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The late detection of security threats causes a significant
increase in the risk of irreparable damages and restricts
any defense attempt. In this paper, we propose a sCAlable
TRAfficClassifier andAnalyzer (CATRACA).CATRACAworks
as an efficient online Intrusion Detection, and Prevention
System implemented as a Virtualized Network Function.
CATRACA is based on Apache Spark, a Big Data Streaming
processing system, and it is deployed over the Open Plat-
form for Network Functions Virtualization (OPNFV), pro-
viding an accurate real-time threat-detection service. The
system presents a friendly graphical interface that provides
real-time visualization of the traffic and the attacks that oc-
cur in the network. Our prototype can differentiate normal
traffic from denial of service (DoS) attacks and vulnerability
probes over 95% accuracy under three different datasets.
Moreover, CATRACAhandles streaming data under concept
drift detection withmore than 85% of accuracy.
K E YWORD S
Stream Processing, Threat Detection, Big Data, Virtual Network
Function, Network Traffic Classification
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1 | INTRODUCTION
The Internet is facing constant changes, from the diversity of the user, the complexity of its application, until the
heterogeneity of the information producers [1]. As a consequence, trafficmonitoring, a critical task in maintaining the
stability, reliability, and security of computer networks are facing new challenges [2]. Current networkmonitoring tools
are inadequate for current speed andmanagement needs of large network domains. To ensure network security new
systemsmust be designed since current security systems such as Security Information and EventManagement (SIEM)
are inadequate. While 82% of security threats occur in minutes, an intrusion can take up to 8months to be detected [3].
It is essential that the detection time is the least possible so that intrusion prevention can be effective [4].

Security incidents have increased their complexity, and simple analysis and filtering of packets are no longer
sufficient. Attackers try to hide malicious traffic from the security tools by forging the source IP and dynamically
changing TCP port. In this context, a promising alternative for classifying network traffic and detect threats is to apply
Machine Learning (ML) techniques. These techniques are suitable for big data, with more samples to train the classifier,
as methods have higher effectiveness [5]. With a large number of features, however,ML techniques perform results
with high latency due to computational resource consumption. This high latency is a disadvantage for applications
that usemachine learning for real-time classification. For example, networkmonitoring applications must analyze data
and detect threats as quickly as possible. In this context, real-time stream processing allows the immediate analysis
of different types of data and consequently benefits traffic monitoring for security threat detection. Open source
distributed processing platforms, such as Apache Storm [6], Apache Flink [7] and Apache Spark [8], process big data
with low latency.

In a previous work [9], we evaluated the performance of our monitoring system as a virtual network function.
Results show that our virtual network function can scale andmigrate during traffic overload. Moreover, network traffic
is processed in parallel to analyze big datasets. These results are ourmotivation to propose a CATRACA (A sCAlable
TRAffic Classifier and Analyzer). The CATRACA system uses Network Function Virtualization (NFV) technology over
a Network Function Virtualization Infrastructure (NFVI) to combine virtualization, cloud computing, and distributed
stream processing to monitor network traffic and detect threats. The goal is to provide an accurate, scalable and
real-time threat detection system tomeet the peak of use, providing a highQuality of Service. Trafficmonitoring and
threat detection as a virtualized network function have twomain advantages; the ability of self-adapting to different
traffic volumes and the flexibility of installation and migration of sensors in the network to reduce the latency in
monitoring [10]. Self-adaptation is reached with an elastic behavior, matching different traffic and processing rates. The
system creates and destroys virtual machines when necessary. The system presents installation flexibility because it
runs on the top of virtual machines that are hardware agnostic. Sensors aremigrated using virtualization features. Thus,
the system analyzes large volumes of data, whileMachine Learning techniques classify the traffic into normal or threat,
and, finally, the knowledge extracted from the flows is presented in a user interface.1

The remainder of the paper is organized as follows. Section 2 discusses the related work. In Section 3, we describe
CATRACA architecture. Offline CATRACA implementation is presented in Section 4.1 for a big dataset. In Section 4.2
we perform a traffic classification use case. In Section 4.3, we demonstrate a use case of CATRACA analyzing streaming
data. Finally, Section 5 concludes the work.

1The system, as well as its documentation and complementary information, can be accessed at http://gta.ufrj.br/catraca.
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2 | RELATED WORK
Many proposals using Apache Storm stream processing platform to perform real-time anomaly detection are found in
the literature. Du et al. useApacheFlumeandApacheStorm tomonitor network traffic to detect anomalies. Theyuse the
K-Nearest Neighbours (k-NN) algorithm to classify network traffic [11]. Performance evaluation is presented, however,
the paper lacks results regarding classificationmetrics, such as accuracy, precision, recall, among others. Moreover, the
prototype only receives data from a single source, ignoring data from distributed sources. Similar to previous work,
Zhao et al., uses Apache Kafka and Apache Storm, for the detection of network anomalies [12], characterizing flows in
the NetFlow format. He et al. propose a combination of the distributed processing platforms Hadoop and Storm, in
real time, for anomaly detection. In this proposal, a variant of the k-NN algorithm is used as the anomaly detection
algorithm [13]. The results show a good performance in real time, however, without using any reaction and threats
prevention. Villar-Rodriguez et al. propose the use of Support VectorMachine (SVM) to detect identity theft in social
networks [14]. The authors monitor user profiles based on connection time information. SVM classifies the legitimate
user and the attackers’ profiles. Li et al.. propose an approach to anomaly detection in trafficmonitoring. The authors
use Principal Component Analysis (PCA) over the Random Forest machine learning algorithm to identify the most
important features [15]. Results show good performance under traditional KDD’99 dataset [16] and from authors
campus dataset. Nevertheless, none of these proposals work with streaming data.

TheOpen Security Operations Center (OpenSOC) [17] is a collaborative development project that integrates open
source software aimed at an extensible and scalable security analysis tool. Thus, OpenSOC is an analytical security
framework for monitoring big data using distributed stream processing. OpenSOCwas discontinued and gave rise to
the ApacheMetron project [18] proposes a new architecture that aims to facilitate the addition of new data sources and
better exploit the parallelism of the Storm tool. Metron architecture comprises acquisition, consumption, distributed
processing, enrichment, storage and visualization of the data layers. The key idea of this framework is to allow the
correlation of security events from different sources, such as application logs and network packets. To this end, the
framework employs distributed data sources such as sensors in the network, event logs of active network security
elements and enriched data called telemetry sources. The framework also relies on a historical foundation of network
threats fromCisco. Apache Spot2 is a project similar to ApacheMetron, and it is still in incubation. Apache Spot uses
telemetry andmachine learning techniques for packet analysis to detect threats. The creators mention that the big
difference with ApacheMetron is the ability to use standard open data models for networking. Stream4Flow3 uses
Apache Spark with the ElasticStack stack for networkmonitoring. The prototype serves as a visualization of network
parameters. Stream4Flow [19], however, lacks the intelligence to perform anomaly detection. Hogzilla4 is an intrusion
detection system (IDS) with support for Snort, SFlows, GrayLog, Apache Spark, HBase and libnDPI, which provides
network anomaly detection. Hogzilla also allows realizing the visualization of the traffic of the network.

CATRACA, likeMetron, was also inspired byOpenSOC and aims tomonitor large volumes of data using stream
processing. The CATRACA system is implemented as a Virtual Network Function (VNF) over the Open Platform
for Network Function Virtualization (OPNFV) environment. CATRACA focuses on real-time packet capture, data
preprocessing, machine learning, and a countermeasuremechanism for immediate blocking ofmaliciousflows. Thus, the
CATRACA system acts as a Virtualized Network threat detection and prevention function that reports flow summaries.
In addition, CATRACA as a VNF can be linked to other network virtualized functions [20] as defined in the network
function chain patterns (Service Function Chaining - SFC) and network service headers (Network Service Header -

2http://spot.incubator.apache.org, Accessed April 2018.
3https://github.com/CSIRT-MU/Stream4Flow, Accessed April 2018.
4http://ids-hogzilla.org/, Accessed April 2018.
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NSH).

3 | THE CATRACA SYSTEM
Current enterprise networks rely onmiddleboxes. Middleboxes are intermediary devices that add new functionalities
to the network such as intrusion detection system, firewall, proxy. Middleboxes are dedicated hardware nodes, which
perform a specific network function. Hence, middlebox platforms comewith high Capital Expenditures (CAPEX) and
Operational Expenditures (OPEX). In this way, the Network Function Virtualization (NFV) comes to leverage standard
virtualization technology into the network core, and tomerge network equipment into commodity server hardware [21].
In NFV, the network functions are deployed into a virtualized environment and, thus, called Virtual Network Functions
(VNF). Virtual network functions (VNF) are virtual machines performing functions on the network layer to replace the
numerous hardware-specificmiddleboxes. Also, Service Function Chaining (SFC) allows an infrastructure provider to
select the appropriate VNF frommultivendor implementations. An Intrusion Detection System (IDS) and a Firewall is a
good example of a service function chaining [20].

CATRACA aims to use NFV technology and its cluster infrastructure to combine virtualization, cloud computing
and distributed stream processing to monitor network traffic. The objective is to provide an accurate, scalable, and
real-time threat detection facility capable of attending usage peeks. The trafficmonitoring and threat detection as a
virtualized network function present twomain advantages: capacity self-adaptation to different traffic network load
and high localization flexibility to place or move network sensors reducing latency.

CATRACA is deployed as a Virtual Network Function (VNF) as shown in Figure 1. CATRACA sensors are deployed
in virtual networks. The goal of the sensors is to mirror traffic to CATRACA cloud. CATRACA cloud is composed of
Apache Kafka that receives themirrored traffic and sends it to Apache Spark, responsible for data processing. Apache
Spark creates a machine learningmodel that is stored in the HadoopDistributed File System (HDFS) and, finally, results
are displayed in the ElasticStack that contains the Elastic Search and Kibana for data visualization.

The CATRACA architecture is composed of three layers: Visualization Layer, Processing Layer, and Capture Layer,
as shown in Figure 2. The first layer, the Capture Layer captures network packets, through traffic mirroring by the
libpcap library. A Python application based on flowtbag abstracts the packets into flows. Many open - source soft-
ware resume packets into flow features such as tcptrace 5, flowtbag 6, Traffic Identification Engine (TIE) 7, flowcalc 8,
Audit Record Generation and Utilization System (ARGUS) 9, among others. We apply flowtbag because it abstracts
more packet features than others. Flowtbag get 45 features, (5) flow tuple information (IP/ports/protocol), (4) pack-
ets/bytes in forward/backward direction, (8) packets statistics forward/backward direction, (8) time between packets
forward/backward direction, (8) flow time statistics, (4) subflow packets/bytes forward/backward direction, (4) TCP
flags, (2) Bytes used in headers, (1) type of service, (1) Quality of Service.

We define a flow in CATRACA as a sequence of packets with the same 5−tuple source IP, destination IP, source port,
destination port, and protocol, during a timewindow. In all, 45 flow features and one feature for the label are extracted
and published in a publisher/subscriber service of Apache Kafka. The service operates as a low latency queue and data
flowmanipulation system, where the Processing Layer consumes queue features.

A dedicated cloud for classification hosts the Processing Layer, and its core is the Apache Spark. We choose

5Tcptrace http://www.tcptrace.org, Accessed April 2018.
6flowtbag: https://github.com/DanielArndt/flowtbag, Accessed April 2018.
7Traffic Identification Engine http://tie.comics.unina.it/doku.php, Accessed April 2018.
8flowcalc http://mutrics.iitis.pl/flowcalc, Accessed April 2018.
9ARGUS http://www.qosient.com/argus Accessed April 2018.
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F IGURE 1 CATRACA as a Virtual Network Function. CATRACA sensors mirror traffic to Apache Kafka. Network
packets are summarized as flowswhich Apache Spark analyzes. Machine Learningmodels are obtained and stored in
the HadoopDistributed File System (HDFS) and results are displayed in the ElasticStack.

F IGURE 2 The layered architecture of the CATRACA system: the capture layer, the processing layer, and the
visualization layer. The capture layer abstracts network packets into stream flows. All operations such data
preprocessing, machine learning and data enrichment, are implemented in the processing layer. Visualization layer
stores data and graphically displays the results.
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Spark framework among the different stream-processing platforms because it presents the best fault tolerance perfor-
mance [22], making CATRACAmore robust in case of failure. Spark runs in a cluster following themaster/slavemodel,
where slaves can expand and reduce resources, providing scalability to the system. Once a flow arrives in the Processing
Layer, a data preprocessingmethod normalizes and selects themost critical features for threat classification. Finally,
CATRACA classifies flows asmalicious or benign throughmachine learning (ML) algorithms based on decision trees.

F IGURE 3 Flowchart of CATRACA running in offline mode. The system loads a network flow dataset from a
repository stored onHDFS. Spark system is the processing core of CATRACA. Feature selection and data classification
are applications running on the top of Spark.

CATRACA runs in twomodes: offline and onlinemodes. Offline mode analyzes stored big security datasets which
are time invariable. Figure 3 shows the flowchart of the offline application of CATRACA. Boxes are the name of the
functions, and the arrows show the communication between the functions. First, we upload a file, expressed in comma-
separated values (csv) representation, to the HadoopDistributed File System (HDFS). The Read File function reads
the file and transforms it into a Resilient Distributed Dataset (RDD) in the Spark context. The RDD abstracts the files
into lines, and each line represents a network flow. The dataPreparing function processes the lines, separating each
feature by a comma, converting the values to float, and also removing the label or classes for each line. Data and the
classes are separately processed. The Feature Correlation function uses our feature selection algorithm to select
themost important feature for each flow. An index represents each feature, from 1 to 45. Once selected, the indexes
are stored in the HDFS. Next, the data and the indexes are sent to the Matrix Reducer function, where we reduce the
original matrix to the one which contains only the previous selected indexes. The pass2libsvm transforms the reduced
matrix in a libsvm format. LibSVM is a library for implementing support vector machine classification. CATRACA,
however, only uses the data format of this library as input formachine learning algorithms in the Spark context. The
format of the libsvm library is <label> <index1>:<value1> <index2>:<value2>where l abel is the class of the flow,
i ndex are the features and v al ue are the numerical values of features. Once the data are ready, the Divide Data

function divides them into training and testing sets in a rate of 70% for training and 30% for testing. The training set
feeds the Create Model function that creates themachine learningmodel. In CATRACA, we use decision tree as the
machine learningmechanism. After creating themodel, we store it in the HDFS for further use. Finally, the Classify
function obtain themodel and evaluate it against the testing set. This function also compares the predicted values with
the original dataset classes, and themetrics, such as accuracy, precision, and F1-score, are obtained. Themetrics are
finally stored also in the HadoopDistributed File System.

CATRACA onlinemode is presented in Figure 4. This modeworks similarly than the offlinemode. In contrast to
the offlinemode that analyses static data onlinemode processes streaming dynamic data. As a result, the streaming
data are unlabeled data, as they arrive with no class annotation since they are created in real-time. First, the getStream
function get the streaming of flowmessages that came from Apache Kafka. The function defines the parameters of
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F IGURE 4 Flowchart of CATRACA running in online mode. Flows arrive from the network as message in Kafka. The
online application consumes flowmessages fromKafka and enriches the flow features. Onlinemode introduces data
transformations to adapt streaming data to Sparkmachine learning libraries.

the Apache Kafka receiver inside the Apache Spark. Then, the convert2JSON function process the streaming data and
parses then to the JavaScript Object Notation (JSON), which is easier to handle. ExtractIPs function get the IPs source
and destination address from each flow; these IPs are passed to the addLocationwhere the geographical coordinates
of each IP are added. On the other side, the features without the IP addresses are inputs for to the convert2float
function. This function transforms all data into float values. Next, the Matrix Reducer function is inherited from the
offline mode. This function takes the stored indexes from the HDFS, which were calculated in the offline mode, and
applies a reduction on the data. Then, we convert the reduced feature matrix into a new matrix with the selected
indices as columns. This step is similar to pass2libsvm in the offline mode. However, the libsvm format is unsuitable to a
streaming data environment. The predict function load themachine learningmodel obtained during the offline model
and classify the flows in 0 as normal flow or 1 as an alert. The join function combines the original data with both the
result of the classification and the geographical location. All data aremerged into a single vector and forms a new RDD.
A timestamp, the flow processing time label, enriches the data. Finally, the send2elastic function sets the parameters
and adapts the data to send to ElasticSearch.

Our system enriches original metadata with information to enhance the quality of the detection. The idea behind
enrichment is to add information in the streaming data about the environment of the attack. We first extract the IP
address, and we add the geographical location of the analyzed IPs. With this information, our system can detect attacks
in different geographical location and have a global view of the attack. As a consequence, a DistributedDenial of Service
(DDoS), for example, is easier to detect. Other sorts of meta-data can enrich the streaming data, such as the timestamp
of the processed flowwhich let us handle the data as a time series. Moreover, information about the user, such as if it is
a residential or a corporate user, increases the knowledge about an attack.

Finally, the Visualization Layer deploys ElasticStack and Kibana. The ElasticStack allows real-time custom event
viewing. Thus, the output of the Processing Layer follows to the ElasticSearch10 which provides a fast search and storage
service. A user interface runs in the Kibana environment, which communicates with the stored data in ElasticSearch
through queries. The combination allows exposing the results in real-time.

4 | CATRACA EVALUATION
CATRACA runs on the top of the Open Platform for Network Function Virtualization (OPNFV). We perform the
experiments in theOPNFVDanube 2.0 environment. OurOPNFV environment runs on five bare-metal servers, two
controllers, two compute nodes with 96GB of RAM, 700 TB of storage and 128 cores of Intel Xeon processors with a

10ElasticSearch and Kibana are open-source code and belong to the ElasticStack. https://www.elastic.co/products, Accessed April 2018.
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clock frequency of 2.6 GHz. Besides, fuel manager runs on aQuad-core, 4GB RAM, 128GB SDD storage with three
network interfaces of 1/GBs.

We usemachine learning algorithms against three different datasets to evaluate CATRACA. The NSL-KDD dataset
is a modification of the original KDD-99 dataset and presents the same 41 features and the same five classes, Denial of
Service (DoS), Probe, Root2Local (R2L), User2Root (U2R) and normal, as the KDD99 [23]. The NSL-KDD dataset was
improvedwhen comparedwith original KDD99. Improvements of the NSL-KDD over KDD99 are the elimination of
redundant and duplicate samples, to avoid a biased classification and overfitting, and a better cross-class balancing to
avoid random selection. The second dataset is the GTA/UFRJ11 [24] that combines real network traffic captured from a
laboratory and network threats produced in a controlled environment. Network traffic is abstracted in 26 features and
contains three classes, DoS, probe and normal traffic. The third dataset is the NetOp11, a real dataset from a Brazilian
operator [25]. The dataset contains anonymized access traffic of 373 broadband users of the South Zone of the city of
Rio de Janeiro. We collected data during oneweek of uninterrupted data collection, from February 24 toMarch 4, 2017.
We summarized packets in a dataset of 46 flow features, associated with an IDS alarm class or the legitimate traffic
class. We summarize all datasets in Table 1.
TABLE 1 Summary of datasets used for evaluation.

Dataset Format Size Attacks Classes Type
NSL-KDD 41 Features 150k Flows 80.5 % 5 Synthetic
GTA/UFRJ 26 Features 95 GB 30% 3 Synthetic
NetOp 46 Features 5M Flows - 2 Real

In this work, we present three use cases of CATRACA. The first two present CATRACAwhen runs in offlinemode
and the last one shows the streaming behavior of CATRACA. As a consequence, we first analyze real network traffic
dataset. After, we compare the performance of threemachine learning algorithms in three different security network
datasets. Finally, we evaluate CATRACAwhen handling streaming data.

4.1 | Offline Dataset Evaluation Use Case
WeuseCATRACA to analyze and characterize theNetOp dataset. TheNetOp dataset is a big dataset obtained from real
network traffic. With big dataset, a computer cluster must be used to introduce low latencywhen processing the data. A
previous work [25] analyzed just one day of the network traffic. In this paper, we analyze the entire dataset, in total one
full week. We loaded the entire dataset into the Hadoop File Distributed System (HDFS). In this use case, CATRACA
analyzes themain features chosen by the Principal Component Analysis (PCA) [26] method. The PCAmethod selects
the features that are themost representative components of eigenvectors with themost significant eigenvalues. Then,
CATRACA extracts statistics about network flows using the core of Apache Spark. We analyze the relation between
normal traffic and alerts. Figure 5 shows the number of threats and normal flow in each day of the dataset in 2017. We
can see that almost all days contain around 30% of alerts. Only one day, February 17t h contains a smaller number of
alerts. Themaximum number of alerts occur on Saturday, February 25t h , reaching 1.8Million alerts.

Figure 6 shows the source and destination ports of the flows. The figure focuses on the 1024 first ports (from
0 to 1023), as they are the operating system-restricted ports. Usually, daemons that execute services with system

11Anonymized data are available by emailing contact to the authors



ANDREONI LOPEZ ET AL. 9

1
6
/2

1
7
/2

1
8
/2

1
9
/2

2
0
/2

2
1
/2

2
4
/2

2
5
/2

2
6
/2

2
7
/2

2
8
/2

0
1
/3

0
2
/3

0
3
/3

0

1

2

3

4

5

6

N
u

m
b

e
r 

o
f 

F
lo

w
s

10
6

Normal Traffic

Alerts

F IGURE 5 Number of Alerts andNormal Traffic flows in NetworkOperator dataset.

(a) Source Ports Distribution. (b) Destination Ports Distribution.

F IGURE 6 Source and destination ports in flows. Comparison of the use of the lowest 1024 ports (restricted ports)
in the evaluated flows. As users are fundamentally residential, the largest number of flows originating from these ports
are flows that generate alerts.

administrator privileges use these ports. Our flow definition assumes that the source port initiates the TCP connection.
As the dataset portrays home users, most connections are destined to restrict and dynamic ports. Thus, we remark that
the number of alerts coming from connections that the destination port is in the range of restricted ports is low to the
total number of connections on these ports, Figure 6b. When considering the flows, in which the source port is in the
range of restricted ports, almost all flows are classified as alerts by CATRACA, as shown in Figure 6a. Another important
fact is that most of the analyzed flows reflect the use of the DNS service (UDP 53) and HTTPS andHTTP services (TCP
443 and 80). The prevalence of HTTPS services over HTTP reflects the shift that major Internet content providers, such
as Google and Facebook, have done to use encrypted service by default to ensure users’ privacy and security.

The relation between themost accessed services and flow duration are shown in Figures 7a and 7b. The duration of
the analyzed flows is less than 40ms, characterizing the use of DNS, HTTP, andHTTPS services. Regarding the protocols
used, the prevalence of UDP flows is evident and refers to DNS queries. It is worthmentioning that the number of alerts
generated by UDP flows is more than 10 times greater than the number of alerts generated by TCP flows. Another
important point is that the number of flows that generate alerts is approximately 26%of total flows.

Figure 8 shows the characterization of the number of packets per flow in uplink and bytes per flow in the downlink
direction. In uplink direction, Figure 8a, 80% of alerts starts with 20 packets or less while normal traffic starts with
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F IGURE 7 Cumulative Distribution Function (CDF) for the duration of flows inmilliseconds and number of flows
per transport protocols. A) The flows that generate alerts are shorter in duration than the average flow. B) The
legitimate flowswith UDP are numerous due to DNS (port 53 UDP). The number of alerts in UDP is more than 10 times
greater than in TCP flows.

almost 80 packets. This behavior is typical from probe or scans attacks that send small amounts of packets to discover
target vulnerabilities. In Figure 8b alerts and normal traffic show a similar pattern of 11%of flows. However, alerts use
more than 100Bytes in more than 30%of flows.
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F IGURE 8 Cumulative Distribution Function (CDF) for the number of packets per flow. Flows that generate alerts
tend to have fewer packets.

Considering the amount of data transferred in eachflow, Figure 9 compares the round-tripflows concerning volume
in bytes. The disparity of the traffic volume in both directions of communication is evident. While in one way 95%
of traffic presents a maximum volume of 100 B, in the other way, the same traffic share presents upmore than 500 B.
This result demonstrates that the residential broadband user profile is a content consumer. Another point is that the
flows that generate alerts have a similar traffic volume profile in both directions. Asymmetric traffic is more typical of
legitimate users.

Figure 10 shows the behavior of the subflows generated in each connection. A new subflow is created whenever a
flow reaches the idle state. Both Figures 10a, 10b, subflow size in uplink and downlink, shows a very similar behavior.
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F IGURE 9 Cumulative Distribution Function (CDF) for volume in bytes by flow. Flows that generated alerts tend to
have smaller volumes in transferred bytes.

Over 20% of Normal traffic flows, reach 900B, but this value is reached in almost 60%of the flows. Values of subflows
are almost ten times bigger than the values represented in Figures 9 where flow size in Bytes are shown. Flows are
short duration, as evidenced in Figure 7a, do not pass to the idle state and, thus, do not generate subflows.
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F IGURE 10 Cumulative Distribution Function (CDF) for volume in bytes by subflow in each flow. Flows that
generate alerts tend to have smaller volumes in bytes transmitted in subflows.

Another important feature is the total amount of data in packet headers. Figure 11 shows that, in both directions,
alert and normal flows have the same behavior. In particular, there is symmetry in the round-trip traffic regarding the
volume of data in the headers. It highlights that malicious traffic does not rely on the usage of header options. Also,
in both directions, uplink and downlink show similar behavior. Until 90Bytes per header alerts and normal traffic are
similar, however, with 900Bytes headers, it represents almost 30%of normal traffic, and close to 60%of alerts flows.

Figure 12 shows which are the main classes of alerts triggered by the IDS. Alerts for attacks against HTTP are
themost frequent. This class of alerts includes SQL injection attacks throughHTTP calls and XSS attacks (cross-site
scripting). Home users can execute these attacks, as they use the parameters of HTTP calls to insert somemalicious
code into the servers and, therefore, are not filtered by access rules. Other important alerts are port scanning and
execution of malicious applications (trojan andmalware). The scans are generally intended to identify open ports and
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F IGURE 11 Cumulative Distribution Function (CDF) for volume of packet header data. The behavior of traffic that
generates alerts is very similar to total traffic.

vulnerabilities in user premises such as the home gateway. Alerts for trojan andmalware identify activities typical of
knownmalicious applications that aim at creating and exploiting vulnerabilities in the devices of the home users. Other
alerts refer to information theft and Byzantine-attack signatures on common protocols, such as IMAP and Telnet12.
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F IGURE 12 Distribution of themain types of alerts in the analyzed traffic.

4.2 | CATRACA for Traffic Classification Use Case
Classification begins with the preprocessing in the selection of themost important features of the flows. Our system
can then operate in either real-time or offline mode. Offline traffic classification comprises processing of the micro-
batches Spark platform. In this mode, large volume datasets are loaded in a distributed file system, such as the Hadoop
Distributed File System (HDFS). The data set is separated into a set of training and a test set at a ratio of 70 % to
training and 30 % to the test. Thus, Spark performs processing by the technique map-reduce. Applications in Spark
run as independent processes in the cluster which are coordinated by themaster node. Themaster node receives the
application split it into tasks. Also, themanager node is responsible for scheduling tasks in the worker nodes. Once the
worker finished the assigned task, the results are reported to themanager node. We train a decision tree algorithm
to obtain the classificationmodel, andwe store it in theHadoop distributed file system (HDFS). Themanager will be

12Mainly used for remote configuration of network equipment.
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responsible for loading the newly published model and deploying to the worker nodes. Results were obtained with
10-fold cross-validation, in four virtual machines (VM), one Sparkmaster and three Spark slaves, using Ubuntu 16.04
with 4GB of RAM and two cores for each VM.

We compare the performance of the machine learning algorithms for traffic classification use case. For this
experiment, we test eight machine learning algorithms for classification: K -Nearest Neighbors (K-NN), Artificial Neural
NetworkMultilayer Perceptron (Neural Net. MLP), Random Forest, Support VectorMachine (SVM)with Radial Basis
Function (RBF) Kernel andwith linear kernel, GaussianNaive Bayes, Stochastic Gradient Descendent, andDecision Tree.
For the training set, we choose the day25/2ofNetOpdataset since it is the day that contains themost significant amount
of flows. Also, we validate the performance under 10-fold cross-validation. Results are shown in Figure 13. Figure 13a
shows the performance of four evaluation metrics Accuracy, Precision, Sensitivity, and F1-Score, while Figure 13b
presents a comparison between Training and Classification Times, in which time is represented in a logarithmic scales.
As we can see Decision Tree presents the best performance under the four evaluatedmetrics. Even if Decision Tree
does not present the smallest training time, the performance presented during the classification time is one of the best.
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F IGURE 13 Performance comparison for eight machine learning algorithms running on the top of CATRACA. in a)
we evaluate Accuracy, Precision, Sensitivity and F1-Score, and in b) we compare training and classification time.

The decision tree classification algorithm runs in the core of CATRACA for a good trade-off between its train-
ing/classification times allied to its high accuracy and precision. The decision tree is a greedy algorithm that performs a
recursive binary partitioning of the resource space. Each sheet, in CATRACA a feature or a combination of them, is
chosen by selecting the best separation from a set of possible divisions, tomaximize the gain of information in a tree
node. The division into each node of the tree is chosen from the ar gmaxdGI (CD , d ), where ar gmax is the point where
function gets its maximum value,GI (CD , d ) is the information gain when a division d applies to a set ofCD data. The
idea of the algorithm is to find the best division between features to classify threats. For that, we use the heuristic
of Information Gain. The gain of informationGI of the systemCATRACA is the impurity of Gini,∑C

i=1 fi (1 − fi ),which
indicates how separated the classes are, where fi is the frequency of class i in a node andC is the number of classes. The
model is stored in the file system and loaded in to be used in real-time traffic classificationmode online. Thus, it is also
possible to validate themodel with the 30% test set obtained earlier.

Tables 2,3 and 4 show the confusionmatrix of the three evaluated datasets. We consider a network flow sampling
as a sliding window of 2 s duration, since Lobato et al. suggest that it is the best trade-off between classification accuracy
and decision latency [24]. The confusionmatrix specifies the rate of false positives and other metrics of each class in the
test data set. The rows represent the elements that belong to the real class, and the columns represent the elements that
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were classified as belonging to the class. Therefore, the prominent diagonal elements of this array represent the number
of elements that are correctly classified. Also, the tables present metrics complementary to the confusionmatrix. By
observing the values of Accuracy and Precision, it is possible to see the good performance of the decision tree algorithm
in off-line classification. Table 2 presents the results for the NSL-KDD dataset. The table verified that the algorithm
presented a high accuracy in almost all classes, with a low false positive rate. Another way to see the false positive rate is
to observe the values outside themain diagonal. Root to Local (R2L) and User to Root (U2R) classes present the lowest
values of recall and precision. These two classes are themost infrequent in the dataset. Thus, the classifier confuses
themost imbalanced classes. One solution to this problem is to use dataset balancer such as SyntheticMinority class
Oversampling TEchnique (SMOTE) [27] or Adaptive Synthetic (ADASYN) Sampling Approach [28]. Table 3 shows the
same evaluation for the UFRJ/GTA dataset. In this dataset, the worst precision was Scan class. As we can see in the
main diagonal of thematrix, themachine learning algorithmmisclassifiedmostly all scan class with DoS.We believe the
synthetic nature of the attacks causes the behavior above. All DoS attacks were created with random parameters. Thus,
parameters such as source IP addresses or ports can be forged. Sommer and Paxson [29] have already identified this
effect with an artificial dataset. Finally, a similar result is shown in Table 4where NetOp dataset was used to evaluate
the decision tree. This dataset contains two classes, threat and normal. We can see that the false positives, the values
outside themain diagonal also increase, however, the overall accuracy increases.

TABLE 2 ConfusionMatrix and EvaluationMetrics of Decision Tree for NSL-KDD dataset.
Normal DoS Scan R2L U2R Prec. Acc.

Normal 9556 5 24 125 0 98.414%

98.394%

DoS 14 7443 0 1 0 99.799%
Scan 16 2 2399 5 0 99.05%
R2L 157 0 0 2727 3 94.458%
U2R 3 0 0 7 57 85.075%
Recall 98.05% 99.906% 99.009% 95.183% 95%

TABLE 3 ConfusionMatrix and EvaluationMetrics of Decision Tree for GTA/UFRJ Dataset.
Normal DoS Scan Prec. Acc.

Normal 29126 1 0 99.97%

95.99%DoS 60 5845 0 98.94%
Scan 8 1782 9434 84.05%
Recall 99.76% 76.62% 100%

After obtaining the classificationmodel from the historical base, one can evaluate the accuracy of the systemwith
data arriving in real time. The operation of the CATRACA system in real time uses the stream module of the Spark
platform. Thus, abstracted packets in streams, captured on different virtual machines in the cloud, are processed as
they reach the Spark platform. In CATRACAwe consider a flow as a stream. When a stream arrives at the detection
system, it is summarized in characteristics using a feature selection algorithm, to reduce processing time. Thus, the
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TABLE 4 ConfusionMatrix and EvaluationMetrics of Decision Tree for NetOpDataset.

Normal Threat Precision Accuracy
Normal 3713600 30140 99.19%

98.74%Threat 22350 416100 94.90%
Recall 99.40% 93.24%

vector of selected features is evaluated in themodel obtained in the off-line processing. After extracting the analytic
data from the flows, the results are stored in a database for further analysis. The stored data contains the information
collected during the detection of threats and can be reprocessed offline to calculate the parameters to be used in the
real-timemodel. Tomake the systemmore accurate, when a new threat is detected, offline parameters are updated,
obtained feedback between online and offline detection.

Wemeasure the performance of CATRACA concerning processing throughput and processing-time permessage.
We inject the GTA/UFRJ dataset into the system in its totality and replicated as many times as necessary. As the
processing layer of the proposed system consumes amessage at a time, the method is still being stream processing. The
whole dataset is injected in the Kafkamessage service, but the processing engine consumesmicro-batches at a time.
Although this set-up avoids the evaluation of the total latency from the data generation until the data consumption
and the processed result, it assures that the processing engine always has enough incoming data to reach its maximum
throughput and to reach the worst-case scenario processing time per sample. The experiment calculates the consump-
tion and processing rate of the entire system. We consider a scale-out strategy to evaluate the speed-up factor that
CATRACA reaches. We add new processing cores to the cluster and evaluate the time for processing messages on
new architectures in relation to a serial architecture. Figure 14 shows the results of the throughput experiment. In
the y-axis, it is shown the throughput as the number of flows processed per second by the system. The throughput
reaches themaximum at 20 cores available. This upper-bound is due to the trade-off between communication overhead
and the portion of the code that benefits from the parallelism. We also estimate the speed-up in latency of the system.
The speed-up factor is given by S l at ency = La1

La2 , where La1 is the latency of the systemwhen parallelism is equal to one,
and La2 is the latency of the systemwith the variation of the parallelism parameter. Latency is the processing time per
message, which accounts for the difference between the time amessage arrives at the processing and the time it leaves.
Figure 14b compares the evaluated speed-up curve and the estimated Amdahl’s Law for the theoretical speed-up of
the system. The Amdahl’s Law [30] is given by Slatency(s) = 1

(1−p)+
p
s
, where s is the number of processing cores that

are running the task, p is the parallel portion of the task, and Slatency is the theoretical speed-up in latency. In order to
estimate the parallel portion of the task, we fit the Amdahl’s Law to the experimental curve. We achieve the best fit for
the experimental speed-up curve using the least squaremethod. The fitting reveals that the p = 0.815, whichmeans that
approximately 80% of the task runs in parallel, while 20% is serial, much of which is due to communication overhead.

Our proposed function can improve the processing capacity up to twenty cores in parallel. The same behavior is
shown for latency and for throughput. The system can handle over five million flows per second as throughput, the
latency to analyze a flow is shown in Figure 14c and reaches theminimum at 20-cores parallelism. Moreover, the latency
speed factor with a parallelism of twenty is reached around 4.65, and this indicates that the system can parallelize
almost five times with twenty virtual machines running one core each.
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(a) Processed-message throughput for CATRACA as a function
of the number of processing cores.
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F IGURE 14 Scaling-out CATRACA system. a) Processed-message throughput is maximumwith 20 processing
cores. b) The speed-up factor follows the Amdahl’s law for a 0.815 portion of parallel code. c) The processing time per
message is under-bounded by 100 ns.

| Real-Time Visualization of EnrichedData
The visualization of the enriched data occurs through a simple and friendly web interface to allow the user tomonitor
the different parameters of the network in real time. The open source viewer Kibana, a component of the Elastic stack,
was used for the development of the web interface, as it allows the visualization of the data in a fast and straightforward
way allied to the performance of processing of queries with large volumes of data with low latency.

Figure 15 reveals some of the different scenarios shown in the control panel, such as themost accessed destina-
tion/source ports, themost used destination IP addresses, the average size of the flows in the round-trip directions, the
number of analyzed flows, among others. It is worth emphasizing the visualization of the attacks in progress through a
map that portrays the origin, the destination and the number of occurrences. It is possible for the enrichment of the
data through the correlation with geolocationmetadata in the processingmodule13. Thus, both data and threats are

13for geolocationmetadata we use GeoIP library https://pythonhosted.org/python-geoip/, Accessed April 2018.
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F IGURE 15 Dashboard panel view of CATRACA system. The dashboard is deployed as a Kibana application
operating with streaming data in real-time, results are stored at ElasticSearch.

viewed in real time. Also, all data is stored with a timestamp, allowing the processing of the data through time series.

4.3 | Analyzing Streaming Data Use Case
In stream processingMachine Learningmethods data arrive continuously, one sample at the time. Stream processing
methodsmust process data under strict constraints of time and resources. Nevertheless, a change in the stationary
behavior of the sample statistics, the classificationmay present low accuracy, a behavior known as concept drift. An
adaptiveMachine Learning approach is necessary to ensure that themodel is up-to-date. The adaptive approachmust
detect a change in data when new data is available. Sincemodel training is resource consuming, wemust ensure that a
newmodel is essential. In an occurrence of concept drift, wemust train a newmodel. We use the approach presented
in Figure 16 to detect concept drift. Gray boxes present the batch processing, while the white boxes represent the
streaming data.

LetW = (w1,w2, . . . ,wn ) be a sliding window of samples. Eachwi containsN samples. We consider the first window
wn of sizeM , whereM � N . This premise allows us to train amodel before starting the process. Then, eachwindow
wi is preprocessed. We apply feature scaling and normalization to consider all feature equally in their representation.
Moreover, a feature selection algorithm is applied in this step to reduce processing time. Windowwi is validatedwith
the model obtained in the first windoww0. Besides, the accuracy metric is monitored to verify if a concept drift is
detected. We focus our approach on the degradation of the system performance. To measure system performance,
we use the accuracymetric. Accuracy gives a notion of classification rate as the number of correct prediction over the
total number of prediction, formally in Equation 1, where number of correct prediction is the True Positive (TP), and
True Negative (TN) and the total number of prediction is the True Positive (TP), True Negative (TN), False Positive (FP)
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F IGURE 16 Flowchart used for concept drift detection.

and False Negative (FN). Themonitoring comprises analyzing the accuracymetric of eachwindow. If the accuracy of
window falls below a threshold α , means that a concept drift is detected, and the current model is deprecated. As a
result, a newmodel must be obtained from the values of the windowwi . We consider concept-drift, as represented in
Equation 2, where ConceptDr i f t = 1means amodel re-training.

Accur acy =
T P +T N

Number of Sampl es
=

T P +T N

T P +T N + F P + F N
, (1)

ConceptDr i f t =

{
1, ifAccwi < α ∗ Accwi+1
0, otherwi se

, (2)

In theexperiment,wemeasure the impact of the concept-drift on thefinal accuracy. Weanalyzeoneday fromNetOp
dataset. As NetOp dataset contains labeled data, we canmeasure themodel accuracy. In production environments,
where labeled data are expensive, periodical re-training is usually performed. Periodical re-training can be unnecessary
when themodel remains unchanged. Other unsupervised approaches consider unlabeled data. Statistical comparison
of arriving samples, or clustering sample, with those samples used to train the system, assume that a concept-drift is
detected whenever new groups are found on new data [31, 32]. Thesemethods are resource consuming sincemeasures
based on distances are performed over arrived samples. We use decision treemachine learning algorithm. To perform
the training in the first window,M is established in 10000 samples, andwe variate the value ofN in 500, 1000, 2000
and 5000 samples. Moreover, we also variate the value of α from 80, 85, 90 and 95% of accuracy. The lower is the value
of α , themore themonitoring is permissive, and themore significant is the value of α , themore the system is rigorous.
As NetOp dataset is real traffic for a network operator, no ground-truth is presented for concept-drift detection. Thus,
our definition of concept-drift is based on the degradation of the prediction performance.

Figure 17 shows themonitoring of the concept drift. For display purpose, we limited the number of windows to
1000. In Figure 17awe see the accuracy behavior of a windowwith 500 samples. The variation of the α value shows a
deep impact on accuracy. With a very strict value of α = 95%, themodel is invalid for further windows, and accuracy
maintains a value lower than 0.3. Similar behavior is shown with a value of α = 90%. A value α = 85% shows an
improvement, however after a small number of windows, α = 85%alsomaintains a low accuracy. The best results are
shownwith α = 80%, amore permissive value. This value allows performing an accuracy higher than 78% for over 600
window steps. Nevertheless, in CATRACAwe need to reach high accuracy. An improvement in accuracy is reached
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F IGURE 17 Comparison of the accuracy with the variation of the samples in the sliding window. Also, the
parameter α is variate to analyze the impact in the accuracy.

in Figure 17b, with a α = 80% the system, was able tomaintain accuracy over 70% during all the experiment. Similar
than before, stricter values of α do not perform correctly. In Figure 17c and Figure 17d show an interesting behavior. In
Figure 17c the values of 80% and 85% if α overlap maintaining high accuracy over 70%. With 5000 sample, in Figure 17d
the overlap is produced by three values, 80, 85 and 90%of α values. Nonetheless, the strict value of 95 follows a similar
behavior at the beginning, and even if this value presents a low accuracy during a small period, α = 90%presents the
highest accuracy of all the experiment.

In this experiment, we show the impact of the concept drift detection on the variation in the sliding window and
the accuracy. In Figure 18a is presented the number of concepts drift detectedwhile varying the sliding window and
the α value. On the other hand, in Figure 18 is analyzed themean accuracy when varying the same parameters. With
a strict value of α = 95% and with a sliding window of 500, a high rate of concept drift is detected. However, when
compared with the same values in Figure 18, the mean accuracy is below 0.35. Differently, with a more permissive value
of α = 80%, the concept drift detection is below 500 in the whole dataset. Nevertheless, the accuracy with the same
values is under 0.4. With a permissive value of α = 80%, no concept drift is detected, but the accuracy is kept inmore
than 70%. We conclude that a good performance is presented when the sliding window containsN samples that tend to
be high andwith amore permissive value of α .

As NetOp dataset is a real network traffic trace collection, there is no ground-truth knowledge for how many
concept drifts. Thus, we compare our concept-drift detection dataset with the Page-Hinkley (PH) test. Page-Hinkley is a
technique used to detect modifications of a signal processing assuming a Gaussian distribution produced it. For every
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NSL-KDDDataset SpamsAssasins Dataset
Method Window Size Mean Accuracy Drift Detected Mean Accuracy Drift Detected

Page-Hinkley 50 0.69 0 0.99 0
Proposal α = 80 50 0.98 0 0.79 2
Proposal α = 85 50 0.98 0 0.81 4
Proposal α = 90 50 0.98 0 0.80 8
Proposal α = 95 50 0.98 0 0.80 11
Page-Hinkley 100 0.53 2 0.98 0
Proposal α = 80 100 0.98 0 0.83 0
Proposal α = 85 100 0.98 0 0.83 0
Proposal α = 90 100 0.98 1 0.78 3
Proposal α = 95 100 0.98 1 0.81 7
Page-Hinkley 200 0.52 4 0.98 0
Proposal α = 80 200 0.98 1 0.83 0
Proposal α = 85 200 0.98 1 0.83 0
Proposal α = 90 200 0.98 1 0.83 0
Proposal α = 95 200 0.98 1 0.82 2
Page-Hinkley 500 0.52 6 0.97 0
Proposal α = 80 500 0.98 1 0.83 0
Proposal α = 85 500 0.98 1 0.83 0
Proposal α = 90 500 0.98 1 0.83 0
Proposal α = 95 500 0.98 1 0.79 1
Page-Hinkley 1000 0.52 8 0.96 0
Proposal α = 80 1000 0.98 1 0.83 0
Proposal α = 85 1000 0.98 1 0.83 0
Proposal α = 90 1000 0.98 1 0.83 0
Proposal α = 95 1000 0.98 1 0.78 0
Page-Hinkley 2000 0.52 10 0.93 0
Proposal α = 80 2000 0.98 1 0.83 0
Proposal α = 85 2000 0.98 1 0.83 0
Proposal α = 90 2000 0.98 1 0.83 0
Proposal α = 95 2000 0.98 1 0.78 0

TABLE 5 Concept-Drift detection. Comparison of our proposal with Page-Hinkley test in NSL-KDD dataset and
SpamsAssasins dataset.
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F IGURE 18 A good performance is presented when the sliding window contains a number of samples N that tends
to be high andwith amore permissive value of α .

samples xi , PH test calculates a cumulative variable, mn based on the Equation 3. The variablemn is the difference
between the sample xi , Equation 4, and themean of the last n observed values xn . If the difference is smaller to a value
θ, a concept drift is detected. The value θ corresponds to themagnitude of changes that are allowed. In the experiments
we use θ = 0.005 and λ = 50. We use the decision tree algorithm as amachine learningmodel for classification.

mn =
n∑
i=1

(xi − xn − θ) ≤ λ (3) xn = 1
N

n∑
i=1

xi (4)
We compare our proposal with the PH test in three different datasets. One day of NetOp dataset, validating the
previous results, NSL KDD and SpamsAssasins dataset [33]. NSL KDD and SpamsAssisins are used in [32] to detect
concept drift in unlabeled data. Table 6, represents the results obtained. Table 5 shows the comparison of our proposal
with Page-Hinkley test in NSL-KDD and SpamsAssasins datasets. We see that our approach does not achieve to detect
concept-drift with small windows size. Nevertheless, our approach detects only one concept drift in all window size.
On the other hand, for bigger windows size, our approach outperforms Page-Hinkle test. In NSL-KDD dataset, the
accuracy of our approach remains constant in 0.98, and for PH test the best accuracy 0.53with a window size of 100. In
SpamAssassin, dataset Page-Hinkle accuracy performs between 0.93 and 0.99, while our approach is between 0.78 and
0.83. Our approach detects the same amount of changes than Sethi et al. approachwhile obtaining a better accuracy in
NSL-KDD and for SpamsAssasins dataset wewere able to detect the same amount for α = 80, 95with different window
sizes.

Dataset Mean Accuracy Drift Signaled
NSL KDD 0.893 1

SpamsAssasins 0.853 2
TABLE 6 Results obtained by Sethi et al.



22 ANDREONI LOPEZ ET AL.

5 | CONCLUSION
CATRACA system proposed a virtualized network function for real-time and offline threat detection. We perform
threat detection usingmachine learning algorithms running on a stream processing platform. The proposed system
achieves threat analysis on incoming traffic in real time or on a historical base in differentiated time. CATRACA runs
in two different modes online and offline. Thus, we applied three different uses cases. The first use case analyzes and
characterizes a network operator big dataset. The second use case performs traffic classification under three different
security datasets. Finally, the last use case shows the behavior of CATRACAwhen dealing with stream data in real time.
Our systemwas able to adapt the classifiers under concept drifting, a change in the relationships between the created
model and output data. The system runs onOPNFV open source platform as a virtual network function and displays
the knowledge extracted from the enriched data through a friendly graphical interface for viewing different analyses
and the geographical location of the source and destination of the threats in real time. The system can be obtained at
http://www.gta.ufrj.br/catraca, where the user manual, which details the procedures of installation and use of
the system, the documentation, which allows understanding the project andmore details about the system code, as well
as other useful information are provided.
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