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name only a few), but also in success of experimental techniques in studying physical properties of dendrimers. [START_REF] Pinto | The dynamics of dendrimers by NMR relaxation: interpretation pitfalls[END_REF][START_REF] Pinto | Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR[END_REF][START_REF] Hofmann | Insight into the Structure of Polybutylcarbosilane Dendrimer Melts via Extensive Molecular Dynamics Simulations[END_REF][12] Unlike linear chains that almost entirely consist of inner groups, roughly half of the dendrimers' segments are terminal. This fact leads to sensitivity of the dendrimers' properties to their chemistry. [13] Therefore full-atomistic approaches may build a solid bridge between theory and experiment. Carbosilane dendrimers (CSD), [14,15] Figure 1, turn out to be very suitable compounds for such studies. They do not contain specific fragments, such as charged groups or stiff and massive segments. This enables one to focus investigations on the role of dendritic architecture.

In particular, the dendritic architecture is reflected in the relaxation times that can be associated with the inner relaxation as well as with the relaxation of (sub)branches as whole, in agreement with qualitative predictions of basic theory. [16,17] Given that the overall relaxation of dendrimer's (sub)branches depend on their molecular mass, the spectrum of the corresponding relaxation times in case of dendrimers is very broad. [18] Undoubtedly these findings are very important also for the rheological properties of dendrimers, although the broadness of the dendrimers' spectra requires very extensive simulations. Here it is worth mentioning that in case of linear chains, after molecular dynamics (MD) computations of typical dynamic quantities were performed, it took more than one decade to study the mechanical relaxation. This is because the calculation of the stress-stress relaxation needs to bridge all processes appearing in the system, see. [19] Full-atomistic simulations of CSD melts have been performed very recently in works. [16,20,21] Dendrimer melts with other chemistry were simulated in Ref. [START_REF] Bag | Charge Transport in Dendrimer Melts Using Multiscale Modeling Simulation[END_REF][START_REF] Smeijers | Coarse-grained simulations of poly(propylene imine) dendrimers in solution[END_REF] and the coarse-grained non-equilibrium MD simulations were used for studies of the shear viscosity of dendrimer melts [START_REF] Bosko | Viscoelastic properties of dendrimers in the melt from nonequlibrium molecular dynamics[END_REF][START_REF] Bosko | Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems[END_REF] and of the rheological properties of dendrimer melts undergoing planar elongational flow. [START_REF] Hajizadeh | Nonequilibrium molecular dynamics simulation of dendrimers and hyperbranched polymer melts undergoing planar elongational flow[END_REF] None of these studies investigated the dynamical shear-stress relaxation modulus. Our work presents, to the best of our knowledge, the first theoretical study of the shear-stress relaxation of CSD melts. The main results are summarized in Figure 2. It shows at short times a universal behavior of the shear-stress relaxation modulus for all systems and at longer times a clear discrepancy for dendrimers of different generation.

The dendrimers of generation G = 2, 3, 4 (in short: G2, G3, and G4 dendrimers, respectively) in a melt are studied by MD simulations employing the GROMACS package [START_REF] Abraham | Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[END_REF] (with Verlet scheme [START_REF] Páll | A flexible algorithm for calculating pair interactions on SIMD architectures[END_REF] ). Each simulation box with periodic boundaries contained 27 macromolecules. All interactions are considered in the united atoms model within Gromos53a6 force-field. [START_REF] Oostenbrink | A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6[END_REF] The 1) that are obtained from the rotational autocorrelation function P rot 1 (t) (the right bottom subfigure, here the time unit is as in Figure 2).

systems have been kept with Langevin thermostat at temperature 600 K with different values of coupling constant τ T : 0.005, 0.05, 0.5 ps. The variation of τ T that is related to the friction allows us to control the initial oscillations of the shear-stress relaxation modulus. In order to achieve better statistics we simulated ten replicas for the highest value of the parameter τ T . First, each system (whose initial configurations were obtained from the final frames of the trajectories of Ref. [16] ) was equilibrated in the NPT ensemble with Berendsen barostat [START_REF] Berendsen | Molecular dynamics with coupling to an external bath[END_REF] (G2 and G3 during 10 ns and G4 during 30 ns). Then the equilibration of the systems was proceeded in the NVT ensemble (the duration for G2: 0.1 µs, for G3: 0.2 µs, and for G4: 0.6 µs). For the analysis, successive 0.6 µs, 1 µs, and 2.1 µs of the trajectories for G2, G3, and G4 systems, respectively, were used for calculation of the physical characteristics of the systems.

The shear-stress relaxation is calculated based on the stress tensor P, G τ T = 0.005 τ T = 0.05 τ T = 0.5 V-rescale [ where m i and ì v i are the mass and the velocity of the united atom group i, ì F i j is the force exerted from j to i, ì r i j is the distance vector between them, and V is the box volume. The dynamic shear-stress modulus G(t) is determined based on the stress tensor, [START_REF] Allen | Computer simulation of liquids[END_REF][START_REF] Ramírez | Efficient on the fly calculation of time correlation functions in computer simulations[END_REF][START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF] 

P = 1 V i m i ì v i ⊗ ì v i + i< j ì r i j ⊗ ì F i j , (1) 
G(t) = V 30k B T (αβ) 6 P αβ (t)P αβ (0) + N αβ (t)N αβ (0) , (2) 
where the sum runs over the pairs (αβ) = x y, yz, zx and N αβ = P αα -P ββ . The simulations performed at different friction are bridged based on the rotational autocorrelation function

P rot 1 (t) = u(t) • u(0) , (3) 
where u(t) is the unit vector at time t directed from the silicone atom in the core to a silicone atom of the terminal layer. Thus, this function characterizes the overall rotation of the dendrimer molecule. From the exponential tail of P rot 1 (t) (that is observed in the half-logarithmic scales) we have deduced the rotational relaxation times τ rot , see Table 1. As can be seen in Figure 3 (bottom right), the functions P rot 1 (t) could be perfectly superimposed when different coupling constants of the thermostat are considered, if one takes τ rot as the benchmark time. To make a connection to the previous work [16] (where a different ensemble (NPT) and a different thermostat (V-rescale) were used), we show also those functions P rot 1 (t) in Figure 3 and provide corresponding values of τ rot in Table 1. Rescaling the time with τ rot , we obtain very smooth overlap of G(t), see Figure 3 g, x (t) of CSD at different generation. The power law t 0.7 is also indicated. The time unit is as in Figure 2.

times the moduli overlap each other, whereas at longer times one gets a slower stress relaxation for larger systems. It is known from the basic (bead-spring) theory [18,[START_REF] Cai | Rouse Dynamics of a Dendrimer Model in the Θ Condition[END_REF][START_REF] Gotlib | Theory of the Relaxation Spectrum of a Dendrimer Macromolecule[END_REF][START_REF] Gurtovenko | Dynamics of dendrimer-based polymer networks[END_REF] that the relaxation spectrum of dendrimers differs qualitatively from that of the linear chains. Namely, dendrimers have two types of modes: spatially periodic and spatially exponential. The first type of modes leads to the relaxation times of the so-called inner spectrum [17,[START_REF] Gotlib | Theory of the Relaxation Spectrum of a Dendrimer Macromolecule[END_REF] that weakly depends on the dendrimers' generation.

The inner spectrum is rather narrow and the corresponding (average) time is the minimal time τ min associated with the relaxation of the dendritic architecture. [16,17] It has the same order as the time of reorientation relaxation of the terminal segments, i.e., for CSD τ min = 1-10 ps, see Ref. [16] At this time the G(t)-curves start to separate for dendrimers of different generations. We remark that the modes corresponding to the inner spectrum involve the motion of all beads (with spatially periodic phases) [18,[START_REF] Cai | Rouse Dynamics of a Dendrimer Model in the Θ Condition[END_REF][START_REF] Gotlib | Theory of the Relaxation Spectrum of a Dendrimer Macromolecule[END_REF][START_REF] Gurtovenko | Dynamics of dendrimer-based polymer networks[END_REF] and therefore the inner relaxation is not the relaxation of individual segements.

The spatially exponential modes are related to the relaxation of (sub)branches as whole that build branch relaxation spectrum. [18,[START_REF] Gotlib | Theory of the Relaxation Spectrum of a Dendrimer Macromolecule[END_REF][START_REF] Gurtovenko | Dynamics of dendrimer-based polymer networks[END_REF] The corresponding relaxation times depend on the size of the subbranches whose molecular weight grows exponentially with generation. We note that there are no power-law behaviors for the relaxation times and for the corresponding dynamic quantities in the bead-spring theory of dendrimers. [START_REF] Cai | Rouse Dynamics of a Dendrimer Model in the Θ Condition[END_REF][START_REF] Gotlib | Theory of the Relaxation Spectrum of a Dendrimer Macromolecule[END_REF] This is another point that distinguishes dendrimers from the linear chains. In addition to these features, the simulations of dendrimers [17,[START_REF] Markelov | Local orientational mobility in dendrimers. Theory and computer-aided simulation[END_REF] have suggested that at long times the theory has to be adjusted by a proper description of overall mobility. In particular, the bead-spring theory does not describe properly the rotational degrees of freedom of the whole macromolecule. [START_REF] Kelly | Generalized Flory Theory for Rotational Symmetry Breaking of Complex Macromolecules[END_REF] As can be seen in Figure 2, going to longer times (t > τ min ), one does not find any universal scaling of G(t). The relaxation is dominated by the dendrimers' architecture and the presence of larger branches (whose molecular mass grows exponentially with generation) strongly slows down the dynamics of the larger dendrimers. At longest times, the moduli G(t)

show a typical exponential tail, [START_REF] Dolgushev | Marginally compact hyperbranched polymer trees[END_REF] G(t) ∝ exp(-2t/τ max ). Replotting G(t) in half-logarithmic scales we find the maximal times τ max = 461, 1980, and 9600 (ps of GROMACS for the Langevin thermostat at τ T = 0.5) for G2, G3, and G4, respectively. Comparing them with the corresponding rotational relaxation times τ rot (see column τ T = 0.5 in Table 1), one realizes that for G4 the stress relaxation dynamics is somewhat slower than the rotational relaxation, that indicates the presence of significant interactions between different dendrimers.

In this work, at short times, we find another point missed by the bead-spring theory that is related to the finite extensibility of dendrimer macromolecules. Namely, in Figure 2 we see a new universal behavior at short times. In line with works [START_REF] Granek | From semi-flexible polymers to membranes: anomalous diffusion and reptation[END_REF][START_REF] Morse | Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response[END_REF][START_REF] Broedersz | Modeling semiflexible polymer networks[END_REF] on the viscoelasticity of inextensible semiflexible filaments, this process is related to the restricted extensibility of the macromolecules and represents the corresponding relaxation of tension. There it was found that the tension relaxation of linear filaments leads to a t -3/4 power law behavior of the modulus at short times. Here, for dendrimers, we find slightly different scaling exponent, close to -0.7. In case of linear filaments the exponent -3/4 is directly related to the longitudinal fluctuation around the contraction of the end-to-end distance. Given that a dendrimer has many ends, we consider the fluctuations of the x-component

of the gyration tensor δR 2 g,x (t) ≡ [R g,x (t) -R g,x (0) 
] 2 , along which direction the macromolecule has its maximal extension, see Figure 4. Here we find also the exponent 0.7 (that is close to that 3/4

for the longitudinal fluctuations of the linear filaments [START_REF] Granek | From semi-flexible polymers to membranes: anomalous diffusion and reptation[END_REF][START_REF] Morse | Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response[END_REF][START_REF] Broedersz | Modeling semiflexible polymer networks[END_REF][START_REF] Saphiannikova | Multiscale approach to dynamic-mechanical analysis of unfilled rubbers[END_REF] ), which we observed in the modulus

G(t) in Figure 2.
Finally, Figure 5 presents experimentally relevant storage [G (ω)] and loss [G (ω)] moduli, which are obtained from [G(t)] of Figure 2 using the Fourier transform, [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF][START_REF] Ferry | Viscoelastic properties of polymers[END_REF] G (ω) + iG (ω) = Upper subfigures show the moduli for G2, G3, and G4 (from left to right) and the lower ones represent the moduli for different generations at one plot. The radial frequency unit correspods to the time unit of Figure 2.

iω ∫ G(t)e -iωt dt. At low frequencies (smaller than the inverse rotational relaxation times, see the upper panel of Figure 5) the moduli show scalings [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] G (ω) ∼ ω 2 and G (ω) ∼ ω 1 . At high frequencies the scaling exponent -0.7 of G(t) (see Figure 2) leads to a G (ω) ∼ G (ω) ∼ ω 0.7 behavior. Strikingly, the same power law in G (ω) and G (ω) is observed experimentally for PPI dendrimer melts of generations 3 to 5 (that have similar molecular weights as CSD dendrimers G2 to G4, respectively). [START_REF] Hofmann | Insight into the Structure of Polybutylcarbosilane Dendrimer Melts via Extensive Molecular Dynamics Simulations[END_REF] Moreover, the power law behavior is observed when the normalized moduli [G (ω)] and [G (ω)] take values between 0.001 and 0.1 [START_REF] Hofmann | Insight into the Structure of Polybutylcarbosilane Dendrimer Melts via Extensive Molecular Dynamics Simulations[END_REF] that corresponds to the results of our simulations. We note also that the same exponent by the moduli at high frequencies was recently found in the experiments on melts of branched POSS macromolecules. [START_REF] Liu | Dynamics of Shape-Persistent Giant Molecules: Zimm-like Melt, Elastic Plateau, and Cooperative Glass-like[END_REF] In that work this finding was connected with the Zimm model. [START_REF] Zimm | Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss[END_REF] Here we persuade ourselves that the reason for this behavior lies rather in the relaxation of tension. Now, it is interesting to observe the relative position of G (ω) and G (ω) at different generation (the upper part of Figure 5). While for G2 and G3 G (ω) lies strictly below G (ω), for G4 the curves touch each other at low frequencies just before going to the terminal regime, in line with the enhanced slowing down of G(t) for G4. If one looks at the terminal ω 1 -regime for G (ω) (whose prefactor is related to the viscosity η [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] ) one sees a non-monotonous shift toward low frequencies with increasing generation (we get [η(G3)/η(G2)] ≈ 2.1 and [η(G4)/η(G2)] ≈ 7.7). This indicates the growing contribution of the interactions between the macromolecules. Interestingly, very recent experimental works [START_REF] Matveev | Investigation of Melts of Polybutylcarbosilane Dendrimers by 1 H NMR Spectroscopy[END_REF][START_REF] Vasil'ev | An unprecedented jump in the viscosity of high-generation carbosilane dendrimer melts[END_REF] demonstrate that CSD melts of higher molecular masses can show a network formation. Here, at G4, however, we are still far from such effects neither from the entanglements, by which the moduli show for hyperbranched polymers a qualitatively distinct behavior. [START_REF] Schubert | Can Hyperbranched Polymers Entangle? Effect of Hydrogen Bonding on Entanglement Transition and Thermorheological Properties of Hyperbranched Polyglycerol Melts[END_REF] Closing the paper, we note that it would be interesting to investigate in the future how the findings of this work will resemble at higher generations of CSD and at lower temperatures. 
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 1 Figure 1: The structure of poly(butylcarbosilane) dendrimers (CSD). Top figure shows a CSD of generation G = 2.
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 2 Figure 2: Double-logarithmic representation of the normalized shear-stress relaxation modulus [G(t)] ≡ G(t)/G(0) for melts of CSD at generation G = 2, 3, 4. Dashed line indicates the power law associated with the tension relaxation, dotted lines illustrate the exponential tail of the moduli. Also we show the position of the rotational relaxation times τ rot (column τ T = 0.5 in Table 1) and indicate regions related
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 3 Figure 3: The normalized shear-stress relaxation modulus [G(t)] ≡ G(t)/G(0) for a melt of CSD (G2, G3, and G4), calculated from simulations employing Langevin thermostat with different values of the parameter τ T . The curves are rescaled with τ rot (Table1) that are obtained from the rotational autocorrelation function P rot 1 (t) (the right bottom subfigure, here the time unit is as in Figure2).

Figure 4 :

 4 Figure 4: Fluctuations of the x-component of the gyration tensor δR 2g, x (t) of CSD at different generation. The power law t 0.7 is also indicated. The time unit is as in Figure2.
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Figure 5 :

 5 Figure 5: Double-logarithmic representation of the storage [G (ω)] and loss [G (ω)] moduli for CSD melts.

Table 1 :

 1 Rotational relaxation times τ rot for CSD of different generation G for different values of the parameter τ T characterizing the Langevin thermostat. Also τ rot from Ref.[16] (V-rescale thermostat and NPT ensemble) are shown. The time units are ps of the GROMACS package.
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