalized to networks
in any euclidean dimension. The same results hold if the control acts in the interior
nodes within a fixed horizontal or vertical strip.

4.3. Consensus models on a dense graph. In Sections 4.1 and 4.2, we presented
a couple of practical examples of consensus models (1.1) on sparse graphs, which
have bad controllability properties because of the weakness of the interactions ai,j .

We conclude our discussion presenting a couple of examples of consensus models
on dense graphs. Recall that, in this case, the limit equation (1.2) will be a non-trivial
one (that is, W (s, s∗) 6= 0).

4.3.1. The model with a simple dense graph. Our first example is the following
model with a periodic dense network (see Figure 8), similar to (3.8):

ẋ + Lrx = Bu, r ∈ [0, 1/2]. (4.17)

In (4.17), the Laplacian matrix Lr is given by

Lr = (li,j)
N
i,j=1, li,j =


2, if i = j,

−1/`, if 0 < |j − i| ≤ ` or |j − i| > N − `,
0, otherwise,

(4.18)

with ` = [rN ], where [rN ] denotes the closest integer to rN . Moreover, we consider
a control B as in (4.10).

In this model, each agent communicates with 2` = 2[rN ] other agents, and the
number of agents with which communication is ensured increases with N . This is in
contrast with the system (4.2), reminiscent from the finite difference discretization
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Figure 8. Disposition of the N agents of the model. The agent i
interacts only with j, j = i− `, . . . , i+ `. The control acts on the
agents in the black box.

of the heat equation, in which each agent was only interacting with other two, one
on the left and one on the right.

A relevant feature of this model is that the intensity of communication among
the different agents is always the same, independent on their distance |i− j|, but
decreases as N increases to compensate the fact that effective interaction takes
place with a increasing umber of agents. This is reflected also in the graph limit of
(4.17) which, following [57], is given by the equation (see (3.11))

∂tx(θ, t) =
1

2πr

∫
S1
χ[0,2πr](|θ∗ − θ|)(x(θ∗, t)− x(θ, t)) dθ∗, θ ∈ S1, t > 0.

As we did in Section 4.1, in order to discuss controllability properties of (4.17) we
analyze the spectrum of the Toeplitz matrix Lr, whose eigenvalues can be computed
explicitly (see [78]):

λrk = 2− 2

`

∑̀
j=1

cos

(
2kπj

N

)
, k = 1, . . . , N,

and are associated to plane-wave eigenvectors φk =
(
ei

2kπj
N

)N
j=1

, k = 1, . . . , N .

Notice that these eigenvalues may not be in ascending order, due to the presence
of the sinusoidal function. Hence, to study the spectral gap analytically is not an
easy task.

For this reason, in what follows we will only address an heuristic analysis of
the spectral properties of (4.18), by showing the behavior of the eigenvalues and
comparing them with the ones of (4.3).

We start by choosing the particular value r = 1/4, which means that each agent
is communicating with the fifty percent of the other agents in the network, and
considering different values for N , namely N = 7, 40.

As we see in Figure 9, (4.17) has worst spectral properties than (4.2) from a
control perspective. In particular, as N increases the eigenvalues tends to accumulate
more and more. Hence, the conditions (4.13) ensuring the controllability of (4.17)
are once again not uniform and badly behaved in N .
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Figure 9. Eigenvalues (top) and spectral gap (bottom) of (4.18)
(blue circles) and (4.3) (red diamonds). We consider r = 1/4 and
different values of N = 7, 40.

Figure 10. Distribution of the eigenvalues of (4.18) for fixed
N = 45 and different values of r ∈ [0, 1/2].

In Figure 10, instead, we are showing the evolution of the eigenvalues of (4.18)
for a fixed value of N (namely N = 45) and different values of r, for keeping track
of their behavior in terms of the total percentage of interactions among the agents.
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We can clearly see that the accumulation of the spectrum increases for large values
of r, that is, for very dense networks.

In conclusion, this example shows that having a dense network underneath the
model (1.1) may not be enough to have uniform (with respect to N) controllability
properties for the system, which are then transferred to the corresponding infinite-
agent equation. In fact, the strength of the connections is also relevant. As a
validation of that, we analyze in the next section a second example of consensus
model on a dense graph associated to a fractional diffusion equation.

4.3.2. A fractional Laplacian network. As a final example of consensus model on a
dense graph, let us consider the following equation

ẋ + Lfracx = Bu, (4.19)

where, for all α ∈ (0, 1), the matrix Lfrac is defined as

Lfrac = (ai,j)
N
i,j=1, ai,j =


− c(α)

|i− j|1+2α
, if j 6= i,∑

j 6=i

ai,j , if i = j.
(4.20)

In (4.19), in contrast with (4.18), the communication rate among different
agents is weighted as a function of the distance |i − j|. Hence, although the
graphs underneath (4.19) and (4.17) are dense in both cases, in the former one
the interactions are also weighted, and the ones among close agents have a higher
impact on the dynamics.

Moreover, in this case, we consider a control strategy in which the matrix B is
given by (4.10).

According to (4.20), Lfrac describes a dense network inspired on the fractional
Laplacian. Indeed, we can easily see that the matrix

Dfrac := N2αLfrac (4.21)

is the finite difference discretization of the fractional Laplace operator ([22])

(−d2x)αu(x) := cαP.V.

∫
R

u(x)− u(y)

|x− y|1+2α
dy, (4.22)

and

ẋ +Dfracx = Bu (4.23)

is the semi-discretized control problem associated to the following fractional heat
equation

∂tu+ (−d2x)αu = 0, t ≥ 0. (4.24)

Notice that (4.24) corresponds the non-local diffusive model (1.2) with

W (x, y) = |x− y|−1−2α, (4.25)

In [7, 62, 79], the controllability of (4.24) has been studied both at the continuous
and discrete level by means of spectral analysis techniques. In particular, it has
been proved that controllability holds for any T > 0 if and only α1/2, but that it
cannot be achieved for α ≤ 1/2.

Hence, we can use this result, together with the presentation in Section 4.1, to
discuss the controllability properties of (4.19).
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Let us start by analyzing the spectral properties of (4.21) and (4.22). According
to [47], in this case the eigenvalues behave as (see Figure 11)

λDk ∼ k2α, k ≥ 1.

Figure 11. Evolution of the eigenvalues of (4.20) and (4.22) for
α ≤ 1/2 (top) and α > 1/2 (bottom).

Hence, the spectral conditions (4.13) are satisfied uniformly in N only for α > 1/2
(see Figure 12). In particular, for (4.21) we have that

N∑
k=1

(
λDk
)−1 ≥ N, for α ≤ 1/2

N∑
k=1

(
λDk
)−1 ≤ C < +∞, for α > 1/2

and

inf
k=1,...,N−1

(
λfracD − λDk

)
=

λ
D
N − λDN−1 = O(N2α−1), for α < 1/2

λD2 − λD1 = O(1), for α ≥ 1/2.

Following [31, 32], this yields that, for α ≤ 1/2, the control cost for (4.23) is not
bounded in N . In particular, for α < 1/2 it blows-up exponentially as exp(N1−2α).

When considering the model (4.19), the situation is even worst and, even in the
case α > 1/2, the controllability properties are not uniform in N due to the scaling
of the matrix (4.20)
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Figure 12. Evolution of the spectral gap of (4.20) and (4.22) for
α ≤ 1/2 (top) and α > 1/2 (bottom).

First of all, from (4.21) we immediately have that the eigenvalues of (4.20) behave
as

λLk = N−2αλDk ∼
(
k

N

)2α

and, consequently, the spectral gap is very small even for α > 1/2 (see Figure 13).

Figure 13. Evolution of the spectral gap of (4.20) for α > 1/2.
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Moreover, systems (4.19) and (4.23) are equivalent up to time-scaling t 7→ N−2αt:

ẋ +Dfracx = 0, t ∈ [0, T/N2α]. (4.26)

Hence, following again the results in [90] we obtain that the cost of controlling
(4.19) is of the order of exp(CN2α/T ). This means that to control the system (4.19)
with controls uniformly bounded on N one needs not only α > 1/2, but also to take
a control time of the order of T ∼ N2α.

If instead the time horizon T is fixed, independent of N , then the cost of
controlling system (4.2) increases exponentially: c(T ) ∼ exp(CN2α/T ).

These results are compatible with those in Section 4.1 for the network model
inspired on the finite-difference approximation of the heat equation. In fact, when
taking α = 1 in the discussion of the present section we recover the same estimates
as in Section 4.1 on the cost of control.

5. Conclusions and open problems

In this article, we considered finite-dimensional collective behavior models and
we discussed their infinite-agents limits. In addition, for linear networked systems,
we also analyzed control properties.

First of all, we realized that the nature of the interactions among the individuals
plays a crucial role in this limit process, and it determines the approach one should
use when facing this issue. Namely, networked systems (2.1) require the employment
of a graph limit ([57]), while for aligned ones (2.2) it is possible to rely on the classical
mean-field theory ([64]).

These two limit approaches lead to substantially different kinds of equations,
a diffusion and a transport one, respectively. In addition, a relevant difference
between these two techniques is that the graph limit allows to track the evolution
of each agent’s opinion individually, while mean-field only provides information
only on their density. As a result, (1.4) describes a system in which individuals
are indistinguishable. In addition, we showed that the diffusion equation (1.2) is
subordinated to the transport one (1.3), and that (1.3) can be obtained by (1.2)
through an averaging process.

Then we proposed a novel approach for analyzing the controllability to consensus
of networked systems, which provides an alternative viewpoint with respect to the
ones applied so far in this topic. In particular, we focused on the case where the
control is acting only on a small amount of the agents.

Our idea is very simple: we suggest to relate these models to the finite-difference
approximation of partial differential equations, and to rethink them under this new
perspective.

We focused on some very specific example of models with linear interaction
graphs and we showed how the network structure and the number of agents affect
key properties such as the controllability time and cost. In particular, we showed
that the cost for driving these systems to consensus is not uniform in N , and we
described its divergent behavior as N → +∞.

Moreover, our analysis focused mainly on first-order models, although it can
also be extended to second-order ones. In Section 3.6 we gave an account of
this fact by heuristically describing the limit process and the corresponding PDEs.
Notwithstanding, a rigorous convergence analysis still needs to be developed.

In addition, several interesting questions arise from our work:
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(1) In this paper, we never addressed the problem of finite-time controllability
to consensus of nonlinear alignment models (1.1)-(2.2). Nevertheless, this is
certainly an interesting issue and a natural continuation of our work. In par-
ticular, we shall be concerned with the analysis of the cost of controllability,
in the same spirit of what we did in Section 4.

(2) In Section 4.3.1, we briefly present an example of consensus model on a dense
graph, in which the density of interactions strongly affects the controllability
properties. A natural extension of our discussion would be to answer to the
following question: given a network of N agents, how can we determine how
controllable the system is as a function of N? In particular, which is the
minimum number of agents we have to control in order to reach consensus?
These kinds of problems have been partially studied, for instance in [52],
but a general theory is still unavailable.

(3) It would be interesting to address a complete analysis of the controllability
properties of second-order consensus models on networks which, according
to our analysis, may be related to the semi-discretization of wave-like
equations. In this context, we shall take into account that the finite
difference semi-discretization may introduce unexpected behaviors of high-
frequency solutions (see [76, 77, 88]) which may be inherited also from the
collective behavior model.

(4) Finally, a last interesting problem would be the analysis of the connection
among first and second-order equations at all the levels (finite-dimensional
models, graph and mean-field limit) that we described in this work. In the
linear PDE setting this issue has already been largely discussed, for instance
with the introduction of the transmutation concept based on the Kannai
transform (see [28]). Hence, an analogous discussion applied to collective
behavior models becomes an attractive topic which certainly deserves a
deeper investigation.
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