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Dynamics of networks in a viscoelastic and active en-
vironment

Jonas Grimm¢® and Maxim Dolgushev*®

We investigate the dynamics of fractals and other networks in a viscoelastic and active environ-
ment. The viscoelastic dynamics is modeled based on the generalized Langevin equation, where
the activity is introduced to it by means of the exponentially correlated noise. The intramolecu-
lar interactions are taken into account by the bead-spring picture. The microscopic connectivity
(studied in form of Viscek fractals, of dual Sierpinski gaskets, of NTp trees, and of a family of
deterministic small-world networks) reveals itself in the multiscale monomeric dynamics, which
shows vastly different behaviors in the active and passive baths. In particular, the dynamics under
active forces leads to a swelling that is characterized through power laws which are not present in
the passive case. In all cases the dynamics reflects the broad scaling behavior of the density of
states and not necessarily the maximal relaxation time of the structures in a passive bath, as it is
exemplified on the NT), trees.

1 Introduction

Modern experiments on the dynamics of biopolymers in a
crowded active bath (such as motion of chromosomal loci in bac-
teria) have demonstrated striking features of the macromolecu-
lar systems in the out-of-equilibrium environments.? Indeed, as
has been shown in a rapidly growing series of recent studies,=-10
the behavior of macromolecules in the active and crowded en-
vironments differs tremendously from that of the polymers in a
usual thermal bath.1Z In particular, the activity leads typically to
a swelling of macromolecules,® the dynamics is drastically en-
hanced yielding a change of scalings, #1911 and the kinetics of
the intramolecular reactions is facilitated.Z

It is necessary to note that the structure of biomacromolecules
is typically very complex. In this respect, fractal and net-
work models provide a powerful approach to these complex ob-
jects. 18723 From the practical side, deterministic structures with
quenched connectivity allow for analytic calculations, based on
which the scaling behavior of very large objects can be stud-
ied 2428

The analysis of tracking experiments of chromosomal loci in
live bacterial cells has favored the generalized Langevin equation
approach for modeling the viscoelasticity of bacterial environ-
ment.!' Moreover, the activity of the environment is commonly

modeled by exponentially correlated noise2MHOL2IAIS that jg
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also found in the analysis of experimental data.’?? Recently, the
behavior of a bead-spring linear chain in an active and vicsoe-
lastic bath has been studied.#101#15 sakaue and Saito? did a
scaling generalization of the results for linear chains to fractals.
In the present work we study fractals and more general networks
based on the microscopic connectivity. This approach allows us
to monitor explicitly the microscopic dynamics and to investigate
its influence on the macroscopic behavior. In particular, we study
treelike fractals (Vicsek fractals®>) and fractals with loops (dual
Sierpinski gaskets2%), which both are rather homogeneous struc-
tures, the so-called NTp trees Y32 that posses a heterogeneous
density of states, and the small-world networks (SWNs) of ref. 33
whose density of states is characterized by the terminal value of
the spectral dimension d; = 2. We show that in case of struc-
turally homogeneous fractals the connectivity is clearly reflected
in the monomer displacement through a region characterized by
the corresponding spectral dimension d;, in agreement with the
generalized scaling argument of Sakaue and Saito.12 For the NTp
trees, whose maximal relaxation time (for the parameters used
in the paper) behaves in a passive viscous bath as N!, the scal-
ings of linear chains are observed (albeit the maximal relaxation
time of a linear chain in a passive viscous bath is proportional to
N?). The SWNs, that under passive conditions are in a collapsed
state so that the monomers have a logarithmically slow motion,
under active forces display a much faster, anomalous monomer
dynamics.

The paper is structured as follows: Section [2]is devoted to the
framework of generalized Langevin equation and to the charac-
terization of macromolecular networks studied in the paper. The
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dynamical behavior of the networks is discussed in Section[3] The
paper closes with the conclusions presented in Section 4]

2 Theoretical Methods

2.1 The model

We start with a brief description of the model used in the paper,
see also its schematic representation in Figure[I]

The macromolecular structures are modeled as N beads con-
nected by springs. The connectivity is encoded by the Laplacian
matrix A = (A,,m). Its diagonal elements read A,,, = f,, where f;,
is the functionality of the nth bead (i.e., number of nearest neigh-
bors of the nth bead). The other elements are A, = Ay = —1, if
beads n and m are directly connected, and A,,, = A,,, = 0 else.

The dynamics of such a macromolecule is described by the
overdamped generalized Langevin equation.?>3? Here the beads
located in a three-dimensional space at ﬁn(t) (n=1,2,...,N) and
connected by harmonic springs are put in a viscoelastic and active
bath:

7 [ 4K o®) =~k X AmTn0) + Erae) + EnnlO),
m=1
@)

where v is the friction coefficient, k is the spring constant and
H(t) denotes the Heaviside function. Moreover, K(¢) is a power
law kernel which takes into account the memory of the friction
force due to the crowded viscoelastic environment,

Kt)=@2-a)(1-oa) . 2

With this, due to the fluctuation-dissipation theorem, the be-
havior of random thermal forces { £ 7 ,(¢)} reads

(Era)Erm(t)) = 31kaTK (1S, 3)

where T is the temperature and kg is the Boltzmann constant.
The thermal forces have vanishing mean value and are Gaussian
distributed. We notice that for o — 1 we have K(r) — §(¢) (i.e.,
white noise), which reflects viscous behavior, while & = 0 implies
elastic behavior. For 0 < a < 1, which is often observed in ex-
periments, the bath is vicsoelastic. Additionally to the vis-
coelastic bath, the system is driven, starting at time ¢t = 0, to the
out-of-equilibrium state by the active forces EM(z). These forces
are taken to be Gaussian distributed with zero mean and the sec-
ond moment

(Ean®Eant)) =3Cexp(~lt=1|/20)8m, (@)

where C characterizes the strength of the active forces and 74
characterizes the time scale of the correlation. Such shot-noise
force correlations are typically observed in the biological sys-
tems.2? We note that, in general, driving a system from the equi-
librium leads to a violation of the fluctuation-dissipation theorem,
which is reflected in the absent contribution of the active forces
to the friction term of eqn (1. Nevertheless, as has been recently
shown in ref14 the noise of eqn (@) preserves the generalized
Langevin equation for a tagged monomer so that the total noise
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Fig. 1 Schematic representation of the problem studied in the paper: A
macromolecule having complex connectivity in a dense environment of
passive (blue) and active (orange) bath particles. Note that the spatial
conformations of the macromolecule in a three-dimensional space may
come in vastly different forms.

remains to be a centered Gaussian process.
Now, eqn can be rewritten based on fractional derivatives
in the Caputo sense

Dx(t) = 1" %" (1) )
where

IPx(t) = ﬁ /0 "dt (- T)h1x(2) ©)

is the Riemann-Liouville fractional integral. With this, eqn ()
reads

N —
(B~ ) D R(t) =~k Y AR (1) + Exnt) + Ean(H().

m=1

In order to decouple this set of equations we introduce normal
modes,

N
Xp(t) = Z Rn(t)Qnm (8
n=1

where p=0,1,...,N — 1 and Q is the matrix that diagonalizes A
(i.e., Q 'AQ = diag(Ag, A1, ..., Ay_1), with Ag = 0). With eqn (8)
we obtain

—

(G- 0) DX (1) = — 2o X | 6p(0) ©
14 Y
with
- N, .
S=)1 (Ern(0)+ EanH®)) Onp. (10)

Eqn (@) can be solved using Laplace-transform techniques.“3



At time ¢t = 0 the system is in the thermal equilibrium, so that
the initial condition is given by (X p(O)Y 4(0)) = 8,413 /A, Where
lg = 3kpT /k is the mean squared length of the bond at time # = 0.
(Of course, one can think about out-of-equilibrium initial condi-
tions, bearing in mind, e.g., in vivo experiments. In such a case
the choice of the initial condition should be provided by the ex-
plicit experimental setup, which will then leave, due to the non-
Markovian monomer dynamics with non-stationary increments,
its fingerprints in the evolution of the macromolecule’s conforma-
tion.) Eqn (©)-(I0) lead, in line with the results of ref.® for a
linear chain, to the correlation functions

(Rof0)~Ro(0)?) = oo (L)

al(a) \ 1
(1D
6CT2% ft/T , t
o ()
’)/2Ga 0 TA

with G =T'(a)['(3—«a), and for p#£0or g #0 to

(Xp(1)X4(0)) = f;’anl( (Tio)a/l,,) (12)

+y21"2 3 ) /dr/ dt’ e 17 T‘/TA”Q)(T)EE;’)(T’)

(13)
with
T a
2P (1) = 1% Egq (7 (7) ;Lp> : (14)
T
In eqn (TI)-(I4) E, p(z) describes the Mittag-Leffler function*
-3 = (15)
E g()=Y — 15
*P T & Tak+ B)

(ot x1,x2) jxlz dxe *x®"! is the difference between two incom-
(yl"(% o )'/

nishing eigenvalues of matrix A.

plete gamma functions, 1) = and A, are the nonva-

Equations (11)-(13) allow to study different dynamical prop-
erties of the macromolecules. Here we concentrate on the
monomeric displacement,

AR (1) = Ru(t) = Ru(0), (16)
by considering its variance
02(0) = (ARA(17) —~ (AR,(1)" = (aRu(0?).  (7)

Having a random choice of the bead, the mean-square displace-
ment averaged over the structure reads

N 1
(1) = ¥ 62(1) = = { (Ro(t) — Xo(0))?
Nn; N< 0 0 >
1 = = )
+y L ((%50) -2(X,0%,0)+ (F0))
=
= G(%M,v (t) + GéM,a(t) + Gr%on,v (t) + c;1‘%1011,3 (t) (18)
where
) 20 r\*
Ocmy (1) = NaT(a) (?0) ) (19)
6CT2% 1/t
Onalt) = WT?;%‘/O dye’y* 'T(asy,1/ ), (20)

) 2[8 & N=d PN
cymon,v(t) - N (?0) p;l Eqo+1 (_ (?0) )Lp) s @n

and
2 _ 3C Nil/t /I 1 o—lt=7|)ta(P) (= (P) 1
Gmon,a(t) - Ny21"2(37a) pgl o dr 0 dr'e = (T)‘-‘a (T )
(22)

In order to control the evolution of the macromolecular size we
are looking at the average value of the gyration radius at time #,4>

<R2()> <N§ (Ro(r) ﬁc.m(t))2>=;]1v¥’1<)?p(t)>, 23)

where I_Q)C,n(t) is the vector of the center of mass. Inserting
eqn into eqn it follows readily
2 N—1
(R) =2 Z Gmona(t): (24)

The first term of eqn describes the gyration radius of a
macromolecule at thermal equilibrium2242 and is independent of
time. The second term, which has exactly the shape of eqn [22)),
grows with time, expressing the dynamics of swelling of the
macromolecule due to the external active forces.

2.2 Structures

In this subsection we present different structures, whose dynam-
ics in a viscoelastic and active bath we study in Sec |3} The con-
nectivity of the networks leads to the spectrum {QL,,} which can
be characterized by the density of states p(1) ~ A2 %-1 and the re-
lated spectral dimension d,. In other words, for eigenvalues {4, }
numbered in an ascending order the spectral dimension d; is re-
flected through a A, ~ (p/N)?/% behavior. (We remark, however,
that there are structures which possess some eigenvalues that do
not follow the general tendency, vide infra.) Figure |2|shows the
four different networks on which we focus in this paper, while fig-
ure[3|shows their eigenvalue spectra. One can readily see that the
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Fig. 2 Sketch of the structures studied in the paper: a) Vicsek fractal
(VF) of functionality f = 4. b) Dual Sierpinski gasket (DSG). ¢) Small-
world network (SWN) for parameter d = 3. d) NTp tree characterized
by parameter k = 2. All structures are exemplified at generation g = 3.
The sketch is aimed to show only the connectivity of the structures; their
spatial conformations in a three-dimensional space may come in vastly
different forms.

Table 1 Parameters of the structures studied in the paper

Structure Number of beads N Number of distinct
eigenvalues A;
VE, f=3,g=7 16384 2187
VF, f=4,g=17 78125 2187
VE, f=6,g=7 823543 2187
DSG, g=10 59049 1535
SWN,d=3,g=12 531441 4096
NTp,k=2,g="17 21846 1761

spectra have degenerate eigenvalues related to the symmetry of
the structures. This fact drastically reduces the computational ef-
forts. Table [T summarizes the molecular masses and the number
of distinct eigenvalues of the structures studied in the paper.

2.2.1 Vicsek fractals

Vicsek fractals (VFs) are regular, symmetric structures that are
constructed iteratively.4® They are defined by two parameters, f
and g, where the functionality f gives the number of neighbors
of a branching point and the generation g gives the number of
iteration steps. Starting with a single bead, a VF of generation
g+ 1 is constructed from f+ 1 VFs of generation g. With this, a
VF of generation g has N = (f + 1)¢ beads. A VF of functionality
f =4 and generation g = 3 is shown in figure [2h.

For VFs the eigenvalues of matrix A can be calculated by solving
iteratively the polynomial equation>4Z

A(Hl)(,’l’(ﬁl) 73)(2{(5%1) —f-1)= )‘i(g)’ (25)

where Ai(g) # 0 is an eigenvalue of the fractal of generation g.
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Fig. 3 Eigenvalue spectra of the Laplacian matrices for different macro-
molecular structures: a) VF of functionality f =4 and generation g = 7.
b) DSG of generation g = 10. ¢) SWN with d = 3 and generation g = 12.
d) NTp tree with k = 2 and generation g =7



Eqn yields three new eigenvalues for each eigenvalue of the
previous generation. The ensuing set is supplemented at genera-
tion g by the eigenvalues 1 with degeneracy (f —2)(f+1)$~! +1,
f+1 with degeneracy 1, and 0 with degeneracy 1.22) Based
on eqn one can readily find the behavior of low eigen-
values, 2248 leading to the respective spectral dimension dYF =
2In(f+1)/1In(3f 4 3).2% As can be readily seen, a huge advantage
of VFs is that their spectral dimension can be easily modified by
using different values of functionality f. The eigenvalue spectrum
of VFs is exemplified for functionality f =4 and generation g =7
in figure[3p.

2.2.2 Dual Sierpinski gaskets

Dual Sierpinski gaskets (DSGs) are fractal structures with
loops.*? They can be constructed iteratively starting from a trian-
gle of connected beads which represents the gasket of generation
g = 1. To construct the next generation, one takes three gaskets
and connects them to a new triangle. Therefore, a DSG of gen-
eration g consists of N = 38 beads. A DSG of generation g =3 is
shown in figure [2b.

For DSGs, the eigenvalue spectrum can be calculated based on
the iterative expression2420

(@)
L0 SEYB -4, 6
& 2
which yields two new eigenvalues )L;i)i for each non-vanishing

eigenvalue léi)l of the previous generation. The eigenvalues 3

with degeneracy (38~!4-3)/2, 5 with degeneracy (3¢~! —1)/2 and
0 with degeneracy 1 complete the spectrum of a DSG of genera-
tion g. The DSG spectrum is characterized by spectral dimension
dPS6 =21n3/1n5.24 An exemplary eigenvalue spectrum of a DSG

of generation g = 10 is displayed in figure 3p.
2.2.3 Small-world networks

We turn to discuss a family of small-world networks (SWNs) that
are defined by their generation g and a parameter d, see ref.>3,
Starting with a complete graph of d beads which represents an
SWN of generation g = 1, one constructs the next generation by
replacing each bead with another complete graph. With that, the
number of beads of an SWN of generation g equals N = d$, which
in the case of d = 3 coincides with the number of beads of the
DSG. A SWN with d =3 and generation g = 3 is shown in figure
2.

The eigenvalues of SWNs can be calculated iteratively using>

A= = % <d+ A+ \/dZ +2427 + (0 2 - 4)@?1) . @7
This equation yields two new eigenvalues )ué”i for each eigen-
value l;?l
of an SWN of generation g is completed by additional d¢ — 248!
eigenvalues d. Considering eqn for small eigenvalues leads
to the spectral dy; = 2, independently of the parameter d.2% This
implies that the eigenvalue spectrum scales with p, A, ~ p!, that
can be observed in figure [3 for an SWN of parameter d = 3 and

of the previous generation. The eigenvalue spectrum
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Fig. 4 MSD of the center of mass of a macromolecule consisting of
N = 10* beads for & = 0.7, 3 =3/T(3—a)~2.57, y=1, C=10 and
74 = 10°75. The solid orange line shows the full MSD, whereas for the
dashed blue line the active forces are turned off.

generation g = 12.
2.2.4 NTp trees

An NTp tree is a treelike graph that is characterized by its gen-
eration g and parameter k.2 To get a tree of generation g from
generation g — 1 one adds k linear chains constisting of 28 beads
to each peripheral bead. Thus, the number of beads at generation
g is given by N = 1+ (481 —1)/3. An NTp tree with k =2 and
generation g = 3 is depicted in figure [24d.

The eigenvalue spectrum of the NTp trees is non-
homogenous.2%32 It is dominated by the behavior of the
linear chains characterized by the spectral dimension d; = 1.
However, the smallest eigenvalues that describe large relaxation
times (which correspond to the relaxation of the branches and
21153 and related to large-scale character-
istics such as gyration radius at the thermal equilibrium®2) march
to a different tune. Though the smallest eigenvalues represent
a discrete set (at the thermodynamic limit they build a set of
the Lebesgue measure zero), they possess a A, ~ (p/N)>n2/1n(2k)
behavior.2% An exemplary spectrum for an N7p tree of generation
g =7 and with parameter k = 2 is shown in figure 3.

subbranches as a whole

3 Results

3.1 Analysis of 6%(r)
We start our analysis of the mean squared displacement (MSD)
62(r) by looking first on the motion of the center of mass, rep-
resented by the terms 62y , (1) + G4y ,(t) of eqn . We notice
that these terms include only the number of beads, but no infor-
mation about the topology of the macromolecule. This means that
the center of mass moves analogously for all macromolecules of
the same molecular mass. The term 63y, , (¢) represents the (sub-
diffusive) motion of the center of mass in a viscoelastic bath with-
out active forces, whereas GéMya(t) is added when active forces
come into play. In figure[dlwe show the MSD of the center of mass
in a viscoelastic environment, with and without active forces.

As can be inferred from eqn and shown in figure [4} in
the passive case the viscoelastic bath leads to a subdiffusive 1%-
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behavior of the center of mass. The active forces described by
02\ (t) enrich for 7y < ¢ < 7. (see the definition of 7, in eqn
below) the dynamics of the center of mass. For short times
t < T4 one can use in eqn that exp(—|t — 7’| /t4) ~ 1 leads to

z/dr/ dr 21 (¢/)a (Lz)zz“, 28)
NY2G%, NY2a2G%,

Thus active forces cause for oo > 1/2 a superdiffusive behavior.
On the other hand, for long times ¢ > 1, the function I'(a;y,7/74)
inside the integral of eqn can be well approximated through
the incomplete Gamma function, I'(a;y,7/t4) ~ I'(a;y). There-
fore, the integral of eqn can be split into two parts

1/Ta yoa—1 1 t 2a-1
[ s e =t + 5 (1) 29)

with I (x) = [fdye’y* 'T(ozy) —x2*71/(2a — 1), where x> 1.
With this the long time behavior of 62y, ,(¢) is dominated by

6CTA 2(X71
— |t . 30
((m— 1>Ny2c%x) 0

Comparing the above eqn (30 with 6y, . (¢) of eqn (19) one finds
CM,v

(for o < 1) the time 7, at which the activity becomes irrelevant,

(10 (2a— 1)PT(a)2(3 - a))l/(a_')

31
3tfaCTy (31)

Summarizing, the MSD of the center of mass displays the r%-
behavior for ¢+ < 79 and 7 > 7, due to the viscoelastic bath; for
the in-between times one has then r** and r>*~! behaviors for
Tp <t <K 14 and T4 <t K Ty, respectively, originating from the
active forces. For 1/2 < o0 < 1 the latter two regimes show a
change from a superdiffusive to subdiffusive behavior, that has
been also observed for single particles in active viscoelastic envi-
ronments, 1424

We turn to the analysis of the other two terms of o2(t),
Oon.y (1) + Oon a (), which depend on the particular architecture
of the network. The term 62, . (¢) is responsible for the monomer
motion in a passive viscoelastic bath. In order to analyze its be-
havior we use that the density of the eigenvalues p(A) scales as
A4:/2-1 and make a continuous transition from the sum to an in-
tegral, i.e.,

aN71 t [
1t pgl Ea,OH,] (7 (?0) )Lp) —

eli-d2git [ P P g (), (D)
Amin+(t/T0)®
where A, is the smallest non-zero eigenvalue and Anax is the
biggest eigenvalue of the Laplacian matrix A. For small values
x < 1, the Mittag-Leffler function Ey g4 (—x) can be approxi-
mated by the constant 1/I'(a+1). Under this approximation
the integral can be readily computed, yielding a time dependence
proportional to t*. This time regime holds for r < 7 /)Lrlléf. For
large values x > 1, the Mittag-Leffler function Eq g4 (—x) be-
haves as 1/x. The integral then yields a time dependence propor-

[

tional to ¢, i.e, a constant behavior. This tlme reglme holds for
1
times ¢ >> 1/ lm{n For 1ntermedlate times 1/ 7Lm Lt <L 19/ lm{:‘

we divide the integral of eqn into three parts and use the
small and long time behaviors of the Mittag-Leffler function dis-
cussed above,

S A R
in(1/70)* ’

po p0(1=dy/2) 0 /2 2 d,/2 _ [ mint® 2
0 |aT(arn \ & @

1 mant®\ /2! -
() )] e
7_ 0

where g; < 1 and g, > 1 are the limits of the approximations for
the Eq g1 (—x).

+c1(dg‘)

Now, for spectral dimensions ds close to 1 and interme-
diate times 7 //'Lmax <t <1/ )me the constant c(ds) =
J& dxx?5/>"1Eg 41 (—x) is the dominating term of eqn . This
means the MSD is proportional to t%(1=4:/2) The range of validity
of this power law depends on d;. So, for d; advancing to 2, the
last term of eqn is getting more important and eventually
diverges, which indicates a collapse of the t*(1=4:/2) time depen-
dence. Additionally, the exponent o/(1 — d;/2) is getting smaller
with increasing spectral dimension and finally vanishes. There-
fore, we take a closer look at the limiting case d; = 2. Using that

the spectral density for d; = 2 is constant we obtain

[ e g ()
T J—
0 Ronin(1/70) a,o0+1 X

1 Amint® Amaxt®
~ T in d 2 1 max ]
K [F(a-ﬁ-l) (gl & >+Cl( )+ n( )

(34)

Since the first term is getting suppressed by A,,i, we get for dy =2
a logarithmic dependence of 62, () in time over a large time
scale.

Finally we consider the fourth term of eqn 1| Clonalt), TE-
lated to the monomer motion under active forces. First we look
at times < Ty, for which one has exp(—|7 — 7’| /74) ~ 1. We then
get

2 3C 20 1%
mon,a(f) =~ m Zanchl %lp . (35)

Following the calculation of eqn (32) ff, we make a transition
from the sum in eqn (35) to an integral,

1o
2aZanc+l( OAP>_>

ta(z_d‘ﬂ)fgd‘y/z /ln1ax~(f/‘ro)a dxxdl/2—1Eé7a+l . 6

A«min'(z/'m)a

For times t < 1/ A,Lﬁﬁ‘, we again approximate the Mittag-Leffler
function Eq 41(—x) by 1/T(e+1). Performing the integration



yields a time dependence proportional to 12*. Now, we split the
integral into

Za(2—d_\./2)rad¢/2 # 42 M dg/2
0 a2+ \® P

| g\ G272 -
+ea(dy) + 57— ((A’m ! ) 7g121.;/2 2)} 37)

. o
$-2\\ 5

with ¢y(dy) = [$ dex®/2VEZ 1) (—x).

a1 At intermediate times

T /QLIL{IQ‘ < t < 14 the second term yields a

o-r%lon,a(t) ~ lﬂ(z*ds/z) (38)
power law.

When ¢ approaches the time 7, the exponential function
exp(—|t—1'|/14) starts to decay and the behavior r#(2~4:/2) breaks
down. Further, for r > 14 the active noise acts as a white noise
(but of a higher temperature than the initial one), i.e., we use
exp(—|T—17'|/14) & 2748 (7 — 7). We then get

2 2
Gmonﬁa(t) = O-mon,a(TA)

6CTA N-1 't 2002 -2 ( Ta )
— dtT°*°E, ——A . (39)
N’)/ZFZ(3 _ Ot) Ziu o,0 T(z)x P

To analyze the behavior of the second term of eqn (39) we make
a continuous transition and look at the integral
Amax-(T/T0)*

ot
q@h/2 [ g 0C-a2)2 /

T Anin*(T/T0)® dxxd"ﬂilEgt.a(_xy (40)
A in* 0

For times 74 < t < To/lr:l{l? the second integral in
eqn can be approximated by a constant leading
(for dy # 4 —2/a) to a result that is proportional to
(2Dt gD g2 — gy f2) — 1),

ds and o, we then get the following behavior

Depending on

1#2=4/2)=1 _const, ford,<4—2

Omonal(t) ~ < log(1), fordy=4-2 (41)
const —r*2=4:/2)=1 - for g > 4 — %.

Finally, for times ¢ > 19 /),;1{: s G&lon’a(t) saturates to a constant

value.

3.2 Control of swelling under active forces

Before going to the illustration of the findings of Section [3.1] we
take a look at the gyration radius (R2(t)), eqn (24), which con-
sists from the equilibrium value of the gyration radius <R§(O)>
and from G&mn’a(z) (eqn [@22), vide supra). The latter term de-
scribes a swelling of the macromolecule under active forces and
it can eventually lead to its overstretching. Therefore, by looking
at the change of the gyration radius, one can control the limits
of parameters C and t4 characterizing strength and endurance
of the active forces. Given that the equilibrium distances in Gaus-
sian macromolecules have a square root dependence on the corre-
sponding curvilinear path, we have decided for this study to limit

' ' 1TAlTy e '
108} " .
" _sa(2-ds/2)
A 10%r t .
o
o
< 10%F ]
\
’,L N§ 105
e 10 3 y
< « 104
Vo2 ~f2 _
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10 I 1 1 1 Ir/l0 1 ]
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[/To

Fig. 5 Mean squared gyration radius for VF of generation ¢ =7 and
functionality f = 4. The other parameters are o = 0.7, 12 =3/T'(3 — &) ~
2,57, y=1,C=10and 74 = 1037. In the main figure the equilibrium size
is subtracted while in the inset it is included.

the parameters C and 74 to the values that do not allow (RZ(c))

to exceed the order of <R§(O)>2 /3.

Figure5|shows the gyration radius for a VF of generation g =7
and functionality f =4. Here we can see the discussed above time
evolution of 63, ,(t) = (R2(1)) — (R2(0)). This starts to grow ac-
cording to a r>* power law, followed by the regime proportional
to t*(2-4:/2) (before reaching t,) and then slowly saturates (fol-

lowing eqn (41), here d; >4 —2/a) to a constant value.

3.3 Monomer dynamics of different networks

In this subsection we make an explicit illustration of the MSD of
the monomers belonging to various structures presented in Sec-
tion[2.2] For all considered examples the parameters characteriz-
ing the active forces are chosen bearing in mind the discussion of
Section In particular, in all cases the correlation time 7, of
the active forces is about one percent of the large-scale character-
istic time 7y/Ami, of the structures.

Figure [6] shows passive (dashed lines) and active (solid lines)
dynamics of the networks’ monomers. Independently of the net-
works’ architecture and the bath activity, at very small and very
large times one observes a universal % time behavior reflecting
the viscoelasticity of the bath. The initial behavior /2% of the term
G[%lon’a(t) (eqn (22)) is suppressed by the initial viscoelastic one
(%) due to the modesty of the active forces.

Starting with times ¢ > 1) one encounters the differences be-
tween the active and passive case. For these times, in the passive
viscoelastic bath the monomer motion is much slower than for the
case when also the active forces are present. In the passive envi-
ronment one observes a t*(!=%/2) behavior for d; < 2 and log(r)
for d; = 2. In the active case one has a r*(24:/2) power law, whose
range for d; = 2 marginalizes (although one can certainly find the
corresponding t* power law in the active component ol%m’a(t)
of monomer MSD, see black dotted line on Figure @:). For NTp
trees one clearly observes the scaling exponents /%/2 in the pas-
sive case and 3%/2 in the active case, the same as for a linear
chain®. Thus, the ground states related to the equilibrium size
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ing of the macromolecules one is restricted to moderate activity of
the bath and therefore in order to see the characteristic behavior
of the macromolecules one has to consider very large structures.
For this, the iterative schemes such as of ref.2423[2712833 5re of
much help.

This study has aimed to bridge microscopic connectivity with
the macroscopic behavior. The ensuing power laws (in the regions
of their appearance) can be also obtained based on the scaling ar-
guments, 2 if one assumes self-similarity of the fractal networks.
However, in case of the structures with irregular Laplacian spec-
tra, such as NTp trees, and for a detailed picture of the full func-
tional evolution rigorous calculations that account for the whole
spectrum are necessary.
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