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Introduction

NMR relaxation is one of the most effective experimental methods for investigations of the local mobility of macromolecules [START_REF] Kimmich | Polymer chain dynamics and NMR[END_REF][START_REF] Kimmich | NMR: tomography, diffusometry, relaxometry[END_REF]. Professor Gotlib, as a pioneer of the theoretical polymer physics, did an immense contribution to the development of the theory of orientanional mobility in various polymeric systems. Starting investigations in this field with polymer chains [START_REF] Anufrieva | Polarized luminescence study of intramolecular mobility of macromolecules in solution[END_REF][START_REF] Anufrieva | Study by polarized luminescence method of molecular-weight dependence of rotational mobility of macromolecules in solution[END_REF][START_REF] Anufrieva | Polarized luminescence for longitudinal components of radiation oscillators in the main chain of labelled macromolecules (polymethyl methacrylate)[END_REF][START_REF] Gotlib | Proton magnetic relaxation in concentrated polystyrene solutions[END_REF][START_REF] Gotlib | Proton magnetic relaxation in concentrated polymethylmethacrylate solutions[END_REF][START_REF] Torchinskii | Effect of internal friction on the polarized luminescence of solutions of macromolecules with luminescent markers in the main chain[END_REF][START_REF] Gotlib | Relaxation time spectra and relations of polarization luminescence of macromolecules with luminescent tracers[END_REF][START_REF] Anufrieva | Polarized luminescence as used for analyses of high frequency twisting vibrations in macromolecules[END_REF][START_REF] Gotlib | Effect of the network of hydrogen bonds on proton magnetic relaxation in solutions of copolymers of acrylic and methacrylic acids with styrene[END_REF][12][START_REF] Gotlib | Distribution of the correlation times and patterns of 13C nuclear magnetic relaxation and the Overhauser effect[END_REF][START_REF] Gotlib | Anisotropy of local relaxation properties of macromolecules. polarized luminescence[END_REF][START_REF] Gotlib | Anisotropy of local relaxation properties of macromolecules. spin-lattice relaxation of 13C nuclei, the nuclear Overhauser effect and the estimation of parameters of an equivalent ellipsoid for kinetic segments of polymer chains[END_REF][START_REF] Gotlib | Model theories of the interaction between structural and local orientational relaxation processes in polymeric systems[END_REF][START_REF] Gotlib | Interplay between internal friction and local macromolecular dynamics[END_REF][START_REF] Gotlib | Spin-lattice proton relaxation and the dynamics of polymer chains in the gels of cross-linked polystyrene[END_REF][START_REF] Gotlib | Nuclear magnetic relaxation in cross-linked poly (fluoroalkyl acrylates). local orientational order in side chains[END_REF][START_REF] Gotlib | Spin-lattice relaxation and the nuclear overhauser effect in macromolecules with finite thermodynamic rigidity[END_REF][START_REF] Gotlib | Spin-lattice relaxation and nuclear Overhauser effect in macromolecules with finite thermodynamic rigidity: Comparison of the longitudinal and transverse correlation time spectra[END_REF], he has also studied more complex systems like polymer networks [START_REF] Shevelev | Cooperative dynamics of macromolecules in polymer networks and spin-lattice relaxation, Vysokomol[END_REF][START_REF] Gotlib | The influence of the chemical crosslinking network on the spin-spin relaxation of crosslinked and swelling polymer systems[END_REF][START_REF] Gotlib | Theory of the relaxation spectra of polymer networks with included hard rodlike particles manifested in NMR[END_REF][START_REF] Gotlib | Rotational and translational relaxation times of quasi-elastic and rigid dumbbells elastically bound to polymer network junctions[END_REF][START_REF] Toshchevikov | Theory of relaxation spectra and dielectric relaxation of rigid rodlike particles incorporated in a polymer network[END_REF][START_REF] Gotlib | The viscoelastic coarse-grained dynamic model of the polymer network with embedded rod-like particles. relaxation spectra and mobility of different scales[END_REF] and dendritic macromolecules [START_REF] Gotlib | Permittivity of a dendrimer containing polar groups[END_REF][START_REF] Gotlib | Theory of orientational relaxation of individual specified units in a dendrimer[END_REF][START_REF] Markelov | Local orientational mobility in dendrimers. theory and computer-aided simulation[END_REF][START_REF] Markelov | Orientational mobility and relaxation spectra of dendrimers: Theory and computer simulation[END_REF][START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF]. The significant part of these works has been devoted namely to the role of orientational mobility for the NMR relaxation [6, 7, 11-13, 15, 18-24, 31, 32].

Dendrimers are macromolecules with a specific relaxation spectrum. This feature has led to a quite intricate way in the development of the theory of their NMR relaxation (see, e.g., a recent review [START_REF] Markelov | NMR relaxation in dendrimers[END_REF]). The studies [START_REF] Cai | Rouse dynamics of a dendrimer model in the θ condition[END_REF][START_REF] Gotlib | Theory of the relaxation spectrum of a dendrimer macromolecule[END_REF][START_REF] Gurtovenko | Dynamics of dendrimer-based polymer networks[END_REF] devoted to the relaxation spectrum of a dendrimer have put forward the theory of these macromolecules. In the work of Ref. [START_REF] Gotlib | Theory of orientational relaxation of individual specified units in a dendrimer[END_REF] by Gotlib and some of us, the first steps have been done toward the theory of relaxation of local orientation in dendrimers. It has been established that the relaxation of segemental reorientations can be described by two main processes: by the local-scale mobility with an average time of the so-called inner spectrum that is independent of the dendrimer's size and by the overall relaxation (pulsation) of the branch originated from the labeled segment. Thereby it was shown that the corresponding orientational autocorrelation functions depend only on the distance of the labeled segments from the periphery. These theoretical findings have been confirmed by the Brownian dynamics simulations of dendrimers modeled as freely-jointed segments [START_REF] Markelov | Local orientational mobility in dendrimers. theory and computer-aided simulation[END_REF][START_REF] Markelov | Orientational mobility and relaxation spectra of dendrimers: Theory and computer simulation[END_REF], but it was also shown the importance of an additional contribution of the overall rotation of the dendrimer.

The advances in the theory of local orientational mobility in dendrimers allowed for an investigation of spin-lattice relaxation rates 1/T 1 . In Ref. [START_REF] Markelov | Local orientational mobility in dendrimers. theory and computer-aided simulation[END_REF] it has been shown that for a dendrimer modeled as a flexible macromolecule the maximum of ω/T 1 is determined by the contributions of the local-scale modes related to the inner spectrum of the dendrimer. Therefore this maximum does not depend on the location of the labeled segment in the dendrimer as well as on the size of the macromolecule. However, this conclusion was not supported by the experimental studies [START_REF] Pinto | The dynamics of dendrimers by NMR relaxation: interpretation pitfalls[END_REF][START_REF] Pinto | Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR[END_REF], where the position of the maximum is shifted toward high temperatures (corresponding to low frequencies) for the segments that are closer to the dendrimer's core.

This difference has been overcome by inclusion of the semiflexibility into the classical viscoelastic model based on the framework of Ref. [START_REF] Dolgushev | Dynamics of semiflexible treelike polymeric networks[END_REF]. As has been shown in the joint work with Prof. Gotlib [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF], introduction of the semiflexibility leads to a shift of the maximum of ω/T 1 toward lower frequencies for the segments that are closer to the dendrimer's core. This behavior reflects the fact that inclusion of the semiflexibility leads to a higher contribution of the overall branch relaxation and hence the reorientation of a segment that originates a branch is strongly influenced by the relaxation of that branch. In the following this effect has been confirmed by simulations of semiflexible dendrimers [START_REF] Markelov | Molecular dynamics simulation of spin-lattice NMR relaxation in poly-l-lysine dendrimers: manifestation of the semiflexibility effect[END_REF][START_REF] Markelov | Orientational mobility in dendrimer melts: Molecular dynamics simulations[END_REF][START_REF] Shavykin | Is the manifestation of the local dynamics in the spin-lattice nmr relaxation in dendrimers sensitive to excluded volume interactions?[END_REF].

Interestingly, the presence of bending rigidity screens the contributions of excluded volume interactions to the NMR relaxation, as has been demonstrated in Ref. [START_REF] Shavykin | Is the manifestation of the local dynamics in the spin-lattice nmr relaxation in dendrimers sensitive to excluded volume interactions?[END_REF]. Also it has been shown that the hydrodynamic interactions do not change the qualitative picture [START_REF] Dolgushev | Local NMR relaxation of dendrimers in the presence of hydrodynamic interactions[END_REF]. Thus, for dendrimers the viscoelastic model extended by inclusion of bending rigidity can fairly describe the local orientational mobility manifested by the NMR relaxation.

The remoteness of the segments from the periphery is also fundamental for other types of macromolecules. In particular this has been observed for the dielectric relaxation of flexible Vicsek fractals [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF]. The goal of this work is to consider the role of segments' reorientation for the NMR relaxation of fractal hyperbranched macromolecules (modeled in form of Vicsek fractals). For the reasons discussed above the inclusion of semiflexibility is indispensable, and as we proceed to show, it plays a fundamental role. In this work we obtain spectral densities (which determine many NMR relaxation functions) for semiflexible Vicsek fractals and confront them to those of the flexible Vicsek fractals. Also we discuss the differences between NMR relaxation in dendrimers and hyper-branched fractals.

The paper is organized as follows. After a brief recall of the architecture of Vicsek fractals, of the main ingredients of the framework of semiflexible treelike polymers, and of the functions related to the relaxation of segmental reorientation, we consider these functions for the segments located in different places in semiflexible Vicsek fractals. The paper is closed by conclusions.

The Model

Vicsek Fractals

Vicsek fractals [START_REF] Vicsek | Fractal models for diffusion controlled aggregation[END_REF] (VF) are regular structures that enjoy a growing popularity for the last few decades [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF]. In Figure 1 we show a VF at generation G = 3. Moreover, its branching points have functionality (coordination number) F (in Figure 1 it is F = 4). The VF of the next generation is constructed from F + 1 VF of the previous generation. Thus, a VF at generation G consists of N = (F + 1) G beads. Changing functionality F allows one to manipulate the scaling properties of the structures. For Gaussian-distributed interbead distances one obtains the F -dependent fractal dimension d f = 2 log(F + 1)/ log(3) [START_REF] Blumen | Generalized Vicsek fractals: Regular hyperbranched polymers[END_REF]. Hence for F = 3 and F = 4 the fractal dimension is equal to d f ≈ 2.52 and d f ≈ 2.93, respectively, and the VF can be embedded into the three-dimensional space. Note that the first value (d f ≈ 2.52) is very close to that (2.5) found for the quickly grown hyperbranched polymers under the good solvent condition [START_REF] Jurjiu | Two universality classes for random hyperbranched polymers[END_REF] and for the self-avoiding trees under the theta condition [START_REF] Madras | Monte carlo study of the θ-point for collapsing trees[END_REF][START_REF] Janssen | Collapse transition of randomly branched polymers: Renormalized field theory[END_REF]. The second value (d f ≈ 2.93) is close to the value d f = 3 found for the hyperbranched trees with annealed connectivity in the melt [START_REF] Grosberg | Annealed lattice animal model and flory theory for the melt of non-concatenated rings: towards the physics of crumpling[END_REF][START_REF] Rosa | Computer simulations of melts of randomly branching polymers[END_REF]. The regular structure of VF gives a possibility for the calculation of its properties in an iterative way, e.g., the relaxation spectra [START_REF] Blumen | Generalized Vicsek fractals: Regular hyperbranched polymers[END_REF] that is characterized by the spectral dimension [START_REF] Alexander | Density of states on fractals: fractons[END_REF] d s = 2 log(F + 1)/ log(3F + 3). The disordered VF was studied in Ref. [START_REF] Koslowski | Models of irregular hyperbranched polymers: Topological disorder and mechanical response[END_REF]; it was found that while the structural irregularities lead to a smoothing of the relaxation spectrum, the local-scale dynamics reflects the short-range order inherent in the VF.

The framework of semiflexible treelike polymers

Here we briefly recall the framework of semiflexible treelike polymers (STP), see Ref. [START_REF] Dolgushev | Dynamics of semiflexible treelike polymeric networks[END_REF] for the general approach and Ref. [START_REF] Fürstenberg | Dynamics of semiflexible regular hyperbranched polymers[END_REF] for the particular case of semiflexible VF (SVF).

The main idea of the STP framework lies in the description of a polymer tree through Gaussian-distributed segments {d i } of the mean-square length 2 , whose orientations are constrained in an average way. In particular, for the adjacent bonds (say d i and d j attached to each other by bead m) one takes

d i • d j = ± 2 q m ,
where q m is the stiffness parameter. If q m = 0, there is no correlation between the segments (so that the junction m is then flexible) and its upper bound depends on the coordination number F m of the mth bead and is given by 1/(F m -1) [START_REF] Dolgushev | Dynamics of semiflexible treelike polymeric networks[END_REF][START_REF] Mansfield | Unperturbed dimensions of wormlike stars[END_REF]. If the segments are connected through the path

d k1 , ..., d ks , the relation d i • d j = d i • d k1 d k1 • d k2 • • • d ks • d j -2s in spirit
of the freely-rotating chain is taken. Thus, we have a full covariance matrix

Σ = ( d i • d j )
for the Gaussian distribution of {d i }, that leads according to the Boltzmann distribution to the potential energy

V = 3 2 k B T i,j (Σ -1 ) ij d i • d j = 3k B T 2 2 m,n A nm r n • r m . (1) 
In the rhs of Eq. ( 1) we have introduced the positions {r m } of the beads that are related to the segments by

d j ≡ k (G T ) jk r k , (2) 
with the matrix G, which has elements either G nj = -1 or G mj = 1 (if segment d j points from bead n to m) and zero otherwise. Moreover, the matrix A = (A nm ) is related to the matrices G and Σ by A = 2 GΣ -1 G T . Strikingly, for the treelike polymers A of Eq. ( 1) has an analytic structure: The diagonal element of A for a bead of functionality F connected to beads of functionalities F 1 , . . . , F F (with corresponding stiffness parameters q F and q Fs ) is

F 1 -(F -1)q F + F s=1 (F s -1)q 2 Fs 1 -(F s -2)q Fs -(F s -1)q 2 Fs . (3) 
The nearest neighboring beads of functionalities F 1 and F 2 lead to

- 1 -(F 1 -1)(F 2 -1)q F1 q F2 (1 -(F 1 -1)q F1 )(1 -(F 2 -1)q F2 ) (4) 
and two next-nearest neighboring beads connected through a bead of function-

ality F to q F 1 -(F -2)q F -(F -1)q 2 F . (5) 
All other elements of A are zeros. The proof of the general structure of A can be found in Ref. [START_REF] Dolgushev | Dynamics of semiflexible treelike polymeric networks[END_REF]. The analysis of its spectrum for the case of VF is given in Ref. [START_REF] Fürstenberg | Dynamics of semiflexible regular hyperbranched polymers[END_REF].

With the potential of Eq. ( 1) we can study the dynamics of STP, based on the set of Langevin equations

ζ ∂ ∂t r k (t) + 3k B T 2 n A kn r n = g k (t). (6) 
Here the first term expresses the friction force with the friction constant ζ and the last term is the zero-mean white-noise force that obeys the fluctuationdissipation theorem, g αk (t)g βn (t ) = 2k B T ζδ αβ δ kn δ(t -t ) (α and β denote the Cartesian components). Thus, the solution of the set (6) lies in the diagonalization of matrix A, Q -1 AQ = Λ, where Λ is the diagonal matrix consisting of the eigenvalues {λ i } of A.

Relaxation of segments' reorientations

Based on the solution of Eq. ( 6) and on the transformation of Eq. ( 2), we can straightforwardly obtain the bond-bond autocorrelation function M a 1 (t). The result reads:

M a 1 (t) ≡ d a (t) • d a (0) / 2 = λ C a λ exp[-t/τ λ ], (7) 
where the sum runs over the distinct nonvanishing eigenvalues λ and the corresponding relaxation times are

τ λ = ζ 2 /(3k B T λ) = τ 0 /λ. Moreover, the coeffi- cient C a λ is given by C a λ = k∈ind EV (λ) (G T Q) ak 2 /λ, (8) 
where k belongs to the indices of the eigenvector(s) to eigenvalue λ.

For Gaussian-distributed {d a }, the second Legendre polynomial,

P a 2 (t) ≡ 1 2 3 (d a (t) • d a (0)) 2 |d a (t)| 2 |d a (0))| 2 -1 , (9) 
can be expressed analytically based on M a 1 (t) [START_REF] Khazanovich | Theory of nuclear magnetic relaxation in liquid-phase polymers[END_REF][START_REF] Perico | Viscoelastic relaxation of segment orientation in dilute polymer solutions[END_REF] and written in a compact form [START_REF] Perico | Viscoelastic relaxation of segment orientation in dilute polymer solutions[END_REF],

P a 2 (t) = 1 -3 x 2 - π 2 x 3 1 - 2 π arctan(x) , (10) 
with x = 1 -(M a 1 (t)) 2 /M a 1 (t).
The spectral density J(ω), that is related to the second Legendre polynomial P a 2 (t) by

J(ω) = P a 2 (t) e -iωt dt, (11) 
is directly involved in the NMR relaxation functions (such as the spin-lattice relaxation time T 1 , see Refs. [START_REF] Kimmich | Polymer chain dynamics and NMR[END_REF][START_REF] Kimmich | NMR: tomography, diffusometry, relaxometry[END_REF][START_REF] Abragam | The principles of nuclear magnetism[END_REF][START_REF] Chizhik | Magnetic resonance and its applications[END_REF]). We note, however, the situation with the spin-spin relaxation time T 2 is more complex due to the typically nonexponential dependence of the free induction decay [START_REF] Fatkullin | Signature of reptation in the longtime behavior of the deuteron NMR free induction decay in high molecular mass polymer melts[END_REF].

Results

Segmental autocorrelation function

The time-dependent autocorrelation functions M a 1 (t) are calculated using Eq. [START_REF] Gotlib | Proton magnetic relaxation in concentrated polymethylmethacrylate solutions[END_REF]. Here, as in our previous work [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF] dedicated to the dielectric relaxation of flexible VF (FVF), we consider the relaxation of reorientation of the core segments belonging to different shells, see Fig. 1. This choice also enables us to make a qualitative comparison of the results for VF with the behavior of segments in dendrimers [START_REF] Gotlib | Permittivity of a dendrimer containing polar groups[END_REF][START_REF] Gotlib | Theory of orientational relaxation of individual specified units in a dendrimer[END_REF][START_REF] Markelov | Local orientational mobility in dendrimers. theory and computer-aided simulation[END_REF][START_REF] Markelov | Orientational mobility and relaxation spectra of dendrimers: Theory and computer simulation[END_REF][START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF]. In case of semiflexible VF (SVF) the stiffness parameters are q lin = 0.9 for the linear junctions and q br = q lin /(F -1) for the branching points.

As in the case of dendrimers [START_REF] Gotlib | Theory of orientational relaxation of individual specified units in a dendrimer[END_REF][START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF], the functions M a 1 (t) corresponding to the segments with the same index m (i.e., having the same distance from the periphery), are independent of size G both for FVF and SVF, see Fig. 2.

As for dendrimers [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF], it is convenient to analyze this effect by looking at the contributions C λ (Eq. ( 8) and Fig. 3) of the relaxation times τ λ . The relaxation spectrum of a VF can be distributed in two groups [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF][START_REF] Fürstenberg | Dynamics of semiflexible regular hyperbranched polymers[END_REF]. The first group, the inner spectrum, is related to the local-scale motion and it depends weakly on the macromolecular size. This group of the relaxation times is analogous to the intrachain relaxation spectrum in networks related to the relaxation of a linear spacer inside network's cell [START_REF] Gurtovenko | Intra-and interchain relaxation processes in meshlike polymer networks[END_REF]. The second group of the spectrum can be interpreted as the pulsation (or overall branch relaxation) spectrum of a dendrimer [START_REF] Cai | Rouse dynamics of a dendrimer model in the θ condition[END_REF][START_REF] Gotlib | Theory of the relaxation spectrum of a dendrimer macromolecule[END_REF][START_REF] Gurtovenko | Dynamics of dendrimer-based polymer networks[END_REF]. However, for FVF the pulsating modes are exited not only for the subbranches but also for the inner parts of the macromolecule [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF][START_REF] Blumen | Generalized Vicsek fractals: Regular hyperbranched polymers[END_REF].

In case of SVF, the pulsating modes are exited only for the subbranches [START_REF] Fürstenberg | Dynamics of semiflexible regular hyperbranched polymers[END_REF].

Therefore the corresponding times τ br m have slightly different multiplicities for FVF and SVF [START_REF] Fürstenberg | Dynamics of semiflexible regular hyperbranched polymers[END_REF]. These times have significant contributions C a λ to the decay of M a 1 (t), see Fig. 3. The presence of stiffness leads to a slowing down of the decay of M a 1 (t) in comparison with FVF (see Fig. 2). As for dendrimers [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF], this is related to the suppression of the small-scale mobility due to the bending rigidity and to the corresponding increase of the contributions related to the slow modes, see Fig. 3. Moreover, the times τ br m are much larger for SVF than those for FVF. Also we note an interesting fact, that increasing m leads for SVF to a spreading of the contributions C a λ between different τ br m . While for m = 0 and m = 1 there is a dominating relaxation time with the contribution that is larger than 0.5 (i.e., much larger than all other contributions), for m > 2 the contribution of any relaxation time is not higher than 0.16. Thus, for high m, the width of the part of the spectrum comprising significant relaxation times extends over three to four orders, the finding, which is not shared by the FVF. Hence for SVF there is a quasiplateau of contributions related to the relaxation of branches originating from the segments with indices m, . . . , 1.

Increase of functionality F of the branching units leads to some slowing down of the decay of M a 1 (t), see Fig. 2. This is related to the fact that a branch with more branched beads has a higher molecular weight, so that its overall relaxation takes a longer time. We note that there are more deviations between different F for SVF than for FVF. At the same time the functions M a 1 (t) for the same m and different G remain to be similar also in case of higher F .

Spectral density

In line with the previous works [17-22, 24, 32] we consider the reduced (dimensionless) spectral density

[J(ω)] = ωJ(ω), (12) 
that is also a convenient representaion for the analysis of experimental data [START_REF] Mohamed | Dynamics of PPI dendrimers: A study by dielectric and 2H NMR spectroscopy and by field-cycling 1H NMR relaxometry[END_REF].

In case of FVF the position of the maximum of [J(ω)] does not depend on the parameters of the system; see Fig. 4 for [J(ω)] of FVF of G = 5, F = 3 and 4, m = 0, . . . , 4. This feature corresponds to a huge role for FVF of the localscale modes with the relaxation times between 0.2τ 0 and 0.6τ 0 . These times do not depend on the architectural characteristics of VF. The overall branch relaxation (the so-called pulsating modes in case of dendrimers [START_REF] Gotlib | Theory of the relaxation spectrum of a dendrimer macromolecule[END_REF]) reveals itself at low frequencies. For segments that are closer to the VF center, the left-hand side (low frequency) wing of [J(ω)] becomes broader, that is related to increase of contribution of {τ br m }. Also one can observe an appearance of a non-trivial low-frequency power law, ω 0.8 for F = 3 and ω 0.75 for F = 4. The faster dynamics for lower F is in a qualitative agreement with the dielectric relaxation [START_REF] Dolgushev | Local orientational mobility in regular hyperbranched polymers[END_REF], though the nontrivial mixing of modes (see Eq. ( 10)) deprives us of a simple correspondence of the power laws to the spectral dimension d s of VF.

The function [J(ω)] for SVF has a much richer behavior than that for FVF.

As can be inferred from Fig. 5,[J(ω)] for m = 0 is characterized by a single maximum, at frequency ωτ 0 ≈ 1.76 and ωτ 0 ≈ 2.0 related to the relaxation times τ br 0 = 1.45τ 0 and τ br 0 = 1.3τ 0 for F = 3 and F = 4, respectively. This maximum, as for FVF, is related to the contribution of local-scale modes. For higher m, one observes in [J(ω)] a superposition of several maxima. For m = 1 there is a maximum at ωτ 0 ≈ 0.06 and ωτ 0 ≈ 0.047 related to τ br 1 ≈ 48.5τ 0 and τ br 1 ≈ 54.1τ 0 for F = 3 and F = 4, respectively. For m = 2 there is a left-hand side shoulder at ωτ 0 ≈ 0.003 and ωτ 0 ≈ 0.0028 related to the contribution of τ br 2 ≈ 793τ 0 and τ br 2 ≈ 987τ 0 for F = 3 and F = 4, respectively. For higher values of m the curves saturate on each other, showing that the contributions of τ br 3 or τ br 4 are rather low. Also we cannot find a non-trivial power law, as it was observed by FVF.

In this way, the analysis of [J(ω)] for SVF allows to conclude that the overall branch relaxation times τ br m reveal themselves through superimposed maxima leading to a very broad shape of the spectral density. Consequently, the functions for inner segments, m > 2, overlap practically each other. Thus, these segments do not feel the size of the branch "hanging" on them. This behavior differs from that of dendrimers [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF], where the core segments clearly manifest the size of the "hanging" branch. In Fig. 6 we present a direct comparison of [J(ω)] for SVF and semiflexible dendrimers (SD) [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF][START_REF] Dolgushev | Local NMR relaxation of dendrimers in the presence of hydrodynamic interactions[END_REF] of the same functionality F = 3, generation G = 5, and stiffness parameter q br = 0.45. As can be inferred from the figure, only the peripheral shell (m = 0) shows for both structures nearly the same behavior. All other shells m ≥ 1 have for SVF and SD significantly different spectral densities. For SD the global maximum of [J(ω)] is always at lower frequencies for higher m; there is no saturation for high m as for SVF. Moreover, the global maxima of [J(ω)] for SD have a much narrower shape than those for SVF.

Conclusions

In this study we have investigated the segmental reorientation in fractal macromolecules concentrating on the key function for the NMR relaxation -the spectral density [J(ω)] of the second Legendre polynomial. A particular focus of our investigations has lain on the role of bending rigidity of the macromolecules.

It has been shown that inclusion of the bending rigidity changes tremendously the behavior of [J(ω)]. In case of flexible fractal macromolecules (studied in form of Vicsek fractals (VF)), it has a single maximum whose position is independent of the structural parameters (m, G and F ). In the low frequency domain for flexible VF appears a region of a nontrivial scaling, with power laws ω 0.8 for F = 3 and ω 0.75 for F = 4. This region enlarges for segments that closer to the center of the macromolecule, given that for these segments the large relaxation times are more important. Now, for semiflexible VF [J(ω)] can be viewed as a single peak only for terminal segments, m = 0. In all other cases [J(ω)] has a shape of superimposed peaks. The high-frequency peak (for m = 0 and as a part of a broad peak for m > 0) is related to the small-scale relaxation, as in the case of flexible VF. The other processes appearing for m > 0 at low frequencies correspond to overall relaxation of (sub)branches. For the case m = 1, [J(ω)] can be viewed as a superposition of two processes and for m = 2 of three processes. For m > 2 the curves saturate on each other, so that the inner segments do not feel anymore their distance to the macromolecule's periphery. Thus, we see that the local orientational behavior of fractal hyperbranched macromolecules differs very much from that of dendrimers, for which the maximum of the reduced spectral density clearly indicates the remoteness of the segments from the dendrimer's periphery [START_REF] Markelov | NMR relaxation of the orientation of single segments in semiflexible dendrimers[END_REF][START_REF] Markelov | NMR relaxation in dendrimers[END_REF][START_REF] Pinto | The dynamics of dendrimers by NMR relaxation: interpretation pitfalls[END_REF][START_REF] Pinto | Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR[END_REF][START_REF] Markelov | Molecular dynamics simulation of spin-lattice NMR relaxation in poly-l-lysine dendrimers: manifestation of the semiflexibility effect[END_REF][START_REF] Markelov | Orientational mobility in dendrimer melts: Molecular dynamics simulations[END_REF][START_REF] Shavykin | Is the manifestation of the local dynamics in the spin-lattice nmr relaxation in dendrimers sensitive to excluded volume interactions?[END_REF][START_REF] Dolgushev | Local NMR relaxation of dendrimers in the presence of hydrodynamic interactions[END_REF]. 
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Figure 1 :

 1 Figure 1: Sketch of a Vicsek fractal (VF) of generation G = 3 and functionality of branched units F = 4. Exemplarily the core segments of different (sub)branches are indicated: m = 0 (red), m = 1 (blue), m = 2 (green). Note that the segments are counted from the periphery.

Figure 2 :

 2 Figure 2: Bond-bond autocorrelation function M a 1 (t) for segments of flexible VF [FVF, part (a)] and semiflexible VF [SVF, part (b)] for various parameters m, G, F , indicated in the legends.
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Figure 3 :

 3 Figure 3: Contributions C λ of the relaxation times τ λ to the decay of M a 1 (t) for FVF (a) and SVF (b) of functionality F = 3 and generation G = 5.

Figure 4 :

 4 Figure 4: Reduced spectral density [J(ω)] for FVF of generation G = 5 and F = 3 and 4.
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Figure 5 :

 5 Figure 5: Reduced spectral density [J(ω)] for SVF of functionality F = 3 (a) and F = 4 (b) at generation G = 5.

Figure 6 :

 6 Figure6: Comparison of the reduced spectral densities [J(ω)] for SVF and semiflexible dendrimer (SD), both of functionality F = 3, generation G = 5, and stiffness parameter q br = 0.45. The data for SD are taken from Ref.[START_REF] Dolgushev | Local NMR relaxation of dendrimers in the presence of hydrodynamic interactions[END_REF].
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Highlights

• The spectral density [J(ω)] = ωJ(ω) involved in the NMR relaxation functions has for fractal macromolecules very strong features: for the peripheral segments it is characterized by a single time (like for dendrimers);

for the inner segments one observes a significant broadening of [J(ω)]; the segments located deeply inside the macromolecule do not feel its size anymore (like in a network).

• The inclusion of local stiffness is fundamental for the NMR relaxation of branched macromolecules. In the absence of semiflexibility the spectral density has (spuriously) the maximum located at the same frequency, independently of the segment's location.