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ARTICLE

Survival probability of stochastic processes
beyond persistence exponents
N. Levernier1, M. Dolgushev 2, O. Bénichou2, R. Voituriez2,3 & T. Guérin4

For many stochastic processes, the probability SðtÞ of not-having reached a target in

unbounded space up to time t follows a slow algebraic decay at long times, SðtÞ � S0=t
θ . This

is typically the case of symmetric compact (i.e. recurrent) random walks. While the per-

sistence exponent θ has been studied at length, the prefactor S0, which is quantitatively

essential, remains poorly characterized, especially for non-Markovian processes. Here we

derive explicit expressions for S0 for a compact random walk in unbounded space by

establishing an analytic relation with the mean first-passage time of the same random walk in

a large confining volume. Our analytical results for S0 are in good agreement with numerical

simulations, even for strongly correlated processes such as Fractional Brownian Motion, and

thus provide a refined understanding of the statistics of longest first-passage events in

unbounded space.
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In order to determine the time it takes for a random walker to
find a target, or the probability that a stochastic signal has not
reached a threshold up to time t, it is required to analyse the

first-passage time (FPT) statistics. This has attracted considerable
attention from physicists and mathematicians in the last dec-
ades1–6 notably because of the relevance of FPT related quantities
in contexts as varied as diffusion controlled reactions, finance,
search processes, or biophysics7,8.

A single-target first-passage problem is entirely characterized
by the so-called “survival probability” SðtÞ (the probability that
the target has not been reached up to time t), or equivalently by
the FPT distribution FðtÞ ¼ �∂tSðtÞ. For a symmetric random
walk in a confined domain, the mean FPT is in general finite and
has been studied at length. This led recently to explicit results for
broad classes of stochastic processes2,9–12. The opposite case of
unconfined random walks is drastically different. In this case,
either the walker has a finite probability of never finding the
target (non-compact random walks), or it reaches it with prob-
ability one (compact random walk) and the survival probability
decays algebraically with time, SðtÞ � S0=t

θ , with θ the persis-
tence exponent that does not depend on the initial distance to the
target. In this case the mean FPT is often infinite so that the
relevant observable to quantify FPT statistics is the long-time
algebraic decay of the probability SðtÞ that the target has not been
reached up to t. This, additional to the fact that θ can be non-
trivial for non-Markovian random walks, has triggered a con-
siderable amount of work to characterize the persistence expo-
nent θ in a wide number of models of non-equilibrium statistical
mechanics. Indeed, SðtÞ is an essential observable to quantify the
kinetics of transport controlled reactions and the dynamics of
coarsening in phase transitions in general13,14.

However, if one aims to evaluate the time t to wait for
observing a first-passage event with a given likelihood, or to
determine the dependence of the survival probability on the
initial distance to the target, one needs to know the prefactor S0,
which turns out to be much less characterized than the persis-
tence exponent θ. Even for Markovian random walks this pro-
blem is not trivial15, as exemplified by recent studies for one-
dimensional Levy flights16, while only scaling relations for S0
(with the initial distance to the target) are known17 in fractal
domains. However, if the dynamics of the random walker results
from interactions with other degrees of freedom, the process

becomes non-Markovian and the determination of S0 becomes
much more involved18. In this case, the only explicit results are
derived from perturbation expansion around Markovian
processes19,20, or have been obtained for particular processes such
as “run and tumble” motion (driven by telegraphic noise21) or the
random acceleration process22. For long-range correlated pro-
cesses, such as fractional Brownian Motion, the existence of S0 is
not even established rigourously15,23, and it has been found that
straightforward adaptation of Markovian methods can lead to
order-of-magnitude overestimations of S0 and even to erroneous
scalings24.

In this article, we rely on a non-perturbative strategy to
determine S0, which is of crucial interest to quantify the statistics
of long FPT events. Our main result is a relation between the
prefactor S0 in the long-time survival probability in free space and
the mean FPT for the same process in a large confining volume.
Our formula thus shows how to make use of the wealth of explicit
results obtained recently on first-passage properties in
confinement2,9,10,25 to determine the decay of the free-space
survival probability. This formula is shown to be robust and holds
for Markovian or non-Markovian processes with stationary
increments, that are scale invariant at long times with diverging
moments of the position, in one or higher spatial dimensions, and
also for processes displaying transient aging (i.e., processes with
finite memory time, whose initial state is not stationary, see
below). This theory is confirmed by simulations for a variety of
stochastic processes, including highly correlated ones such as
Fractional Brownian Motion.

Results
Markovian case. We consider a symmetric random walker of
position rðtÞ moving on an infinite discrete lattice (potentially
fractal) of dimension df (see Fig. 1a for the continuous space
counterpart) in continuous time t, in absence of external field.
The initial position is r0. We assume that the increments are
stationary (no aging), which means in particular that σðt; τÞ �
hjrðt þ τÞ � rðtÞj2i is independent of the elapsed time t. Note that
in the case of fractal spaces, we use the standard “chemical”
distance defined as the minimal number of steps to link two
points on the lattice. We define the walk dimension dw such that
σðt; τÞ / τ2=dw for τ ! 1. Note that (i) this scale invariance is

a b

Fig. 1 First-passage problem with or without confinement. Two first-passage problems in which a random walker starting from a given site (green square)
reaches a target (red disk) at the end of a stochastic trajectory: a in free space, b in a confined reflecting domain. Sample trajectories for fractional
Brownian motion (H ¼ 0:45) are shown
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assumed only at long times, and that (ii) it implies that all even
moments of the position diverge with time. We assume dw>df so
that the process is compact26,27 (and eventually reaches any point
with probability one). We also introduce the Hurst exponent
H ¼ 1=dw.

We first consider the case of Markovian (memoryless) random
walks. One can then define a propagator pðr; tjr0Þ, which
represents the probability to observe the walker at site r at time
t given that it started at r0 at initial time. Note that p is defined in
absence of target. We now add an absorbing target at site r ¼ 0
(different from r0). We start our analysis with the standard
renewal equation1,18,28:

pð0; tjr0Þ ¼
Z t

0
dτFðτ; r0Þpð0; t � τj0Þ; ð1Þ

which relates the propagator p to the FPT distribution F that
depends on r0. This equation is obtained by partitioning over the
FPT to the target, and can be rewritten in Laplace space as

epð0; sjr0Þ ¼ eFðs; r0Þepð0; sj0Þ; ð2Þ
where eFðsÞ ¼ R1

0 dtFðtÞe�st stands for the Laplace transform of
FðtÞ. Here, we only focus on the long-time behavior of FðtÞ, that
can be obtained by expanding Eq. (2) for small s. Scale invariance
at long times implies27 that for any site r

pð0; tjrÞ �
t!1

K=tdf =dw ; ð3Þ
where the notation “�” represents asymptotic equivalence, and K
is a positive coefficient. Note that K is known to be position
independent and is well characterized (at least numerically) for a
large class of stochastic processes, including diffusion in a wide
class of fractals17, 29–31. We find that the small-s behavior of the
propagator is

K Γð1� df
dw
Þ

s1�df =dw
� epð0; sjrÞ �

s!0

Z 1

0
dt

K

tdf =dw
� pð0; tjrÞ

� �
; ð4Þ

where Γð�Þ is the Gamma function. Eqs. (2) and (4) (written for
r ¼ 0 and r ¼ r0) lead to

1� eFðs; r0Þ �
s!0

Z 1

0
dt pð0; tj0Þ � pð0; tjr0Þ½ � s1�df =dw

K Γ 1� df
dw

� � : ð5Þ

Taking the inverse Laplace transform (and using FðtÞ ¼ � _S)
leads to SðtÞ � S0=t

θ with θ ¼ 1� df =dw (as found in ref. 17),
and to

S0 ¼
sinðπdf =dwÞ

Kπ

Z 1

0
dt pð0; tj0Þ � pð0; tjr0Þ½ �: ð6Þ

This expression is exact and characterizes the decay of the
survival probability of unconfined scale invariant Markovian
random walks.

We now consider the target search problem for the same
random walk, with the only difference that it takes place in a
confining volume V (that is equal to the number of sites N in our
discrete formulation) (see Fig. 1b). For this problem, the mean
FPT hTi is in general finite and it is known that it scales linearly
with the volume and reads2,9

hTi
V

�
V!1

Z 1

0
dt pð0; tj0Þ � pð0; tjr0Þ½ �: ð7Þ

We recognize in the above expression the time integral of
propagators appearing in Eq. (6), leading to

S0 ¼
sinðπdf =dwÞ

π K
T; with T ¼ lim

V!1
hTi=V: ð8Þ

Hence, for compact Markovian random walks, we have identified
a proportionality relation between the prefactor S0 that
characterizes the long-time survival probability in free space
and the rescaled mean FPT to the target in unconfined space. The
proportionality coefficient involves the walk dimension dw and
the coefficient K which characterizes the long-time decay of the
propagator (see Eq. (3)). Formula (8) is the key result of this
paper. As we proceed to show, it is very robust and is not limited
to Markovian walks.

As a first application, consider the case of scale invariant
Markovian random walks (such as diffusion on fractals), for which

it was shown32 that T ’ r
dw�df
0 , where the mean waiting time on a

given site is taken as unity, and r0 is the initial source-target
(chemical) distance. Inserting this formula into Eq. (8) thus leads to

S0 ’
sinðπdf =dwÞr

dw�df
0

π K
: ð9Þ

In this case, we thus recover the scaling result of ref. 17 but in
addition obtain the value of the prefactor. We have checked this
relation for the Sierpinski gasket: simulation results are shown in
Fig. 2a. The long-time persistence is perfectly described by our
formula without any fitting parameter for different source-target
distances, confirming the validity of our approach (see SI for
other examples).

As a second application, we can consider the one-dimensional
Lévy stable process of index α, which is defined as the only
Markovian process whose jump distribution is given by
pðΔx; tÞ ¼ 1=ð2πÞR1

�1eiΔx:k�tjkjαdk. This process, defined in
continuous space, is the continuous time limit of the Lévy Flight
with same index α. Its walk dimension is dw ¼ α and it is
compact for α>1, so that the first passage to a point target is
well defined (note that we consider here the first arrival at the
target, and not the first crossing event33,34). For such a process,
the prefactor S0 for an unconfined random walk starting at
a distance r0 from the target has been shown to be
S0 ¼ α sinðπα=2Þ sinðπ=αÞΓð2� αÞrα�1

0 =ðπΓð1=αÞðα� 1ÞÞ35. By
computing the rescaled MFPT in confinement with Eq. (7), one
can check that the relation (8), which can be readily generalized
to continuous space, is still verified for this process.

Extension to non-Markovian processes. We now relax the
Markov property and generalize our theory to the case of non-
Markovian processes, i.e., displaying memory. In the following,
we argue that the relation (8) yields much more accurate results
for S0 than Markov approximations; it is exact for processes with
finite memory time, and is very precise (even though not exact)
for strongly correlated processes such as the Fractional Brownian
Motion. As the mean FPT in confinement has recently been
characterized for non-Markovian Gaussian processes25, this
equation (8) provides a means to estimate SðtÞ at long times,
beyond persistence exponents, for a wide class of random walks
with memory.

For simplicity, we consider one-dimensional processes and we
switch to continuous space description. The stochastic trajectories
xðtÞ are assumed to be continuous but non-smooth (the method
in fact also applies to compact and not continuous processes, such
as 1d Levy stable processes of index α>1 as discussed above),
mathematically meaning that h _x2i ¼ 1 and physically corre-
sponding to very rough trajectories, similar to those of Brownian
motion. We assume that the increments of the walk are stationary
(meaning that there is no aging, even transient (In particular, the
case of continuous time random walks (CTRWs) is not directly
covered by our analysis; persistence exponents and prefactors for
CTRWs can be obtained from the subordination principle)). This
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hypothesis is known to have two consequences: (i) the persistence
exponent for the unconfined problem is exactly given by
θ ¼ 1� 1=dw

14,15,23,36–38; (ii) the mean FPT for the confined
problem varies linearly with the confinement volume V , so that T
is finite and has been identified as25:

T ¼
Z 1

0
dt ½pπð0; tÞ � pð0; tÞ�: ð10Þ

Here, pð0; tÞ is the probability density of x ¼ 0 at a time t after
the initial state (where xð0Þ ¼ r0), and pπð0; tÞ denotes the

probability density of finding the walker on the target at a time t
after the first-passage:

pπð0; tÞ ¼
Z 1

0
dτ pð0; t þ τjFPT ¼ τÞFðτ; r0Þ; ð11Þ

where pð0; t þ τjFPT ¼ τÞ is the probability density of x ¼ 0 at
time t þ τ, given that the FPT is τ.

The starting point to relate T to S0 consists in writing the
generalization of Eq. (1) to non-smooth non-Markovian
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Fig. 2 Survival probability SðtÞ for various stochastic processes. In all graphs, symbols are the results of stochastic simulations (detailed in SI), continuous
lines give the theoretical predictions (Eq. (18)), and dashed line represent the predictions of the pseudo-Markovian approximation (The pseudo-Markovian
approximation, which is similar to the Wilemski–Fixman approximation for the polymer cyclization kinetics problem, consists in using effective propagators
in Eq. (18), i.e pðx; tjx0Þ ¼ e�ðx�x0Þ2=2ψðtÞ=ð2πψðtÞÞd=2.). a SðtÞ for a random walk on the Sierpinski gasket for two values of the initial (chemical) source-
target distance. Here, df ¼ ln3=ln2, dw ¼ ln5=ln2, and K ’ 0:3031. Simulations are shown for a fractal of generation 11. Continuous lines are the predictions
of Eq. (9). b SðtÞ for a one-dimensional “bidiffusive” Gaussian process of MSD ψðtÞ ¼ tþ 30ð1� e�tÞ. c SðtÞ for a one-dimensional Rouse chain with
N ¼ 20 monomers, for various source-to-target distance r0 (indicated in the legend in units of the monomer length). d SðtÞ for the same system with
N ¼ 15 and r0 ¼ 3, comparing stationary initial conditions (the other monomers being initially at equilibrium) or non-stationary ones (for which all
monomers start at the same position r0). e SðtÞ for a one-dimensional FBM of MSD ψðtÞ ¼ t2H with Hurst exponent H ¼ 0:34. f Two-dimensional FBM of
MSD ψðtÞ ¼ t2H in each spatial direction with H ¼ 0:35. The target is a disk of radius a ¼ 1 and r0 is the distance to the target center. For (b), (c), (d), (e),
and (f), the continuous lines represent our predictions (Eq. (18)), in which T is calculated by using the theories of refs. 12,25,48; in (b) and (c) the only
hypothesis to predict T is that the distribution of supplementary degrees of freedoms at the FPT is Gaussian, in (e) and (f) we use the additional “stationary
covariance” approximation. In (d), for non-stationary initial conditions, T is measured in simulations in confined space. A table that compares the values of
S0 in the theory and in the simulations is given in SI
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processes:

pð0; tÞ ¼
Z t

0
dτFðτ; r0Þpð0; tjFPT ¼ τÞ: ð12Þ

To proceed further, we insert into Eq. (10) the expressions (11)
and (12) of pπð0; tÞ and pð0; tÞ:

T ¼
Z 1

0
dt

Z 1

0
dτ pð0; t þ τ j FPT ¼ τÞ Fðτ; r0Þ

�

�
Z t

0
dτ pð0; t j FPT ¼ τÞ Fðτ; r0Þ

�
:

ð13Þ

To avoid diverging integrals in the change of variables t ¼ uþ τ,
we replace

R1
0 dtð:::Þ by lim

A!1
R A
0 dtð:::Þ, so that

T ¼ lim
A!1

Z A

0
dt

Z 1

A�t
dτFðτ; r0Þpð0; t þ τjFPT ¼ τÞ: ð14Þ

Setting t ¼ uA and τ ¼ vA, we note that when A ! 1, only the
large time behavior are involved in these integrals, where one can
use the asymptotics FðAv; r0Þ � S0θ=ðAvÞ1þθ and

pð0; ðuþ vÞAjFPT ¼ vAÞ �
A!1

KGðu=vÞ
ðAuÞ1=dw

; ð15Þ

which is a form imposed by dimensional analysis. As previously,
K is the constant which characterizes the long-time behavior
of the one point probability distribution function (i.e.,
pðx; tÞ �

t!1K=t1=dw ), G is a scaling function, with Gð1Þ ¼ 1,

that does not depend on the geometrical parameters of the
problem. Inserting these asymptotic behaviors into Eq. (14),
we get:

T ¼ lim
A!1

A1�θ�1=dw K
Z 1

0
du

Z 1

1�u
dv

θ S0
vθþ1

Gðu=vÞ
u1=dw

: ð16Þ

The fact that the above integral exists and is finite leads to the
(known) relation θ ¼ 1� 1=dw. This finally leads to the exact
relation:

S0 ¼
T

Kð1� 1=dwÞ
Z 1

0
du

Z 1

1�u
dv

Gðu=vÞ
u1=dwv2�1=dw

� ��1

: ð17Þ

We stress that the dependency of S0 on the source-to-target
distance, even when not trivial, is entirely contained in the term
T . Indeed, the scaling function G depends only on the large scale
properties of the random walk and not on the geometrical
parameters.

While the exact determination of G is a challenging task, the
following decoupling approximation turns out to be very
accurate. In this approximation, the return probability to the
target at a time t after the first-passage time is independent of the
actual value of the FPT, which leads to pð0; t þ τjFPT ¼ τÞ ’
pπðtÞ for self-consistence reason. Within this decoupling
approximation, G ’ 1 and we obtain

S0 ’
sinðπ=dwÞ

Kπ
T; ð18Þ

which generalizes Eq. (8) to non-Markovian processes. We now
comment on the validity of this key relation.

First, we stress that Eq. (18) is exact for processes with finite
memory time (i.e. for which the correlation function of increments
decays exponentially at long times). This comes from the very
definition of the function G, which involves only large time scales
in Eq. (15), over which this finite memory time becomes
irrelevant. This case is illustrated here by considering a Gaussian
process whose Mean Square Displacement function ψðtÞ ¼
h½xðt þ τÞ � xðτÞ�2i is given by ψðtÞ ¼ Dt þ Bð1� e�λtÞ. This

“bidiffusive” process involves two diffusive behaviors at long and
short time scales, and presents only one relaxation time λ�1. This
is typically relevant to tracers moving in viscoelastic Maxwell
fluids39, nematics40, or solutions of non-adsorbing polymers41.
We also consider the effect of multiple relaxation times with the
case that xðtÞ is the position of the first monomer of a flexible
polymer chain with N monomers, in the most simple (Rouse,
bead-spring) polymer model. We use recently obtained estimates
of T in ref. 25 to obtain estimates of S0 through Eq. (18) and
compare with numerical simulations in Fig. 2b, c. We also
compare with a pseudo-Markovian approximation (using Eq. (6)
with effective “propagators” (The pseudo-Markovian approxima-
tion, which is similar to the Wilemski–Fixman approximation
for the polymer cyclization kinetics problem, consists in
using effective propagators in Eq. (18), i.e., pðx; tjx0Þ ¼
e�ðx�x0Þ2=2ψðtÞ=ð2πψðtÞÞd=2.)). Our prediction for S0 is in good
agreement with numerical simulations, and shows that even if the
memory time is finite, memory effects are strong.

Second, it is showed in SI that Eq. (18) is also exact at first
order in ε ¼ H � 1=2 for the fractional Brownian motion (FBM),
which is an emblematic example of processes with infinite
memory time. The FBM is used in fields as varied as hydrology42,
finance43, and biophysics44,45. This Gaussian process is char-
acterized by ½xðt þ τÞ � xðtÞ�2� 	 ¼ κτ2H , with 0<H<1.

Third, in the strongly non-Markovian regime, where ε cannot
be considered as small, it turns out that Eq. (18) provides a very
accurate approximation (Fig. 2e) of S0, which takes the explicit
form

S0 ¼ βH sinðπHÞ
ffiffiffi
2
π

r
r0
κ1=2

� � 1
H�1

ð19Þ

where βH is a function of H analyzed in ref. 25. It can indeed be
seen in Fig. 2e that Eq. (18) correctly predicts the long-time
behavior of SðtÞ when H ¼ 0:34. For this value, non-Markovian
effects are strong, as can be seen by comparing with the
prediction of the pseudo-Markovian approximation, which is
wrong by more than one order of magnitude (Fig. 2e, dashed
line). The value of S0 is slightly underestimated in the decoupling
approximation, but can be made more precise by evaluating the
scaling function G (see SI).

Furthermore, our approach also holds in dimension higher
than one, even for strongly correlated non-Markovian processes.
Indeed, the d�dimensional version of Eq. (18) (i.e., Eq. (8))
correctly predicts (but slightly underestimates) the value of S0 for
an example of two-dimensional FBM (Fig. 2f). In this example,
the target radius a is not zero even if the a ! 0 limit is well
defined for compact processes; the dependence of S0 on the target
radius is predicted to be the same as that of T , which is available
in the non-Markovian theory of ref. 25. Finally, in the case of
processes with finite memory, we find that Eq. (18) also holds for
non-stationary initial conditions. This is illustrated by consider-
ing the case of a flexible phantom polymer for which all
monomers are placed initially at r0 (instead of having the shape of
a random equilibrium coil for stationary initial conditions). This
non-stationary initial condition induces transiently aging
dynamics, and S0 is changed with respect to the case of stationary
initial conditions, but is still predicted correctly by Eq. (18) (see
Fig. 2d).

Finally, let us mention the case of the one-dimensional run and
tumble process, where a particle switches between phases of
constant velocities ± v with rate α. This process is smooth and is a
priori not covered by our analysis. However, our relation (18)
between S0 and T=V is still exact, as is made clear by comparing
the results for the mean FPT in confinement21 and in
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semi-infinite space46. This agreement holds even for non-
stationary initial conditions, where the probability p that the
initial velocity is positive differs from 1=2: in this case, one can
obtain S0 ¼ ðr0 þ pv=αÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α=ðπv2Þp ¼ T=ðKπÞ, with
K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α=ð2πv2Þp
, and we can check that our relation still

holds21,46. Furthermore, it also holds in the case of partially
reflecting targets, as can be deduced from the results of ref. 47.
This suggests that our analysis can be extended to smooth non-
Markovian processes with partial absorption as well.

Discussion
The determination of the survival probability SðtÞ, and in parti-
cular its dependence on the initial distance to the target, requires
the knowledge of its prefactor S0, which has remained an elusive
quantity up to now. In this article, we have bridged this gap by
identifying a general relation between the long-time persistence
and the mean FPT in confinement. The latter can be calculated
with various recently introduced methods, for a large class of
Markovian2,10,11 and non-Markovian random walks25. Our the-
ory holds for compact, unbiased walks with stationary increments
that are scale invariant at long times (without confinement), with
moments of the position that diverge with time. Our main result
is Eq. (8), which is exact for both Markovian processes (such as
diffusion in fractals) and for non-Markovian processes with finite
memory time (for which memory effects are nevertheless quan-
titatively non-negligible). For long-ranged correlated processes
such as FBM our formula provides a good approximation of S0 in
one or higher dimensions, and is found to be exact at first order
in a perturbation expansion around Brownian motion. Together,
our results thus improve our understanding of the impact of
memory on the statistics of long first-passage events.

Data availability
The numerical data presented in Fig. 2 are available from the corresponding author on
reasonable request.

Code availability
The code that generated these data are available from the corresponding author on
reasonable request.
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