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On the “Born” term used in thermodynamic models for electrolytes

Jean-Pierre Simonin1

Laboratoire PHENIX, CNRS, Sorbonne Université (Campus P.M. Curie),

4 Place Jussieu, Case 51, F-75005, Paris, Francea)

In the literature, many expressions for the Helmholtz or Gibbs energy of electrolyte

solutions have included a term that takes into account the variation of the solution

permittivity with the composition of solution (within, e.g., the SAFT formalism).

This contribution is often called the “Born” term because it was inspired by the

classic expression established by Born to describe the solvation energy of an ion.

The present work is an attempt to get more physical insight into this semi-empirical

“Born” term. The way in which it has been used in the literature is briefly examined

and its typical magnitude is evaluated. Next it is proposed to use the non-primitive

mean spherical approximation (MSA) model to calculate the chemical potential of

an ion in a solution composed of charged hard spheres (the ions) and dipolar hard

spheres (the solvent). The cation and the anion are monovalent monoatomic ions of

equal diameter. The dipoles have a different size, and mimic water molecules. The

theoretical expressions for this model were found to fulfill the Gibbs-Duhem relation,

which suggests that they are correct. A rescaled ion-dipole contribution is introduced,

in a form that is suitable for inclusion in electrolyte models. It is compared with a

“Born” term expressed in the same framework. It is found that the former is in

general not well estimated by the latter. The two might even be of opposite signs in

the case of ions of sufficiently small size.

Keywords: Electrolytes; non-primitive mean-spherical approximation (MSA); Born

term; SAFT.
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I. INTRODUCTION

The modeling of the thermodynamic properties of aqueous, or mixed-solvent, electrolyte

solutions and of their phase equilibria is of great importance in various areas of physical

chemistry. It has applications in many fields such as industrial chemistry, food processing,

biorefining, pharmacy, refrigeration, geochemistry, water treatment and desalination, oil in-

dustry, environmental chemistry (e.g., speciation),... Electrolytes also represent a challenge

for the development of analytical models because of the variety and complexity of the inter-

actions involved in these solutions, such as long-ranged interionic forces, polarization effects,

hydrogen bonding, ion pairing,...

Various models have been developed in the literature by considering the solvent (often

water) as a continuous medium that manifests itself only through its dielectric constant.

Such models are often termed as ‘primitive’ models. This is the case of the Pitzer model

that is extremely popular in the geochemical community. However, this framework is viewed

as insufficient in various other areas because the solvent is not taken into account explicitly,

with the consequence that its properties are not correctly described. For instance it becomes

rather awkward to use in the case of mixed solvents or when thermal properties (e.g., dilution

enthalpies) are considered.

Nonetheless, the development of analytic models including the solvent explicitly is a

much more difficult task. Chemical engineering models have been proposed to describe ionic

solutions1, often based on the notion of local composition2 such as electrolyte-NRTL3,4, or

UNIQUAC5. Another class of models that has received much attention in the past decades

is based on the statistical-associated fluid theory (SAFT)6. This type of model is based on

the first-order perturbation theory of Wertheim7, which theory may accommodate various

types of association between species in solution (viz. ion pairing, chemical association,

chains, hydrogen bonding, solvation). The inclusion of all interactions and effects arising in

electrolyte solutions is still a significant challenge for analytic explicit-solvent models.

In general, this type of electrolyte model accounts for the effect of electrostatic interactions

by adding dedicated contributions corresponding to the various forces between the species,

namely ion-ion, ion-solvent and solvent-solvent interactions. The effect of ion-ion forces is

described3,4,8 through the use of a Debye-Hückel or mean spherical approximation (MSA)9

term. The effect of solvent-solvent forces is taken into account in SAFT models through
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the Wertheim association term. Lastly, the contribution from ion-solvent forces is often

implicitly described by inserting a so-called “Born” term10–13, which has been proposed as

an extension of the formula provided by Born to calculate ion solvation energies in solution.

It should be mentioned that a few SAFT models14–16 have used another approach. In-

stead, the non-primitive ion-dipole MSA model (ID-MSA)17–19 was employed in order to

account at the same time for the effect of the three types of electrostatic interactions in

aqueous solutions. In the ID-MSA model, water and the ions are represented as dipolar

hard spheres and charged hard spheres, respectively.

Besides this exception, many models have accounted for the effect of ion-solvent forces

by adding an independent “Born” term to the Helmholtz or Gibbs energy, or directly to

the chemical potential of an ion. This has been the case of models based on the Peng-

Robinson equation of state (EOS)8,20, on the cubic-plus-association (CPA) EOS21,22, on the

Soave-Redlich-Kwong (SRK) EOS23, on the electrolyte-NRTL model3,24,25, and on SAFT-

type equations10–13. Another case is the II+IW model26,27 in which the chemical potential

of an ion comprises an ion-ion (II), and an ion-solvent (IW), interaction term. This model

is developed in an implicit-solvent frame, though not at the McMillan-Mayer (MM) level

at which ion-solvent interactions should not be introduced (only effective solvent-averaged

ion-ion forces in the infinite dilute solution are involved in the MM framework28). One may

note that a “Born” contribution has not always been included29 in the literature, and that

it has also been sometimes intentionally discarded30.

Originally, the “Born” term seems to have been introduced for the first time by Cruz

and Renon in 19783 on the basis of the Debye and McAulay theory depicted in the book by

Harned and Owen31. The latter theory had been developed for the description of “salting in”

and “salting out” effects caused by electrolytes on the partitioning of neutral molecules, and

the electrical work associated with the change in dielectric constant caused by an electrolyte

(or a non-electrolyte) appeared incidentally in the development of the theory31. Anyhow the

formula itself and its derivation were basically copied from the Born equation32.

The introduction of this term was motivated by two observations: the relative per-

mittivity of an ionic solution, εsol, is experimentally known to vary (decrease) with salt

concentration33; the Born equation provides a way of estimating the electrostatic energy of

an isolated ion placed in a (pure) solvent regarded as a dielectric continuum (the solvation

energy of the ion). Then, supposedly, by assimilating an ionic solution to a dielectric con-
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tinuum of dielectric constant εsol, it was assumed that the Born equation could be applied

equally to the case of an ion in a mixture of solvent molecules and ions.

However, it seems to the best knowledge of this author that, after having been introduced

40 years ago, the “Born” term has never been questioned per se, and that its validity has

not been justified so far by any fundamental study. Its use seems to be taken for granted

and, by the way, no other theoretical expression is available to replace it. Anyhow it should

be recognized that the rationale behind this formula, viz. the assimilation of the medium

surrounding an ion to a dielectric continuum having the permittivity of the solution, may

appear questionable or at best of limited validity. Indeed, the range of ion-solvent forces

that appreciably influence the ion-solvent chemical potential is likely to be of much shorter

range than the typical distance beyond which the relative permittivity of solution starts to

have a sound physical meaning (this point will be discussed below).

It is the purpose of this work to examine the “Born” term more closely. This is done

mainly within the framework of the semi-restricted version of the ID-MSA model of Blum

et al.17–19. This model has been found to overestimate the contribution from dipole-dipole

interactions34,35. On the other hand, it has been shown to provide a satisfactory description

of ion35–37 and electron38 solvation in polar liquids, and of interactions between ions and

dipolar solutes in molten salts39. Therefore, the ID-MSA model may be expected to give a

good description of ion-solvent interactions in the present study.

The methodology followed in this work to get more insight into the “Born” term is as

follows. A model of ionic solution, as sketched in Figure 1, will be considered. This solution

is composed of hard spherical equally-sized monovalent monoatomic ions, and hard spheres

of a different size with a centrally embedded point dipole that are intended to mimic water

molecules. It will be assumed that its thermodynamic properties may be derived from the

ID-MSA theory. The cation, the anion and the dipole will be denoted by +, −, and W,

respectively.

First, suitable parameters will be determined for the dipolar solvent W so that it may

represent water at 25◦C and 1 atm in a reasonable way. Then, the semi-restricted ion-

dipole MSA model will be solved for electrolyte solutions in which the cation and the anion

have the same size. Crystallographic diameters will be taken to characterize the ions in

practical applications. This way, the model will involve only two MSA parameters for the

solvent molecules (namely their size and dipole moment). An expression will be derived for
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FIG. 1. Sketch of the ion-dipole mixture considered in this work, intended to model an aqueous

electrolyte solution. The cation and the anion have the same hard core diameter, σi, and the

dipolar hard spheres have a diameter σW .

a rescaled ion-dipole contribution to the chemical potential of an ion. This new contribution

should be suitable for inclusion in usual models for electrolytes. This theoretical result

will be compared with an expression for the “Born” term introduced at the same level of

description.

The structure of this article follows these lines. The next section outlines the main features

of the “Born” term as it has been used in the literature. Then the theoretical ingredients

of this work and the formulas required to solve the ion-dipole MSA model are presented.

It is shown that the chemical potentials for the salt and the solvent, obtained within the

model, fulfill the Gibbs-Duhem relation, thus indicating that the formulas are correct. The

appropriate expression for a rescaled ion-dipole contribution to the chemical potential of

an ion is discussed. The third section is devoted to the presentation of the results. The

magnitude of the “Born” term employed in the literature is briefly examined. Next, the

ability of the “Born” term to describe the effect of ion-dipole interactions is scrutinized

theoretically within the ID-MSA model. Finally, some additional remarks and prospects are

given in the conclusion section.
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II. BACKGROUND OF THE “BORN” TERM

As has been said in the Introduction section, the “Born” term has been used in various

types of expressions for the Helmholtz or Gibbs energy of an electrolyte solution. Hereafter

we will only be concerned with aqueous solutions of salts composed of simple monovalent

monoatomic ions (the case of multivalent ions is not well suited because of ion association

effects that could not be treated adequately in the present framework).

The “Born” contribution to the excess chemical potential of an ion i, µ
(“Born”)
i , was

inspired from the Born equation32, which led to write3,

βµ
(“Born”)
i = − βe2

4πε0 σi

(
1− 1

εsol

)
. (1)

in which β = 1/kBT (kB is Boltzmann constant and T is temperature), e is the elementary

charge, ε0 is the permittivity of a vacuum, and σi is the diameter of the simple (bare) ion.

This equation expresses (in units of kBT ) the electrical energy of an ion in the solution

relative to that in a vacuum. The energy of the ion was calculated by Born by summing the

electrostatic energy density of the medium, εE2/2 per volume unit (with ε the permittivity

of the medium and E the electric field), in the whole space around the ion32.

Fundamentally, the “Born” term (Eq. (1)) was introduced as a simple way of accounting

for the variation of ion-solvent interactions with salt concentration. The validity of Eq. (1)

does not seem to have been analyzed up to now.

Application of Eq. (1) requires values for the relative permittivity of solution. This

quantity has been measured for some aqueous electrolytes, mainly in the case of binaries at

25◦C33. These experimental data do not seem to have been used generally in the literature

(except in some cases26,27,40). Since the studies were done on temperature ranges at which

data are scarce or unavailable, various estimates of εsol have been utilized3,11,12. These

estimates were obtained using, e.g., an equation proposed in 1973 by Pottel41, or a formula

introduced recently by Schreckenberg et al.11 in which (εsol − 1) is proportional to the

concentration of water in the solution (see Supplementary Material for more details).

Once a dependence for the variation of εsol with concentration has been adopted, the

change of the chemical potential (Eq. (1)) with respect to its value at infinite dilution (the

Born solvation energy) is,

β∆µ
(“Born”)
i =

L0

σi

(
1

εsol
− 1

εw

)
, (2)
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in which ∆ denotes a difference w.r.t. infinite dilution, and εw is the dielectric constant of

water (denoted with a lower case w), and,

L0 =
βe2

4πε0
. (3)

which has the dimension of a length. One has L0 ≃ 560.4 Å at 25◦C.

It must be underlined that the “Born” contribution expressed by Eq. (2) is always positive

because, as observed experimentally, εsol is always smaller than εw.

The magnitude of the mean ionic “Born” contribution to experimental values of ln γs (in

which γs is the mean salt activity coefficient taken from ref. 42) is

β∆µ(“Born”)
s =

1

2

[
β∆µ

(“Born”)
+ + β∆µ

(“Born”)
−

]
. (4)

It is plotted in Figure 2 in the case of alkali chloride solutions at 25◦C. It was calculated

using Eq. (2) together with Shannon and Prewitt diameters for the σi values
43, experimental

data for εsol
33,44, and εw = 78.445. The salt concentration was calculated from the molality

by using a parametrization of solution densities46.

FIG. 2. Mean ionic “Born” contribution to ln γs (with γs the mean salt activity coefficient) in the

case of alkali chloride solutions (same scaling on the axes for the 4 salts): (•) Values for β∆µ
(“Born”)
s

obtained using experimental data33,44 and Eq. (2); Solid lines = Experimental values42 for ln γs.

This figure shows that the mean ionic “Born” term, β∆µ
(“Born”)
s , does not make a small

contribution to ln γs in the case of alkali chloride solutions. In an electrolyte model, other
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terms in the expression of ln γs would have to compensate for this rather large contribution

if (raw) experimental data for εsol were used in Eq. (2). It is shown in the Supplementary

Material addendum that, actually, smaller values for the “Born” term have been generally

taken in the literature.

III. THEORY

A. Basic relations in the ion-dipole MSA framework

The system depicted in Figure 1 is a mixture of dipolar hard spheres of diameter σW (the

solvent, intended to mimic water) and oppositely charged hard spheres of equal diameter σi

(the ions). The moment of the embedded central point dipole is mW . The number density

(number of species per volume unit) of the 1-1 salt is ρs (=ρ+ = ρ−) and that of the solvent

is ρW . The subscript s will be used to denote the salt.

The non-primitive ion-dipole MSA (ID-MSA) model was initially solved by Blum17 in the

restricted case in which the ions and the dipoles have equal sizes, then in the semi-restricted

case18,19, and lastly in the general case where the species have arbitrary sizes18,34,47.

Hereafter we will use the semi-restricted version of the ID-MSA model, and we will mainly

employ the notations of ref. 19. We now give the main formulas that are used to solve the

model. Let us note that we will express the equations in terms of the parameters b0, b1 and

b2, which are functions of the ion-ion, ion-dipole, and dipole-dipole, correlation functions

(see Eqs. (11)-(13) of ref. 19), respectively. We did not use the MSA screening parameter,

Γ, and the polarization parameter, λ, because some of the equations may contain misprints.

We note that formulas in terms of b0, b1 and b2 have also been utilized previously by Liu et

al.48 and by Herzog et al.16.

For a given ion-dipole mixture these 3 parameters are the unknowns to be determined

first in order to compute the thermodynamic quantities. The equations of the model in the

semi-restricted case involve two adimensional parameters,

d0
2 ≡ 8π ρsL0σi

2, (5)

for the ions, and

d2
2 ≡ β

ρWmW
2

3
. (6)
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for the dipolar solvent.

The three basic equations of the model are19,

a1
2 + a2

2 = d0
2, (7)

a1K10 − a2(1−K11) = d0d2, (8)

K10
2 + (1−K11)

2 = y1
2 + d2

2, (9)

where

a1 =
1

2DF
2 (∆− 2β6DF ) , a2 = − b1

2β6DF
2

(
∆

2
+

DFβ3

r

)
, (10)

K10 = r
b1
2∆

(1 + a1 Λ) , 1−K11 =
1

∆

(
β3 − a2b1Λ

r

2

)
, (11)

r = σW/σi, y1 = β6/β12
2, (12)

β3 = 1 + b2/3, β6 = 1− b2/6, β12 = 1 + b2/12, β24 = 1− b2/24, (13)

∆ =
b1

2

4
+ β6

2, DF =
1

2

[
β6(1 + b0)− b1

2 r

12

]
, Λ =

1 + b0
2

+ β6
r

6
. (14)

Let us mention that these equations were taken from ref. 19 without modification (except

for the use of r), and that they are identical to those employed in previous works16,48.

The electrostatic contribution to the pressure, denoted by P el, is given by19,

βP el =
1

12πσ3
i

[
d0

2b0 − 4
d0d2
r

b1 − 6
d2

2

r3
b2 + J ′

]
, (15)

with

J ′ = (Q′
ii)

2 +
1

r

(
1 +

1

r

)
(Q′

id)
2 +

1

r3
[
(Q′

dd)
2 + 2(q′)2

]
, (16)

Q′
ii = −a1 − 2 +

β6

DF

Q′
id =

b1
∆

[β3 + a1(3Λ− 2DF )] , (17)

Q′
dd =

2

∆

[
β3

2 − r

2
b1a2(3Λ− 2DF )

]
− 2, q′ =

β24

β12
2 b2. (18)

These relations were also taken from ref. 19. A misprint in the expression of Q′
dd (r

instead of 1/r), and an obvious one in Eq. (104) of ref. 19 (opposite sign for P ), were

corrected, as was done before in refs 16 and 48. Let us note that a simpler expression for

P el is also available49 in the case of pure dipolar solvent.
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Expressions for the electrostatic contributions to the chemical potentials may be found

in the paper of Blum and Wei18. By using Eq. (5) they may be written in the following

more simple form,

βµel
i =

L0

σi

b0 −
L0

σW

d2
d0

b1. (19)

with i = + or − because µ+ = µ− for the present system in which the cation and the anion

have the same size and charge in absolute value.

In Eq. (19) the first term,

βµii
i =

L0

σi

b0, (20)

represents the contribution of ion-ion interactions to βµel
i (note that b0 < 0), and the second

term,

βµid
i = − L0

σW

d2
d0

b1, (21)

is the contribution of ion-dipole interactions. Therefore,

βµel
i = βµii

i + βµid
i . (22)

For the solvent one has48,

βµel
W = −(m∗

W )2

3

(
2b2 +

d0
d2

r2 b1

)
, (23)

after correction of a misprint in Eq. (3.17) of ref. 18 (a + sign for the term containing b1),

with

(m∗
W )2 =

βmW
2

4πε0σ3
W

. (24)

It was verified that the relations derived by Høye and Lomba50 in the restricted case (for

r = 1) are recovered from Eqs. (5)-(24). Moreover the latter equations are in keeping with

those used by Liu et al.48 and by Herzog et al.16.

Besides electrostatic interactions, excluded volume between the particles modeled as hard

spheres (HS) contributes to the deviations from ideality. For an ion-dipole mixture the excess

chemical potential arising from HS volume exclusion was taken from Eq. (30) of previous

work51, which was found by differentiating the HS Helmholtz energy expression (given on

page 3716 of ref. 52) in the Carnahan-Starling approximation. One has,

βµHS
i = − ln(1−X3) + σiF1 + σi

2F2 + σi
3F3. (25)
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in which X3 is the volume fraction occupied by the particles, and the expressions for F1, F2

and F3 may be found in ref. 51. For pure solvent W this equation simplifies to53,

βµHS
W = X3(8− 9X3 + 3X3

2)/(1−X3)
3. (26)

The pressure of the hard-sphere fluid was expressed by using the equation derived by

Boublik54 for mixtures,

βPHS =
ρt

1−X3

+
6

π

[
3X1X2

(1−X3)2
+

X2
3(3−X3)

(1−X3)3

]
. (27)

with Xn = (π/6)
∑

i ρiσi
n and ρt =

∑
i ρi. For pure solvent this expression reduces to the

classic Carnahan-Starling formula55.

The total excess chemical potential of any species i reads,

βµexc
i = βµHS

i + βµel
i . (28)

and the pressure is given by,

βP = βPHS + βP el. (29)

B. Gibbs-Duhem equation

It was verified numerically, by using the symbolic computation program Maple, that the

electrostatic contributions to the solute and solvent chemical potentials, and to the pressure

(Eqs. (19), (23) and (15), respectively) fulfill the Gibbs-Duhem relation (at constant T )

which may be written as,

−dP el + 2ρs dµ
el
i + ρW dµel

W = 0. (30)

in which the factor of 2 is present because every salt ‘molecule’ releases two ions in water.

Fulfilment of Eq. (30) was examined numerically for various arbitrary values of the

concentrations. The differentials (d [· · · ]) were computed in the vicinity of 2 particular

concentrations, e.g. Cs= 1 mol L−1 and CW= 55 mol L−1. The Gibbs-Duhem relation was

deemed to be verified when the sum of the 3 terms in Eq. (30) was much smaller than any

of the 3 terms. This was found to be the case for any values of Cs and CW , with a typical

accuracy of the order of 10−7 in the Maple program. It was observed that even a slight

modification in a single formula of the Maple program resulted in a clear unfulfillment of

the Gibbs-Duhem relation.
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This is a new result which suggests, with a high degree of confidence, that all ID-MSA

equations given in the preceding section are valid. It also ensures that the numerical values

of the pressure and of the chemical potentials (of the salt and of the solvent) are computed

correctly in the Maple program.

In the same way it was verified that the HS contributions, PHS, µHS
i and µHS

W , fulfill the

Gibbs-Duhem relation. Lastly the same verification was done for the total salt and solvent

chemical potentials (by including the ideal contribution, ln ρi with i = s or W) at constant

pressure (see Section IVA2 about how to maintain pressure constant).

C. Relative permittivity of solution

Another quantity of interest is Adelman’s dielectric constant56 which represents the di-

electric constant, or relative permittivity, of solution. It relates to the interaction of two

charges at infinite distance in a solution56. This latter reference provides a powerful indica-

tion of how to compute this quantity in theoretical models of liquids and solutions.

In the present MSA framework, the following expression was obtained18,47,

εA = 1 +
d2

2

y12
. (31)

by combining Eqs. (1.19), (1.32) and (3.19) of ref. 18. It is noted that this expression yields

a concentration-dependent permittivity as observed experimentally33.

In the absence of ions, this expression coincides with Wertheim’s dielectric constant57,

εW , for pure solvent in the MSA. The latter may easily be obtained from the following

parametric equations expressed as a function of the polarization parameter λ for pure W19,

d2 =
λ(λ+ 2)

3

√
1− 1

εW
, (32)

εW =
λ2(λ+ 1)4

16
. (33)

D. Mean salt activity coefficient

The chemical potential of an ion may be expressed as,

βµi = βµ
(0),ρ
i + ln ρi + βµexc

i , (34)
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in which µ
(0),ρ
i is the standard chemical potential on number density scale (analogous to

molar scale), ln ρi is the ideal part, and µexc
i is the excess chemical potential. In the present

framework the latter is composed of two contributions arising from hard core volume repul-

sion and electrostatic interactions.

Similarly, the activity coefficient of ion i on molal scale, γi, is defined by,

βµi = βµ
(0),m
i + lnmi + ln γi, (35)

with mi the molality of the ion and µ
(0),m
i its standard chemical potential on molal scale. For

the present system the two monovalent ions have the same chemical potential and activity

coefficient (because σ+ = σ−), so γ+ = γ− = γs, with γs the mean salt activity coefficient.

It is shown in the Appendix that γs may be obtained from the following relation,

ln γs = β∆µexc
i + ln

(
ρW
ρ0W

)
. (36)

where ∆µexc
i = βµexc

i − βµexc
i (ρs → 0), with µexc

i (ρs → 0) the excess chemical potential of

an ion at infinite dilution of the salt, and ρ0W is the number density of pure solvent.

E. Examination of the chemical potential of the ions at high dilution

In this section we consider the case of a very dilute solution, for which d0 ≪ 1.

First we focus on the ion-ion contribution βµii
i (Eq. (20)). At high dilution of the salt,

one has (Eq. (3.10b) of ref. 48),

b0 ∼ − d0
2
√
εW

, (37)

Using Eq. (5) and the definition of Debye screening parameter at infinite dilution,

κ2 = 8πL0ρs/εW , (38)

one gets in that limit,

d0 ≃ κσi

√
εW , (39)

Inserting this relation into Eq. (37) and using Eq. (20) one obtains,

βµii
i ≃ −L0

κ

2
. (40)

This relation reminds one of the Debye-Hückel (DH) limiting law58 for the activity coefficient

of a salt, except that the r.h.s. should be divided by the dielectric constant εW . This
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difference is due to the fact that Eq. (40) represents the “true”, or “bare Coulomb”56,

ion-ion contribution corresponding to direct, unshielded, ion-ion interactions. In contrast,

the result obtained from primitive (implicit solvent) models, such as DH theory or primitive

MSA, includes the effect of the shielding produced by the solvent, which acts as a continuum

of relative permittivity εW .

We now show how the primitive model limiting law may be recovered in the present

framework. At high dilution, the parameter b1 may be approximated by a Taylor expansion

in powers of d0 as,

b1 ∼ b
(1)
1 d0 + b

(2)
1 d0

2 + . . . , (41)

because b1 = 0 when ρs = 0 (salt-free case). The expression of b
(1)
1 has been given elsewhere48

(see Supplementary Material). One gets the expression of b
(2)
1 after some simplifications using

Eqs. (32), (33) and (39),

b
(2)
1 d2 = − r

2
√
εW

(
1− 1

εW

)
, (42)

Inserting this result into Eq. (41) and using Eq. (39), Eq. (21) may be rewritten,

βµid
i ∼ − L0

σW

d2 b
(1)
1 + L0

κ

2

(
1− 1

εW

)
, (43)

Now, by adding the ion-ion and ion-dipole contributions, Eqs. (40) and (43), and after

cancelling out the term L0κ/2, one gets the expansion of βµel
i to the first order in d0 in the

form,

βµel
i ∼ − L0

σW

d2 b
(1)
1 − L0

εW

κ

2
+ . . . , (44)

in which κ is proportional to d0 by virtue of Eq. 39.

In this expression, the second term on the r.h.s. is the DH limiting law of the primitive

model, which is recovered (as opposed to Eq. (40)). Ionic interactions are now indeed

shielded by the dipolar solvent by a factor of εW . This derivation illustrates the fact that

ion-dipole interactions lead to a reduction of the direct ion-ion forces through the effect of

the reaction field mediated by the solvent dipoles59. This phenomenon is well captured by

the ID-MSA model.

The first (constant) term in Eq. (44) is the Gibbs solvation energy for which a more

explicit formulation may be derived35,60,

βµSolv
i ∼ − L0

σi + σW/λ

(
1− 1

εW

)
. (45)

14

http://dx.doi.org/10.1063/1.5096598


This expression is similar to the Born equation, but with an extra length in the denominator,

σW/λ, added to the ion diameter (the Born equation is recovered by taking σW = 0).

This feature has a clear physical meaning. This added length accounts for the effect of the

granularity of the solvent which reduces the solvation energy as compared to the Born model

in which the solvent is viewed as a continuum. This interpretation is reminiscent of an old

hypothesis made to interpret experimental hydration energies within the Born model61.

Eq. (45) has been applied to the description of Gibbs solvation energies in various

solvents35,37.

F. Ion chemical potential in dilute solutions

In the previous section it has been seen that in the ID-MSA the ion-ion and ion-dipole

contributions to the ion chemical potential are for direct unshielded interactions. However,

in classic models for electrolytes, the “Born” term is often added to expressions in which the

ion-ion contribution is for shielded electrostatic interactions. So now we would like to derive

an expression for ion-dipole interactions from the ID-MSA model, that would be consistent

with this feature.

For this purpose it is proposed to first make an effective ion-ion term appear in the

expression of the ion chemical potential. This may be done in the case of dilute solutions

by isolating such a term in the equation for µel
i , Eq. (19). Indeed we notice that, following

Adelman56, εA represents the dielectric constant of solution at large interionic separations.

Interactions at such distances contribute predominantly at low concentration.

Consequently, in the limit of dilute solutions in which the correlation functions for the

direct ion-ion interactions are divided by εA
56 (thus leading to effective correlation functions),

it is proposed to rewrite Eq. (22) in the following different form,

βµel
i = βµii

i

1

εA
+

[
βµii

i

(
1− 1

εA

)
+ βµid

i

]
, (46)

which is equivalent to Eq. (22), but in which the first term represents the effective contri-

bution from shielded ion-ion interactions (direct ion-ion forces reduced by a factor of εA).

βµ
ii(eff)
i = βµii

i

1

εA
, (47)

This term gives back the traditional DH mean salt activity coefficient as salt concentration

goes to zero as has been shown in the preceding section.
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The second term in brackets in Eq. (46) represents the part of ion-dipole interactions

from which the effect of the reaction field on the ions (created by the dipoles) has been

subtracted. Hereafter we will focus on this rescaled ion-dipole contribution that is thus

defined as,

βµ
id(resc)
i = βµid

i + βµii
i

(
1− 1

εA

)
, (48)

with µii
i , µ

id
i , and εA being expressed by Eqs. (20), (21), and (31), respectively.

From Eqs. (46)-(48) we have the new breakdown of the electrostatic part of the ion

chemical potential as,

βµel
i = βµ

ii(eff)
i + βµ

id(resc)
i , (49)

In what follows we will be interested mainly in the rescaled ion-dipole contribution relative

to infinite dilution, βµ
id(resc)
i − βµSolv

i . From Eq. 48 one gets,

β∆µ
id(resc)
i = β∆µid

i + βµii
i

(
1− 1

εA

)
, (50)

in which,

β∆µid
i ≡ βµid

i − βµSolv
i . (51)

is the direct ion-dipole contribution relative to infinite dilution. Both ∆µid
i and ∆µ

id(resc)
i

tend towards zero when Cs → 0, because then βµii
i → 0.

It is noted in Eq. (50) that the last term arising from ion-ion interactions is always

negative because19 b0 < 0, which makes µii
i < 0 by virtue of Eq. (20), and because εA > 1.

It will be seen below that the direct ion-dipole contribution in Eq. (50), β∆µid
i , is positive

in the ID-MSA model. The rescaled ion-dipole term, β∆µ
id(resc)
i , therefore consists of the

difference of two (positive) quantities corresponding to the effect of direct ion-dipole and

ion-ion interactions.

G. Expansion of the rescaled ion-dipole term at low salt concentration.

The behavior of this rescaled ion-dipole term (Eq. (50)) may be studied at high dilution

by expanding it in powers of d0 at constant d2, i.e. at constant solvent concentration. The

first term in this expansion, in d0, is zero because otherwise it would contribute to the ion-ion

term (the first term in Eq. (46)). This point was verified by expanding b0 and b1 in powers

of d0 and inserting these expansions into Eq. (50).
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The details of the expansion are given in the Supplementary Material addendum. The

result is,

β∆µ
id(resc)
i ∼ L0

σi

M d0
2 +O

(
d0

3
)
. (52)

in which the expression of M is given in Eq. (S18) of Supplementary Material.

It is noticed in this equation that β∆µ
id(resc)
i is proportional to the salt concentration,

Cs, at low concentration (not to
√
Cs).

In the expression of M it is observed that, as required, one has ∆µ
id(resc)
i = 0 for λ = 1,

that is when the ions are placed in a vacuum (one has εW = 1 for λ = 1 according to Eq.

(33)).

H. “Born” term in ID-MSA framework

A “Born” term may be proposed in the ID-MSA framework by following the same pro-

cedure as for the establishment of Eq. (1). This can be simply done by replacing εW by εA

(given by Eq. (31)) in Eq. (45). Then the equivalent of Eq. (2) in this framework may be

obtained by subtracting the solvation energy to this expression, which yields a term in the

spirit of the classic “Born” term as,

β∆µB
i =

L0

σi + σW/λ

(
1

εA
− 1

εW

)
. (53)

in which λ is kept constant vs. salt concentration.

This expression may be expanded in powers of d0, again at constant d2. The only param-

eter varying with d0 is εA which is a function of y1 and therefore of b2 (cf. Eq. (12)). One

obtains,

β∆µB
i =

L0

σi

B d0
2 +O

(
d0

3
)
. (54)

in which the expression of B is given in Eq. (S20).

Eqs. (54) and (S20) show that ∆µB
i is always positive (because λ > 1), which is also the

case in Eq. (53) because εA < εW as will be seen below.
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IV. RESULTS AND DISCUSSION

A. Application of ID-MSA model to solvent and ionic solution

1. Parameters for pure dipolar solvent

In what follows we consider the hypothetical dipolar solvent W composed of hard spheres

with an embedded point dipole at its center. We want this solvent to have some properties

in common with real water. Since the MSA model for an assembly of dipoles involves

two parameters (the size and dipole moment of the dipoles), two different properties may be

represented exactly. Here it was chosen to describe the density62 and the dielectric constant45

of water at 1 atm and 25◦C, that is dW = 0.997047 kg dm−3 and εW = 78.4.

By solving Eq. (33) with εW = 78.4 one gets λ ≃ 2.65345. Then by inserting this value

for λ into the expression for d2 (Eq. (32)) one gets d2,W ≃ 4.0896 for pure W, and from Eq.

(6) one obtains the value of the dipole moment of W, mW ≃ 2.2203 D. This latter value is

larger than for water in the gas phase (∼1.85 D), which is satisfactory because polarization

effects in liquid water are known to increase the dipole moment of the molecule. Moreover

it compares well with values of 2.27 D and 2.35 D in the simple point charge (SPC) and

extended SPC models63, and reasonably well with a value of 2.6 D for water in ice64 (at

a time an authoritative result for liquid water) and with values from ab initio numerical

simulation65 that are in the range of ∼ 2.4 D66 to 2.95 D67.

The pressure of pure solvent was computed from Eq. (29) in which the Carnahan-Starling

formula55 and the result of ref. 49 were used for PHS and P el, respectively. The previously

determined dipole moment value was inserted into P el. By writing that the total pressure

is 1 atm and by solving this equation with Maple, one gets σW ≃ 2.4805 Å. This value is at

the low end of commonly admitted diameters for the water molecule in the literature, that

are in the range of ∼ 2.5 Å to 2.9 Å68.

2. Ion-dipole mixture

Next, the case of an ionic solution made up of dipolar and charged hard spheres at 25◦C

was considered.

There are not many real strong electrolytes that satisfy the condition σ+ ≃ σ−. For
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example, if one looks at alkali halides, one finds the following possible candidates. Na+

and F− have close Shannon and Prewitt (SP) diameters43 of 2.32 Å and 2.38 Å (for a

coordination number of 6), respectively, but NaF is not a good candidate because this salt

exhibits a peculiar association resulting from “localized hydrolysis”69, with an association

constant of the order of unity70,71. Next, one finds RbCl and CsBr. The SP diameters43

of the ions in these salts are σRb+ ∼ 3.32 Å, σCl− ∼ 3.34 Å, σCs+ ∼ 3.62 Å, and σBr− ∼

3.64 Å. However, CsBr also exhibits an association constant of the order of unity72. The

association constant for RbCl is smaller KRbCl ∼ 0.2673. The proportion of pairs, αp, in

these solutions may be estimated from the relation74, αp = Kmsγs
2/γp, by making the

approximation γp ≃ 1 for the neutral ion pair at low concentration. The result from this

estimation was confirmed by the use of the primitive MSA model75, indicating that a 0.5

mol kg−1 RbCl solution would contain ∼ 5% of ion pairs, while the proportion would be

20% in a similar CsBr solution. Therefore RbCl seems to be the best candidate here. It will

be chosen preferentially in the applications below.

In practice the ID-MSA equations were solved as follows. For given values of d0 and d2,

Eqs. 7-9, and the equation for the pressure if the latter is maintained constant, were solved

numerically by using the symbolic calculus software Maple. The pressure was maintained

constant by determining numerically, for each salt concentration, the concentration of water

molecules that gave a pressure of 1 atm for the ion-dipole mixture. Since the ID-MSA

equations admit several solutions for b0, b1 and b2, an approximate guess is useful to obtain

the unique physical solution. Here, approximate values based on the formulas proposed by

Harvey76 were used as initial input in Maple for the lowest concentration. Then the salt

concentration was gradually and slowly incremented up to a typical maximum concentration

of 1 M. Conveniently, the solution found for a given concentration was used as a set of initial

values for the next higher concentration.

The mean salt activity coefficient on molal scale was obtained from Eq. (36). The

molality of the salt in the solution was calculated from the formula,

ms =
1

Mw

ρs
ρW

. (55)

in which Mw is the molar mass of water.
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3. Some results in the case of a model solution of RbCl (and CsBr and

NaF)

We are going to consider mainly a model solution built up of Rb+ and Cl− ions dissolved

in the dipolar solvent W characterized in Section IVA1. It is interesting to look at the

results for a few physical properties obtained from the ID-MSA model. Here we calculated

at constant pressure: the Gibbs solvation energy, the mean salt activity coefficient, the

specific volume, and the relative solution permittivity. Their magnitude was compared with

experimental data.

Experimental data and results from the ID-MSA model for the Gibbs hydration energies

of Rb+ and Cl− ions are given in Table I. As was done by Fawcett37, we neglect the dipole-

dipole contribution36 to the theoretical solvation energy. Then, βµSolv
i represents the Gibbs

hydration energy of the ion. Values for a few other ions are also collected in the table. They

will be useful for discussion below. Experimental data were taken from papers by Fawcett37

and Kelly77.

TABLE I. Gibbs hydration energies of ions (in units of kBT ).

Ion σi
a (/Å) Exp. datab Exp. datac ID-MSA result Deviationsd

Na+ 2.32 -171 -174.0 -170.0 0.6 % / 2.3 %

Rb+ 3.32 -133 -135.9 -130.0 2.3 % / 4.3 %

Cs+ 3.62 -123 -126.6 -121.5 1.2 % / 4 %

F− 2.38 -173 -176.0 -166.9 3.5 % / 5.2 %

Cl− 3.34 -123 -125.6 -129.4 -5.2 % / -3 %

Br− 3.64 -112 -115.2 -120.9 -7.9 % / -4.9 %
a From ref. 43; bFrom Fawcett37; cFrom Kelly77; dRelative deviation of ID-MSA result w.r.t.

Fawcett/Kelly data.

It is seen in this table that the ID-MSA result is smaller (in absolute value) than the

experimental data in the case of Rb+, and it is larger in the case of Cl−. The average ID-

MSA value is -129.7. The average value of βµSolv
i obtained from the model is just between,

and in good agreement with, the experimental mean ionic Gibbs hydration energies of -128

(from Fawcett) and -130.8 (from Kelly). It is besides noticed in the table that the data of

Fawcett and Kelly exhibit a nearly constant discrepancy of ∼3, due to different absolute
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values adopted for the proton (βµSolv
i = -445.6 and -448.4, respectively). The theoretical

results for the cations are in better agreement with experimental data than those for the

anions. The largest deviation is found in the case of Br−.

Experimental values for the mean salt activity coefficient on molal scale, γs, were retrieved

from a famous compilation of recommended values42. The result from the ID-MSA model

obtained from Eq. (36) with the common ion diameter of 3.33 Å (average SP value) is

plotted in Figure 3 together with experimental data for molalities up to 1 mol kg−1. The

sensitivity of the activity coefficient to the value of the common ion diameter is shown by

also plotting the results for σi=3.23 Å and 3.43 Å. The calculated γs for σi = 3.33 Å is in

FIG. 3. Activity coefficient (on molal scale) for RbCl at 25◦C. Symbols = experimental values;

Solid line = result from the model for σi = 3.33 Å; Bottom dashed curve = result for σi = 3.23 Å;

Top dashed curve = result for σi = 3.43 Å.

excellent agreement with the experimental data for m ≤ 0.4 mol kg−1. This is not so for

the other two σi = values. At higher concentrations, the plot for γs deviates progressively

from the experimental points. At 1 mol kg−1 the latter are closer to the curve obtained for

σi = 3.43 Å.

It is worth breaking down the various contributions to ln γs. By virtue of Eqs. (22), (28),
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(36), and (49), one has,

ln γs = βµii
i + β∆µid

i + β∆µHS
i + ln

(
ρW
ρ0W

)
= βµ

ii(eff)
i + β∆µ

id(resc)
i + β∆µHS

i + ln

(
ρW
ρ0W

)
.

(56)

It was found that the effective ion-ion contribution, βµ
ii(eff)
i (Eq. (47)), is much larger than

the rescaled ion-dipole contribution, β∆µ
id(resc)
i (Eq. (50)), below 1 M. The ratio of the two

is ∼ -50 at 0.1 M and ∼ -25 at 1 M. The HS contribution is ∼6 times and ∼2 times smaller

than the ion-ion contribution at 0.1 M and 1 M, respectively. The contribution corresponding

to the term ln(ρW/ρ0W ) in Eq. 36 is of the same order as the rescaled ion-dipole contribution.

It is also worth mentioning at this point that, as is common with this type of explicit-

solvent model, the direct ion-ion, βµii
i (Eq. 20), and ion-dipole, β∆µid

i (Eq. 51), contribu-

tions for unshielded interactions vary much more abruptly, and are of much larger magnitude,

than βµ
ii(eff)
i and βµ

id(resc)
i do. For example, in the case of RbCl (σi = 3.33 Å), the values

of these various contributions are collected in Table II at 0.1 M and 0.4 M (notice that in

each case, βµii
i + β∆µid

i = βµ
ii(eff)
i + β∆µ

id(resc)
i ).

TABLE II. Contributions to the chemical potential of an ion.

Cs βµii
i β∆µid

i βµ
ii(eff)
i β∆µ

id(resc)
i

0.1 M -23.9906 23.6741 -0.3233 0.0069

0.4 M -42.5239 41.8898 -0.6514 0.0173

It should be emphasized that the direct ion-dipole contributions, β∆µid
i (Eq. 51), was

found to be positive in all cases. This may be explained by the fact that, when ions arrive

in the vicinity of a previously isolated ion X (at infinite dilution), these ions may orientate

most of the dipoles around X in a less favorable manner. Moreover the arrival of ions in the

vicinity of X removes dipoles (those that were present in the volume now occupied by the

ions). These phenomena reduce the attractive interaction energy of the central ion X with

the surrounding dipoles.

The activity coefficient γs was also computed in the case of CsBr by taking the average

SP diameter of the two ions, σi = 3.63 Å. The result is above experimental data below 0.1

mol kg−1 (see Figure S4 in Supplementary Material). The deviation is ∼ 5% at 0.1 mol

kg−1 at which the expected proportion of pairs is ∼ 6%. The discrepancy observed for γs
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may be attributable to association in this solution (the inclusion of association would lower

the theoretical value of γs). In the case of NaF (σi = 2.35 Å), the theoretical γs is located

much below the experimental points (see Figure S5) although this salt is deemed to be

associated. In this respect NaF exhibits an unexpected behavior within the ID-MSA model,

which is quite different than that of RbCl and CsBr. This behavior may be explained by

the occurrence of “localized hydrolysis” involving the fluoride ion which may produce a very

special type of ion association69. This confirms that this electrolyte is not a good candidate

for the present study. Unfortunately no other salt could be identified that is composed of

small ions of equal size.

Next, the specific volume (i.e. the volume of solution per kg of solvent), V , was computed

using the relation, V = ms/Cs, in which ms is derived from Eq. (55). The experimental

value of V was obtained using the formula, V = (1 + msMs)/d, with Ms the molar mass

and d the solution density. The densities of RbCl solutions were computed by utilizing

a simple parametrization46. The results at constant pressure are plotted in Figure 4 for

the average Rb+-Cl− diameter σi = 3.33 Å, and for σi = 3.33 ± 0.1 Å, together with the

experimental values. It is seen that the result for σi = 3.33 Å is very much in keeping with

the experimental data up to 4 mol kg−1. Thus the model provides a good description of the

volumetric properties of RbCl solutions in standard conditions.

FIG. 4. Specific volume, V , of RbCl solution as a function of salt concentration. (�) = experimental

data; Solid line = ID-MSA result for average Rb+-Cl− SP diameter of 3.33 Å; Bottom dashed line

= ID-MSA result for σi = 3.23 Å; Upper dashed line = ID-MSA result for σi = 3.43 Å.
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These results show that, despite the simple representation of the water molecule, the

ID-MSA model gives values for βµSolv
i , γs and V , that are in overall good agreement with

experimental data for RbCl aqueous solutions. Furthermore no adjustable parameter has

been introduced for the ions. The description only includes two parameters for the solvent

(see Section IVA1).

Lastly, the relative permittivity of the solution derived from the MSA model, εA given

by Eq. (31), was calculated as a function of salt concentration. It is plotted in Figure 5

together with raw experimental data33,44. It is observed that the calculated εA is weakly

dependent on the value of σi in the range of 3.23 Å to 3.43 Å (dashed lines), and that it

deviates greatly from the experimental data for RbCl solution.

FIG. 5. Relative permittivity of model RbCl solution as a function of salt concentration: (�) =

experimental data; Solid line = ID-MSA value of εA for σi = 3.33 Å; Upper dashed line = idem

for σi = 3.23 Å; Bottom dashed line = idem for σi = 3.43 Å; Top dash-dotted line = corrected

value ε′A (see Eq. (57)) for σi = 3.33 Å.

It is likely that this discrepancy originates from the fact that in the ID-MSA model the

cation and the anion are solvated in a similar way by the solvent dipoles. Indeed this is

not the case in real solutions in which the chloride anion interacts with water through very

short-lived hydrogen bonds78,79, with the consequence that this ion is very weakly hydrated

in all solutions78. It is noted that this feature does not have a detectable influence on the

other properties studied above.
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In passing, it may be noticed that this fact can be taken into account at sufficiently low

concentration by introducing in a semi-empirical way a ‘corrected’ ε′A as,

ε′A ≡ εA + 78.4

2
. (57)

by which it is assumed that the chloride anion does not modify the solution permittivity (if

the effect of the volume occupied by Cl− is neglected). This equation means that only one

half of the variation of εA (corresponding to the cation) is taken into account in ε′A, that is

78.4 − ε′A = (78.4 − εA)/2, which gives Eq. (57). It is seen in Figure 5 that ε′A is in very

good accord with raw experimental data.

B. Comparison of “Born” term and rescaled ion-dipole contribution

Since, as seen in the previous section, the cation and the anion are similarly solvated by

the purely dipolar solvent, it stems that the analysis below is not supposed to be applicable

to real aqueous solutions in a quantitative manner. Instead, the results for ionic solutions

in the dipolar solvent W will be discussed within the theoretical framework of the ID-MSA

model. Nevertheless, the realistic results obtained in the previous section for various physical

properties suggest that the results of this section may have some relevance in the case of

real dilute aqueous solutions.

The values of the model parameters for W, namely mW or λ, and σW , determined in

Section IVA1 were utilized to study the ion-dipole contribution in model RbCl solutions at

constant solvent concentration (constant d2) and at constant pressure.

The magnitude of the “Born” term (Eq. (53)) was compared with that of the rescaled

ion-dipole term (Eq. (50)).

First the comparison was made in the case of RbCl (σi = 3.33 Å) for sufficiently low

concentrations, so that the conclusions of Section III F, and Eq. (48) in particular, may be

valid. The results for β∆µ
id(resc)
i (Eq. (50)) and β∆µB

i (Eq. (53)), for an ion i = + or -,

are plotted in Figure 6 up to 1 M. It is observed that the result from the ID-MSA model

is much smaller than the two different “Born” terms (dashed line and symbol), which are

coincidentally close to each other.

The same quantities are plotted in Figure 7 for σi = 3 Å. It is seen that in this case the

ID-MSA result is of negative sign whilst the “Born” term is always positive.
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FIG. 6. Rescaled ion-dipole contribution to the ion chemical potential,β∆µ
id(resc)
i (Eq. (50),

solid line) and “Born” term (Eq. (53), dashed line) at constant pressure as a function of salt

concentration, in the case of RbCl (σi = 3.33 Å); Symbol (•)= result for “Born” term in the case

of RbCl obtained from Eqs. (2) and (4) (see Figure S3).

FIG. 7. Same legend as for Figure 6 in the case σi = 3 Å.

It will be convenient to define the ratio,

R ≡ lim
Cs→0

(
β∆µ

id(resc)
i /β∆µB

i

)
. (58)

at vanishing concentration of the salt. It is a function of the sole diameter σi for a given

solvent characterized by the values of mW and σW . This ratio can be computed at constant
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solvent concentration, in which case, according to the discussion of Section III F, R is ex-

pected to be an exact result within the ID-MSA model. It can also be computed numerically

at constant pressure in a Maple program.

The ratio R was first computed at constant solvent concentration (constant d2) for which

the two chemical potentials are respectively given by Eqs. (52) and (54). Thus in this

case one has, R = M/B, in which M and B are expressed by Eqs. (S18) and (S20) (cf.

Supplementary Material), respectively. By using the expressions of M and B, and the values

of λ and σW of Section IVA1 one gets,

R ≃ 0.75154 (σi + 4.6138)(σi − 3.5364)

(σi + 0.93482)(σi + 0.63715)
. (59)

in which σi is expressed in Ångströms.

Next, the ratio R was computed at constant pressure for σi values ranging from 2.3 Å to

4.5 Å thus spanning the range of ions from fluoride (2.38 Å) to iodide (4.12 Å) and beyond.

Since an analytical determination of this ratio turned out to be extremely cumbersome, it

was computed manually within the Maple program by calculating its value numerically for

vanishingly small values of the salt concentration.

The ratio R is plotted in Figure 8 as a function of the ion diameter in the two cases:

constant d2 (see Eq. (59)), and constant P .

FIG. 8. Plot of R (Eq. (58)) as a function of the ion diameter. Solid line: result at constant

pressure; Dashed line: result at constant solvent concentration (Eq. (59)).

The first conclusion that can be drawn from Figures (6)-(8) is that, in general, the result
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for the rescaled ion-dipole contribution to the chemical potential of an ion, calculated from

the ID-MSA model, is not well estimated by the “Born” term. In the case of RbCl (average

SP diameter, σi = 3.33 Å) at constant P , Figures 6 and 8 show that the MSA result is of

the order of 20 times smaller than the “Born” term, which is quite a large number.

Furthermore, Figures 7 and 8 suggest that the ratio R could be negative. In this case

β∆µ
id(resc)
i would be negative because the “Born” term being always positive. According

to Figure 8 this would occur for σi . 3.25 Å at constant pressure, and for σi . 3.54 Å

at constant solvent concentration (see Eq. (59)). If NaF was not subject to hydrolysis, an

aqueous solution of this salt, for which the mean ion diameter is σi = 2.35 Å, would fall into

this category, with an ion-solvent contribution that would be negative and ∼ 1.4 times the

magnitude of the “Born” term in absolute value.

At the opposite, it is seen in Figure 8 that at constant pressure one gets R = 1 for ion

diameters of the order of 4.3 Å. For this particular diameter the contribution estimated from

the model coincides with the “Born” term. For bigger ions R is found to increase beyond

unity.

The fact that the ion-dipole contribution, β∆µ
id(resc)
i , differs in general from the “Born”

term should not come as a surprise. The “Born” term is based on the view that the medium

around an ion is a dielectric of relative permittivity εsol. However, εsol is relevant for the

description of interactions between charges separated by a sufficiently large distance. It will

have a sound and unique physical meaning when this separation is appreciably larger than

the mean distance between ions. This is typically a matter of several nanometers in solution.

One finds that this minimum-+ distance would be of as much as ∼100 Å in a 0.1 M solution,

and of ∼30 Å in a 6 M solution.

In contrast, the “Born” term is actually intended to quantify the effect of electrostatic ion-

solvent interactions. Yet, the range of these interactions (which may include ion-dipole, ion-

quadrupole,... interactions) is shorter than that of ion-ion interactions. It mainly involves

distances of a few molecular diameters. At such distances, εsol is likely a poor estimate of

the effective local relative permittivity. This phenomenon might be a basic drawback of the

“Born” term.

We note that this mismatch does not prevail in the calculation of ion solvation energies

when using the Born equation because the dielectric constant of the solvent, εW , should be

physically relevant already at distances of a few molecular diameters.
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Now, a precise discussion of the variation of R with σi is difficult, firstly because the

“Born” term does not have a sound physical basis. Moreover, the magnitude of the rescaled

ion-dipole contribution, ∆µ
id(resc)
i , is also difficult to discuss because, as mentioned in Section

III F, it represents the part of direct ion-dipole interactions from which the effect of the

reaction field on the ions (created by the dipoles) has been subtracted. It has been seen above

(at the end of Section III F and in Section IVA3) that the direct ion-dipole contribution,

∆µid
i , is positive, and the ion-ion contribution, µii

i , is negative. Consequently, by virtue of

Eq. (50), β∆µ
id(resc)
i is the difference of two positive quantities that are significantly larger

than β∆µ
id(resc)
i , as has been mentioned in Section IVA3. Therefore, the uncertainty on

β∆µ
id(resc)
i may not be small.

Nonetheless the result in the case of RbCl may be trustable. Indeed, it has been found

in Section IVA3 that the solvation energy of Rb+ and Cl− ions is well described within the

ID-MSA model. Moreover, the activity coefficient of RbCl, which comprises contributions

from ion-ion and ion-dipole interactions, is represented accurately below 0.4 M (see Figure

3) without adjustable parameter for the ions. These facts may lend support to the result of

Figure 6 in which it is found that the rescaled contribution β∆µ
id(resc)
i is much smaller that

the “Born” term in the case of RbCl solutions.

The case of the salt CsBr (made up of ions that are bigger than Rb+ and Cl−), may be

examined likewise. The mean Gibbs hydration energy of Cs+ and Br− obtained from the

model is -121.2, compared to the experimental values of ∼-118 and ∼-121 from Fawcett and

Kelly, respectively. The agreement is therefore very good. The activity coefficient of CsBr is

in reasonable agreement with experimental data if one takes into account the fact that this

salt is associated in water (see Section IVA3 and Figure S4). These outcomes may lend

some support to the result of Figure 8 in the case of the bigger ions.

In contrast, the case of smaller ions (σi . 3.25 Å), for which β∆µ
id(resc)
i would be negative,

is more uncertain. It must be admitted that this result is somewhat surprising because it

would mean that the rescaled ion-dipole contribution could be of opposite sign to the direct

one. Admittedly, the ID-MSA gives reasonable values for the Gibbs hydration energies of

Na+ and F− (see Table I), but the activity coefficient is not well represented within the ID-

MSA (see Figure S5), probably because of the occurrence of hydrolysis in NaF solutions as

mentioned in Section IVA3. These results therefore do not provide support to the validity

of the model in the case of small ions. For the time being we can just take note of the result
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provided by the ID-MSA that ∆µ
id(resc)
i might be negative in this case, but this result would

have to be confirmed by other methods.

V. CONCLUSION

The main conclusions stemming from the above analysis are that the solution permittivity,

which is a basic ingredient of the “Born” term, is likely not relevant for the description of

ion-solvent effects in electrolyte solutions. Moreover, it has been found within the semi-

restricted ID-MSA framework that, in general, the “Born” term does not provide a good

estimate of the magnitude of the ion-solvent contribution to the chemical potential of an ion

in solution.

It has been mentioned in the Supplementary Material addendum that, in the literature,

electrolyte models that include a “Born” term have not used experimental solution permit-

tivity data. Instead, the use of approximate estimates gives εsol values that are significantly

larger than raw experimental data at 25◦C (see Figure S2). As a consequence the “Born”

contribution is appreciably smaller (see Figure S3). The use of such a smaller “Born” term

to describe the ion-dipole contribution coincides with the fact that the “Born” term greatly

overestimates the ion-dipole contribution for most systems (see Figures 6 and 8).

It has also been found in this work that the ion-dipole contribution, βµ
id(resc)
i , can be

negative when the ions are sufficiently small. If this would indeed occur, then no term of the

Born-type could account for this phenomenon because the “Born” term is always positive.

However it has been mentioned that this result is not clearly established.

The potential inadequacies of the “Born” term to give a good estimate of the ion-solvent

contribution are cause for concern. If the “Born” term is wrong by a few kBT (especially if

the actual ion-solvent term is negative) when it is used in a model for electrolyte solutions,

then the other parameters of the model have to compensate for this inaccuracy, which may

lead to parameters having unphysical values. Against this background, we suggest that

more flexibility should be allowed for the “Born” term in electrolyte models. It may be

observed in Figures 6 and 7 that the ratio of the ID-MSA contribution to the “Born” term

does not vary much with the salt concentration. Consequently, a first modification could be

to introduce an adjustable parameter in the “Born” term, such as a prefactor whose value

would expectedly fall in the range of -2 to 2.
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The ID-MSA model offers a convenient possibility to study this topic, but it is clearly

an approximate theory. So, the present conclusions would need to be confirmed by another

method. Nonetheless there are not many theoretical routes to tackle this problem. Numerical

simulation (e.g., molecular dynamics) will likely be the only alternative to study this subject.

Besides this project, it will be attempted in subsequent work to derive an approximate

analytical formula for the ion-dipole contribution. It will also be attempted to develop the

same kind of study in the framework of the unrestricted ID-MSA model in which the cation

and the anion have different sizes. However this will require first to revisit the model in detail.

It will also be interesting to study the results yielded by this model for the deviations from

ideality in electrolyte solutions, which has not been done yet.

Appendix

By equating Eqs. 34 and 35 and taking the limit of infinite dilution of the salt one gets,

βµ
(0),ρ
i − βµ

(0),m
i = − ln

(
N
V0

)
− βµexc

i (ρs → 0), (A.1)

in which N is Avogadro’s number and V0 is the specific volume of the solvent. Then, using

Eqs. 34 and 35 for finite salt concentration, one finds,

ln γi = ln γs = β [µexc
i − µexc

i (ρs → 0)] + ln

(
V0

V

)
. (A.2)

with V is the specific volume of solution, viz. the volume of solution per kilogram of solvent.

Now one has that, ρW = N
(1)
W /V , in which N

(1)
W is the number of solvent molecules in 1 kg

of solvent. Therefore, V0/V = ρW/ρ0W , which together with Eq. (A.2) yields Eq. (36).
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SUPPLEMENTARY MATERIAL

See supplementary material for more details on the “Born” term in the literature, on the

expansion of rescaled ion-dipole and “Born” contributions at low salt concentration, and on

the activity coefficients of CsBr and NaF in solution.
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