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ABSTRACT
Anisotropic dilatation during phase transformation in steels can be caused by banded
microstructure. As well as the directionality in mechanical properties, the anisotropic transfor-
mation strain can result in distortion and dimension change of the products. Hence, mechanical
assessment of this phenomenon is of great importance. In this paper, a numerical approachusing
Crystal Plasticity Fast Fourier Transform (CPFFT) has been developed and used, reproducing the
anisotropic transformation stain during heating (experimental results are reported in Part 1). It
was confirmed by the numerical simulation that the banded microstructure in microstructure
can be one of the most important reasons for the anisotropy of transformation strain.
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Introduction

Recent developments in numerical simulations of heat
treatment process of steels achieved precise prediction
of distortion and residual stress [1–4]. This can be
realised by considering phase transformation effect –
transformation strain and transformation plastic strain
– as well as the classical thermo-mechanical coupling.
In this case, transformation strain is usually supposed
as isotropic. However, materials having banded struc-
ture (e.g. ferrite-pearlite band structure) sometimes
exhibit anisotropic strain during phase transformation
[5–7]. According to the results byKop et al. [5], the total
transformation strain in normal direction is 0.0050
whereas 0.0029 in rolling direction. Together with the
transformation plasticity, which is same order as the
transformation strain [8], the anisotropy in transforma-
tion strain during cooling is considered to be one of
the important factors affecting the distortion and resid-
ual stress in the work after heat treatment. Therefore,
predicting the anisotropy caused by the heterogeneous
microstructure is of great importance in order to reveal
the mechanism of anisotropic transformation strain
observedwith banded structure. In this respect, the aim
of this study is defined to develop a full-field numerical
model with the effect of banded microstructure. In this
numerical model, a classical crystal plasticity constitu-
tive model is employed, which is extended to comprise
the transformation strain, to calculate the macroscopic
(overall) transformation strain behaviour and reveal the
microstructure effect.

Mechanical behaviour of steels during phase trans-
formation has received much attention and many sim-
ulation works have been dedicated to the compli-
cated problem [8–12] and a more macroscopic appli-
cation was made by Mackerle [13]. Most of the pre-
vious numerical works have used the finite element
method. In contrast to the finite element method,
Fast Fourier Transform (FFT) numerical scheme has
recently proved its efficiency to solve periodic bound-
ary elastoplastic problems, which is firstly introduced
byMoulinec and Suquet [14]. This method was applied
to the crystal plasticity problems (CPFFT) [15,16] and
the mechanical behaviour associated with phase trans-
formation called transformation plasticity by one of the
authors [17]. Thus in this paper, CPFFT is introduced
and used to a qualitative investigation of the band struc-
ture effect on the anisotropic dilatation during phase
transformation, which is to be contrasted to the case
with homogeneous microstructure.

Numerical approach

A CPFFT numerical scheme is used in this study to
reveal mechanical behaviour during phase transfor-
mation. The FFT application for stress–strain calcu-
lation uses Green’s functions method to solve a peri-
odic boundary value problem for heterogeneousmedia.
This method was extended by Lee et al. [18] and
Lebensohn et al. [19] to application of crystal plasticity
analyses. Stress distribution caused by heterogeneous
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transformation strain is considered in the previous
work [15] and thismodel is to be a further application of
the anisotropic α → γ transformation strain behaviour
in ferrite-pearlite band structuredmedia. In the follow-
ing sections, formulae in the framework of CPFFT are
briefly introduced and calculation condition together
with results and discussions are demonstrated.

Model description

FFT formalism for an elastoplastic problem
Let the displacement vector be divided into uniform
value and fluctuation term as:

u(x) = u′(x) + ε̄x, (1)

where u′(x) is the fluctuation term of periodic displace-
ment. Then, the strain field reads:

ε(u(x)) = ε(u′(x)) + ε̄, (2)

with ε(u′(x)) = 0.
A rate form of elastoplastic constitutive equation

considering transformation strain can be written as:

σ̇ (x)= C(x) : ε̇e(x) = C(x) : (ε̇(x) − ε̇p(x)− ε̇m(x)),
(3)

whereC(x) is the elastic tensor, ε̇e, ε̇, ε̇p and ε̇m are elas-
tic, total, plastic and transformation strain rate tensors
respectively. Here, the polarisation tensor τ̇ (x) and the
elastic tensor C0 of the reference media are introduced
to consider the heterogeneity. We obtain (# represents
periodic boundary condition):

σ̇ (x) = C0 : ε̇(x) + (C(x) − C0) : ε̇(x)

+ C(x) : (ε̇p(x) + ε̇m(x)) = C0 : ε̇(x) + τ̇ (x),

∀x ∈ V , divσ̇ = 0∀x ∈ V , u̇#, σ̇ · n − #. (4)

Solution of the problem reads:

ε̇(x) = ˙̄ε − Γ 0 ∗ τ̇ . (5)

Equations (4) in Fourier space is:

̂̇σ (ξ) = iC0 : (̂u̇′
(ξ) ⊗ ξ) + ̂̇τ (ξ), î̇σ (ξ) · ξ = 0, (6)

where, ξ is frequency, and the non-italic character i rep-
resents imaginary number. Eliminating ̂̇σ from Equa-
tions (6) gives

̂̇u′
(ξ) = i

2
(N0 ⊗ ξ + ξ ⊗ N0)̂τ̇ (ξ), (7)

where

N0(ξ) = K0(ξ)−1,K0(ξ) = C0 : (ξ ⊗ ξ), (8)

̂̇ε(ξ) = i
2
(ξ ⊗ ̂̇u′

(ξ) + ̂̇u′
(ξ) ⊗ ξ) = −Γ̂

0
(ξ) : ̂̇τ (ξ),

(9)

Γ̂
0
(ξ) = 1

4
(N0

liξjξk + N0
kiξjξl + N0

ljξiξk + N0
kjξiξl).

(10)
Γ̂

0
is the periodic Green’s operator. According to these

formulations, strain rate can be calculated by taking
inverse Fourier transform of Equation (9) and stress
rate is obtained by constitutive equation shown in
Equation (3).

Elastoplastic constitutive equations (crystal
plasticity)
Classical crystal plasticity framework for numerical
analysis has been introduced and extended by [20–24].
Along with these works, crystal plasticity constitutive
equations are demonstrated by follows. Plastic strain
rate caused by dislocation glide on slip systems is a
summation of slip rate γ̇ α on each slip system α, such
that:

ε̇p =
∑
α

pαγ̇ α , (11)

where pα is the Schmid tensor of α slip system.

pα = 1
2
(sα ⊗ mα + mα ⊗ sα), (12)

where sα and mα are respectively the slip direction
and slip plane normal of the α slip system. Slip sys-
tem is active, i.e. plastic deformation takes place, when
resolved shear stress τα on the slip plane equals to the
Critical Resolved Shear Stress (CRSS) gα , such that:

|τα| = |pα : σ | = gα . (13)

The viscoplastic constitutive model has been devel-
oped [22–26] and since then many applications have
been made [27–29]. According to this method, all
slip systems are active and their deformation magni-
tude is controlled by the strain rate sensitivity expo-
nent. For relatively low-temperature range (elasto-
plastic regime), small strain rate sensitivity exponent
value should be chosen whereas for relatively high-
temperature range (elasto-viscoplastic regime) large
value should be chosen. By taking extremely small
strain rate sensitivity exponent, one can reproduce the
pseudo elasto-plastic constitutive relation. However,
the small strain rate sensitivity exponent sometimes
makes the calculation unstable even though the stabil-
isation numerical technique [23] is employed. In this
case, enough small increment should be taken result-
ing in much consumption of computational resources
and extremely long calculation time. For this reason,
rate-independent model proposed by Hutchinson [30]
ismore efficient to reproduce pure elasto-plastic regime
and conserve more computation time. In this method,
the maximum number of active slip systems is limited
to 5. However, the model provides accurate solutions
for the elasto-plastic problems with phase transforma-
tion such as transformation plasticity [17]. Thus, this



research uses the following rate-independent solution
for determining the slip rate of each slip systemby using
the consistence condition:

τ̇ α = sgn(τα)ġα . (14)

The hardening law is simply defined here as:

ġα =
∑
β

hαβ |γ̇ β |, (15)

with hαβ the hardening coefficients. The phenomeno-
logical expression of hardening parameter can be writ-
ten as [22]:

hαα = h = H0sech2
[
H0

∑
β γ β

τs − τ0

]
, (16)

hαβ = qh + (1 − q)hδαβ , (17)

whereH0 is the hardening modulus at initial yield, τ0 is
the initial yield stress value and τs is the saturated stress
value. The parameter q is the ratio of self-hardening and
latent-hardening.

By using the constitutive laws, one obtains:

σ̇ : pα = C : (ε̇ − ε̇p − ε̇m) : pα = C : (ε̇ − ε̇m) : pα

−
∑
β

pα : C : pβγ̇ β =
∑
β

hαβγ̇ β . (18)

Solving Equation (18) yields slip rate of each slip sys-
tem, such that:

γ̇ α = f α : (ε̇ − ε̇m) and f α =
∑
β

YαβC : pβ , (19)

where

Yαβ = (Xαβ)−1 andXαβ = hαβ + pα : C : pβ . (20)

To make the matrix Xαβ being non-singular, the
maximum number of active slip systems, i.e. the rank
of the matrix Xαβ is limited to 5.

Calculation condition

Initial microstructure comprises 200 grains of ferrite
phase in its representative volume element (RVE)which
are made by using Voronoi Tessellation technique and
each grain is assigned its crystallographic orientation.
Figure 1 shows the initial microstructure in which
each grain has its unique colour. In the RVE, 1283

regular material points are fixed and the constitutive
relationship is defined according to its Euler angle.
For the case with banded microstructure (heteroge-
neous case), layers of pearlite are initially defined in
the RVE as shown in Figure 1, which corresponds to
the microstructure of 0.15% carbon-manganese steel
(CMn2 grade of part 1). The nucleation site of austen-
ite grain seeds are randomly spread inside the RVE and

Figure 1. Initial microstructure ma de by Voronoi tessellation
method (200 grains) – ferrite and pearlite bands are defined in
the case of the heterogeneous microstructure.

the nucleation is defined to take place simultaneously
inside the pearlite bands. After the nucleation of the
austenite phase, the austenite phase grows isotropically
keeping the spherical shape until they encounter the
other transformed austenite grains. When the pearlite
decomposition is finished, then the ferrite bands initi-
ate austenite phase transformation. In contrast to the
banded microstructure case, the more homogeneous
transformation is realised by simultaneous nucleation
throughout the RVE and uniform growth of the austen-
ite phase. In conjunction with the evolution of phase
transformation, amicroscopic isotropic transformation
strain occurs due to the density difference between the
mother and daughter phase. The microscopic trans-
formation strain, defined in the following equation,
is induced within one calculation step (t → t + �t)
when phase transformation at each calculation grid
takes place: ∫ t+	t

t
ε̇mdt = β1, (21)

where β is the total transformation strain set by β =
−4.55 × 10−3 in this study. For the simplicity, the
mechanical behaviours for ferrite and pearlite are used,
which are slightly softer than that of austenite. The
parameters used in this study for crystal plasticity anal-
yses are summarised in Table 1. In addition to the incor-
poration of the microscopic transformation strain, the
set of slip systems of initial phase (bcc – 48 slip sys-
tems, {110}<111> , {112}<111> , {123}<111> ) is
replaced by the set of fcc slip systems (fcc – 12 slip sys-
tems, {100}<011> ) and at the same time, cumulative
plastic strain is reset as well as all the other parameters
appear in the constitutive equations are set to those of
initial daughter phase.

Table 1. Parameters for crystal plasticity calcu-
lation.

parameters Ferrite and pearlite (α) Austenite (γ )

τ0 20.0 22.3
τs 38.0 40.0
H0 10.0 50.0
q 1.0 1.0



Figure 2. Transformed fraction (austenite phase in red colour). (a) 1% transformed. (b) 7% transformed. (c) 20% transformed. (d)
55% transformed

The transformation strain is the key driving agent for
the stress evolution as the elasto-plastic strain occurs
accommodating the transformation strain. In each step,
macroscopic (average value in the RVE) strain and
stress are calculated.

Note that the displacement, strain (and thus stress)
and microstructure are periodically reflecting the FFT
formulation restriction.

Results and discussions

Heterogeneous case

The crystal plasticity calculation is conducted start-
ing with the pearlite band decomposition into austen-
ite phase followed by ferrite phase decomposition as
depicted in Figure 2.When volume fraction of austenite
phase reaches 7–20%, almost whole region of pearlite
band is transformed. At this stage, the ferrite decompo-
sition initiates. The transformed fraction has a smaller
volume than the original phase and thus the strain
incompatibility occurs which results in the disloca-
tion glide on slip systems. The effect of the volume

change can be clearly seen in the equivalent plastic
strain distribution shown in Figure 3. More precisely,
the plastic strain accumulation is more pronounced at
the vicinity of transformation boundaries as is depicted
in Figure 3(b,c). Note that the cumulative plastic strain
is reset along with the phase transformation reflect-
ing the initialisation of work hardening behaviour; this
is the primary reason for the plastic strain decreases
inside the crust of the daughter phase. This poten-
tially causes the enhancement of plastic strain called
transformation plasticity when external stress is applied
[8,17,31].

The macroscopic strain (average strain in the RVE)
for each direction is calculated during the transfor-
mation process and is shown in Figure 4. At the
early stage of phase transformation, i.e. during pearlite
band decomposition, strain evolution in z-direction
(perpendicular to the pearlite band plane), larger
change in strain in z-direction is found more than
in other two directions reflecting the geometrical het-
erogeneity of pearlite band structure. The mechanis-
tic nature of the anisotropic dilatation during pearlite
decomposition can be explained as follows. When



Figure 3. Equivalent plastic strain distribution. (a) 1% transformed. (b) 7% transformed. (c) 20% transformed. (d) 55% transformed

pearlite band is transformed into austenite,microscopic
isotropic volume shrinkage occurs. However, the defor-
mation (in x-y plane) in transforming pearlite bands is
restricted by the ferrite bands and thus the plastic defor-
mation in z plane is likely to take place rather than in
x-y plane because lessmechanical restriction exists in z-
direction. This results in larger transformation strain in
z-direction than in other directions. As austenite phase
is harder than the ferrite phase, this effect is still true for
the ferrite decomposition stage. The austenite bands,
which were initially pearlitic, block the deformation of
the ferrite bands in x-y plane during ferrite decom-
position. Therefore, during ferrite→ austenite phase
transformation, again the strain change in z-direction
is more pronounced than in other directions, which
can also be interpreted from Figure 4. A qualitative
agreement is found here between numerical analyses
and what was measured by the experiment (in Part 1).
Above mechanisms drawn from the numerical results
coincides very well with the postulate put forward by
Kop et al. [5].

Homogeneous case

In this section, the homogeneous phase transforma-
tion is simulated. An assumption is made here that
the initial ferrite-pearlite phase is homogeneous and no

Figure 4. Evolution of equivalent plastic strain during phase
transformation (heterogeneous case).

distinction between ferrite and pearlite phase is sup-
posed. In this case, austenite grains in the RVE follow
simultaneous nucleation and isotropic grain growth
that is demonstrated by the simulation results in the red
coloured austenite grains in Figure 5.

Along with the heterogeneous case, distribution of
equivalent plastic strain for the homogeneous case
is exhibited in Figure 6. Compared with the hetero-
geneous case, remarkable plastic strain accumulation
is observed in daughter phase (Figure 6(d)) due to
stronger constraint for the heterogeneous case than for
the homogeneous case. This reasoning attributes the



Figure 5. Transformed fraction (austenite phase in red colour). (a) 1% transformed. (b) 7% transformed. (c) 20% transformed. (d)
55% transformed

Figure 6. Evolution of equivalent plastic strain during phase transformation (homogeneous case). (a) 1% transformed. (b) 7%
transformed. (c) 20% transformed. (d) 55% transformed



Figure 7. Evolution of strain during phase transformation (het-
erogeneous case: compared with that by theory).

plastic deformation in the daughter phase to the geo-
metrical relationship with other growing new austen-
ite grains and that is the primary reason behind the
effect of heterogeneity inmicrostructure on anisotropic
dilatation during phase transformation.

In the homogeneous case, it has been shown that
the overall plastic strain should theoretically be null
after Leblond et al. [8]. As a consequence, the exact
macroscopic transformation strain of the polycrystal
reads

ε̄m = βζ . (22)

where ε̄m denotes the macroscopic transformation
strain (isotropic), β is the total transformation strain
and ζ is the volume fraction of the transformed phase.
Calculation results by Equation (22) are compared with
those by numerical approach for the homogeneous case
are shown in Figure 7. It is clearly shown that the
macroscopic transformation strain during phase trans-
formation is isotropic and which coincides well with
the theory. This supports the interpretation of isotropic
transformation strain by homogeneous microstructure
appeared in the experiment on Part 1 and literature
[5]. Moreover, both calculations with heterogeneous
and homogeneous microstructure use exactly the same
constitutive models and parameters other than the
microstructure. This implies the significant effect of
microstructure on the total transformation strain.

Conclusion

A CPFFT model has been established reproduc-
ing mechanical simulation incorporating microscopic
transformation strain which in turn results in a macro-
scopic plastic strain in two distinct microstructures;
heterogeneousmicrostructure with pearlite band struc-
ture and homogeneous one. The postulate of the geo-
metrical constraint of band structure made in Part 1
was confirmedwith the proposed numerical model and
the anisotropic transformation strain (significant thick-
ness reduction) with band structure under α→ γ phase
transformation was well reproduced.
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