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Abstract

We report on shear-stress relaxation of melts of poly(butylcarbosilane) dendrimers. The

system is studied by means of the molecular dynamics simulations with atomistic resolution.

The key investigated quantities are the dynamical shear-stress relaxation modulus and – its

counterparts in the frequency domain – the storage and loss moduli. We show the existence

of three main characteristic regimes of the mechanical relaxation (going from high to low

frequencies): (i) relaxation of tension related to the finite extensibility of the macromolecules;

(ii) relaxation related to the dendritic architecture (inner and branch relaxation); (iii) mobility

of the dendrimer as a whole. The tension relaxation is independent of the dendrimers’ size

and leads to a power law characterized by an exponent 0.7. The processes at low frequencies

(branch relaxation and dendrimer mobility as a whole) strongly depend on the molecular mass

and do not lead to a universal behavior.

Dendrimers are extraordinary macromolecules with a perfectly symmetric treelike structure. [1]

While being synthesized first in the seventies, [2] nowadays they enjoy a growing attention. [3,4]

The reason for this lies not only in the appearance of new types of these macromolecules [5] and

in their possible applications (as nanocarriers, [6] rheology modifiers, [7] nanoscale catalysts, [8] to
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Figure 1: The structure of poly(butylcarbosilane) dendrimers (CSD). Top figure shows a CSD of generation
G = 2.

name only a few), but also in success of experimental techniques in studying physical properties of

dendrimers. [9–12] Unlike linear chains that almost entirely consist of inner groups, roughly half of

the dendrimers’ segments are terminal. This fact leads to sensitivity of the dendrimers’ properties

to their chemistry. [13] Therefore full-atomistic approaches may build a solid bridge between theory

and experiment. Carbosilane dendrimers (CSD), [14,15] Figure 1, turn out to be very suitable

compounds for such studies. They do not contain specific fragments, such as charged groups or stiff

and massive segments. This enables one to focus investigations on the role of dendritic architecture.

In particular, the dendritic architecture is reflected in the relaxation times that can be associated

with the inner relaxation as well as with the relaxation of (sub)branches as whole, in agreement

with qualitative predictions of basic theory. [16,17] Given that the overall relaxation of dendrimer’s

(sub)branches depend on their molecular mass, the spectrum of the corresponding relaxation times

in case of dendrimers is very broad. [18] Undoubtedly these findings are very important also for the

rheological properties of dendrimers, although the broadness of the dendrimers’ spectra requires

very extensive simulations. Here it is worth mentioning that in case of linear chains, after molecular
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Figure 2: Double-logarithmic representation of the normalized shear-stress relaxation modulus
[G(t)] ≡ G(t)/G(0) for melts of CSD at generation G = 2, 3, 4. Dashed line indicates the power law
associated with the tension relaxation, dotted lines illustrate the exponential tail of the moduli. Also we show
the position of the rotational relaxation times τrot (column τT = 0.5 in Table 1) and indicate regions related
to different processes, see text for details. The time scale is given in ps unit of the GROMACS package with
the parameter τT = 0.5 of the Langevin thermostat.

dynamics (MD) computations of typical dynamic quantities were performed, it took more than one

decade to study the mechanical relaxation. This is because the calculation of the stress-stress

relaxation needs to bridge all processes appearing in the system, see. [19] Full-atomistic simulations

of CSD melts have been performed very recently in works. [16,20,21] Dendrimer melts with other

chemistry were simulated in Ref. [22,23] and the coarse-grained non-equilibrium MD simulations

were used for studies of the shear viscosity of dendrimermelts [24,25] and of the rheological properties

of dendrimer melts undergoing planar elongational flow. [26] None of these studies investigated the

dynamical shear-stress relaxation modulus. Our work presents, to the best of our knowledge, the

first theoretical study of the shear-stress relaxation of CSDmelts. The main results are summarized

in Figure 2. It shows at short times a universal behavior of the shear-stress relaxation modulus for

all systems and at longer times a clear discrepancy for dendrimers of different generation.

The dendrimers of generation G = 2, 3, 4 (in short: G2, G3, and G4 dendrimers, respectively)

in a melt are studied by MD simulations employing the GROMACS package [27] (with Verlet

scheme [28]). Each simulation box with periodic boundaries contained 27 macromolecules. All

interactions are considered in the united atoms model within Gromos53a6 force-field. [29] The
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Figure 3: The normalized shear-stress relaxation modulus [G(t)] ≡ G(t)/G(0) for a melt of CSD (G2, G3,
and G4), calculated from simulations employing Langevin thermostat with different values of the parameter
τT . The curves are rescaled with τrot (Table 1) that are obtained from the rotational autocorrelation function
Prot

1 (t) (the right bottom subfigure, here the time unit is as in Figure 2).

systems have been kept with Langevin thermostat at temperature 600 K with different values of

coupling constant τT: 0.005, 0.05, 0.5 ps. The variation of τT that is related to the friction allows us

to control the initial oscillations of the shear-stress relaxation modulus. In order to achieve better

statistics we simulated ten replicas for the highest value of the parameter τT . First, each system

(whose initial configurations were obtained from the final frames of the trajectories of Ref. [16])

was equilibrated in the NPT ensemble with Berendsen barostat [30] (G2 and G3 during 10 ns and

G4 during 30 ns). Then the equilibration of the systems was proceeded in the NVT ensemble

(the duration for G2: 0.1 µs, for G3: 0.2 µs, and for G4: 0.6 µs). For the analysis, successive

0.6 µs, 1 µs, and 2.1 µs of the trajectories for G2, G3, and G4 systems, respectively, were used for

calculation of the physical characteristics of the systems.

The shear-stress relaxation is calculated based on the stress tensor P̂,

P̂ =
1
V

(∑
i

mi®vi ⊗ ®vi +
∑
i< j

®ri j ⊗ ®Fi j

)
, (1)
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Table 1: Rotational relaxation times τrot for CSD of different generation G for different values of the parameter
τT characterizing the Langevin thermostat. Also τrot from Ref. [16] (V-rescale thermostat and NPT ensemble)
are shown. The time units are ps of the GROMACS package.

G τT = 0.005 τT = 0.05 τT = 0.5 V-rescale [16]
2 45393 5404 831 540
3 154540 18400 2830 1800
4 416000 45700 7033 4470

where mi and ®vi are the mass and the velocity of the united atom group i, ®Fi j is the force exerted from

j to i, ®ri j is the distance vector between them, and V is the box volume. The dynamic shear-stress

modulus G(t) is determined based on the stress tensor, [31–33]

G(t) =
V

30kBT

∑
(αβ)

(
6〈Pαβ(t)Pαβ(0)〉 + 〈Nαβ(t)Nαβ(0)〉

)
, (2)

where the sum runs over the pairs (αβ) = xy, yz, zx and Nαβ = Pαα − Pββ. The simulations

performed at different friction are bridged based on the rotational autocorrelation function

Prot
1 (t) = 〈u(t) · u(0)〉, (3)

where u(t) is the unit vector at time t directed from the silicone atom in the core to a silicone

atom of the terminal layer. Thus, this function characterizes the overall rotation of the dendrimer

molecule. From the exponential tail of Prot
1 (t) (that is observed in the half-logarithmic scales) we

have deduced the rotational relaxation times τrot, see Table 1. As can be seen in Figure 3 (bottom

right), the functions Prot
1 (t) could be perfectly superimposed when different coupling constants of

the thermostat are considered, if one takes τrot as the benchmark time. To make a connection to the

previous work [16] (where a different ensemble (NPT) and a different thermostat (V-rescale) were

used), we show also those functions Prot
1 (t) in Figure 3 and provide corresponding values of τrot in

Table 1. Rescaling the time with τrot, we obtain very smooth overlap of G(t), see Figure 3. The

ensuing curves are collected in Figure 2.

Now, direct comparison of G(t) for CSD of generations G = 2, 3, 4, Figure 2, shows that at short
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 Figure 4: Fluctuations of the x-component of the gyration tensor 〈δR2
g,x(t)〉 of CSD at different generation.

The power law t0.7 is also indicated. The time unit is as in Figure 2.

times the moduli overlap each other, whereas at longer times one gets a slower stress relaxation for

larger systems. It is known from the basic (bead-spring) theory [18,34–36] that the relaxation spectrum

of dendrimers differs qualitatively from that of the linear chains. Namely, dendrimers have two types

ofmodes: spatially periodic and spatially exponential. The first type ofmodes leads to the relaxation

times of the so-called inner spectrum [17,35] that weakly depends on the dendrimers’ generation.

The inner spectrum is rather narrow and the corresponding (average) time is the minimal time τmin

associated with the relaxation of the dendritic architecture. [16,17] It has the same order as the time of

reorientation relaxation of the terminal segments, i.e., for CSD τmin = 1-10 ps, see Ref. [16] At this

time the G(t)-curves start to separate for dendrimers of different generations. We remark that the

modes corresponding to the inner spectrum involve the motion of all beads (with spatially periodic

phases) [18,34–36] and therefore the inner relaxation is not the relaxation of individual segements.

The spatially exponential modes are related to the relaxation of (sub)branches as whole that build

branch relaxation spectrum. [18,35,36] The corresponding relaxation times depend on the size of the

subbranches whose molecular weight grows exponentially with generation. We note that there are

no power-law behaviors for the relaxation times and for the corresponding dynamic quantities in the

bead-spring theory of dendrimers. [34,35] This is another point that distinguishes dendrimers from

the linear chains. In addition to these features, the simulations of dendrimers [17,37] have suggested
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that at long times the theory has to be adjusted by a proper description of overall mobility. In

particular, the bead-spring theory does not describe properly the rotational degrees of freedom of

the whole macromolecule. [38] As can be seen in Figure 2, going to longer times (t > τmin), one does

not find any universal scaling of G(t). The relaxation is dominated by the dendrimers’ architecture

and the presence of larger branches (whose molecular mass grows exponentially with generation)

strongly slows down the dynamics of the larger dendrimers. At longest times, the moduli G(t)

show a typical exponential tail, [39] G(t) ∝ exp(−2t/τmax). Replotting G(t) in half-logarithmic

scales we find the maximal times τmax = 461, 1980, and 9600 (ps of GROMACS for the Langevin

thermostat at τT = 0.5) for G2, G3, and G4, respectively. Comparing them with the corresponding

rotational relaxation times τrot (see column τT = 0.5 in Table 1), one realizes that for G4 the stress

relaxation dynamics is somewhat slower than the rotational relaxation, that indicates the presence

of significant interactions between different dendrimers.

In this work, at short times, we find another point missed by the bead-spring theory that is related

to the finite extensibility of dendrimer macromolecules. Namely, in Figure 2 we see a new universal

behavior at short times. In line with works [40–42] on the viscoelasticity of inextensible semiflexible

filaments, this process is related to the restricted extensibility of the macromolecules and represents

the corresponding relaxation of tension. There it was found that the tension relaxation of linear

filaments leads to a t−3/4 power law behavior of the modulus at short times. Here, for dendrimers,

we find slightly different scaling exponent, close to −0.7. In case of linear filaments the exponent

−3/4 is directly related to the longitudinal fluctuation around the contraction of the end-to-end

distance. Given that a dendrimer has many ends, we consider the fluctuations of the x-component

of the gyration tensor 〈δR2
g,x(t)〉 ≡ 〈[Rg,x(t) − Rg,x(0)]2〉, along which direction the macromolecule

has its maximal extension, see Figure 4. Here we find also the exponent 0.7 (that is close to that 3/4

for the longitudinal fluctuations of the linear filaments [40–43]), which we observed in the modulus

G(t) in Figure 2.

Finally, Figure 5 presents experimentally relevant storage [G′(ω)] and loss [G′′(ω)] moduli,

which are obtained from [G(t)] of Figure 2 using the Fourier transform, [33,44] G′(ω) + iG′′(ω) =

7
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Figure 5: Double-logarithmic representation of the storage [G′(ω)] and loss [G′′(ω)] moduli for CSD melts.
Upper subfigures show the moduli for G2, G3, and G4 (from left to right) and the lower ones represent the
moduli for different generations at one plot. The radial frequency unit correspods to the time unit of Figure 2.

iω
∫

G(t)e−iωtdt. At low frequencies (smaller than the inverse rotational relaxation times, see the

upper panel of Figure 5) the moduli show scalings [44] G′(ω) ∼ ω2 and G′′(ω) ∼ ω1. At high

frequencies the scaling exponent −0.7 of G(t) (see Figure 2) leads to a G′(ω) ∼ G′′(ω) ∼ ω0.7

behavior. Strikingly, the same power law in G′(ω) and G′′(ω) is observed experimentally for PPI

dendrimer melts of generations 3 to 5 (that have similar molecular weights as CSD dendrimers

G2 to G4, respectively). [11] Moreover, the power law behavior is observed when the normalized

moduli [G′(ω)] and [G′′(ω)] take values between 0.001 and 0.1 [11] that corresponds to the results

of our simulations. We note also that the same exponent by the moduli at high frequencies was

recently found in the experiments on melts of branched POSS macromolecules. [45] In that work

this finding was connected with the Zimm model. [46] Here we persuade ourselves that the reason

for this behavior lies rather in the relaxation of tension. Now, it is interesting to observe the relative

position of G′(ω) and G′′(ω) at different generation (the upper part of Figure 5). While for G2
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and G3 G′(ω) lies strictly below G′′(ω), for G4 the curves touch each other at low frequencies

just before going to the terminal regime, in line with the enhanced slowing down of G(t) for

G4. If one looks at the terminal ω1-regime for G′′(ω) (whose prefactor is related to the viscosity

η [44]) one sees a non-monotonous shift toward low frequencies with increasing generation (we

get [η(G3)/η(G2)] ≈ 2.1 and [η(G4)/η(G2)] ≈ 7.7). This indicates the growing contribution of

the interactions between the macromolecules. Interestingly, very recent experimental works [47,48]

demonstrate that CSD melts of higher molecular masses can show a network formation. Here, at

G4, however, we are still far from such effects neither from the entanglements, by which the moduli

show for hyperbranched polymers a qualitatively distinct behavior. [49] Closing the paper, we note

that it would be interesting to investigate in the future how the findings of this work will resemble

at higher generations of CSD and at lower temperatures.
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