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Dynamics of networks in a viscoelastic and active en-
vironment

Jonas Grimma and Maxim Dolgushev∗ab

We investigate the dynamics of fractals and other networks in a viscoelastic and active environ-
ment. The viscoelastic dynamics is modeled based on the generalized Langevin equation, where
the activity is introduced to it by means of the exponentially correlated noise. The intramolecu-
lar interactions are taken into account by the bead-spring picture. The microscopic connectivity
(studied in form of Viscek fractals, of dual Sierpiński gaskets, of NTD trees, and of a family of
deterministic small-world networks) reveals itself in the multiscale monomeric dynamics, which
shows vastly different behaviors in the active and passive baths. In particular, the dynamics under
active forces leads to a swelling that is characterized through power laws which are not present in
the passive case. In all cases the dynamics reflects the broad scaling behavior of the density of
states and not necessarily the maximal relaxation time of the structures in a passive bath, as it is
exemplified on the NTD trees.

1 Introduction
Modern experiments on the dynamics of biopolymers in a
crowded active bath (such as motion of chromosomal loci in bac-
teria) have demonstrated striking features of the macromolecu-
lar systems in the out-of-equilibrium environments.1,2 Indeed, as
has been shown in a rapidly growing series of recent studies,3–16

the behavior of macromolecules in the active and crowded en-
vironments differs tremendously from that of the polymers in a
usual thermal bath.17 In particular, the activity leads typically to
a swelling of macromolecules,5,8 the dynamics is drastically en-
hanced yielding a change of scalings,4,10,11 and the kinetics of
the intramolecular reactions is facilitated.7

It is necessary to note that the structure of biomacromolecules
is typically very complex. In this respect, fractal and net-
work models provide a powerful approach to these complex ob-
jects.18–23 From the practical side, deterministic structures with
quenched connectivity allow for analytic calculations, based on
which the scaling behavior of very large objects can be stud-
ied.24–28

The analysis of tracking experiments of chromosomal loci in
live bacterial cells has favored the generalized Langevin equation
approach for modeling the viscoelasticity of bacterial environ-
ment.1 Moreover, the activity of the environment is commonly
modeled by exponentially correlated noise3,4,10,12,14,15 that is
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also found in the analysis of experimental data.29 Recently, the
behavior of a bead-spring linear chain in an active and vicsoe-
lastic bath has been studied.4,10,14,15 Sakaue and Saito12 did a
scaling generalization of the results for linear chains to fractals.
In the present work we study fractals and more general networks
based on the microscopic connectivity. This approach allows us
to monitor explicitly the microscopic dynamics and to investigate
its influence on the macroscopic behavior. In particular, we study
treelike fractals (Vicsek fractals25) and fractals with loops (dual
Sierpiński gaskets24), which both are rather homogeneous struc-
tures, the so-called NTD trees30–32 that posses a heterogeneous
density of states, and the small-world networks (SWNs) of ref.33

whose density of states is characterized by the terminal value of
the spectral dimension ds = 2. We show that in case of struc-
turally homogeneous fractals the connectivity is clearly reflected
in the monomer displacement through a region characterized by
the corresponding spectral dimension ds, in agreement with the
generalized scaling argument of Sakaue and Saito.12 For the NTD

trees, whose maximal relaxation time (for the parameters used
in the paper) behaves in a passive viscous bath as N1, the scal-
ings of linear chains are observed (albeit the maximal relaxation
time of a linear chain in a passive viscous bath is proportional to
N2). The SWNs, that under passive conditions are in a collapsed
state so that the monomers have a logarithmically slow motion,
under active forces display a much faster, anomalous monomer
dynamics.

The paper is structured as follows: Section 2 is devoted to the
framework of generalized Langevin equation and to the charac-
terization of macromolecular networks studied in the paper. The



dynamical behavior of the networks is discussed in Section 3. The
paper closes with the conclusions presented in Section 4.

2 Theoretical Methods

2.1 The model

We start with a brief description of the model used in the paper,
see also its schematic representation in Figure 1.

The macromolecular structures are modeled as N beads con-
nected by springs. The connectivity is encoded by the Laplacian
matrix A= (Anm).34 Its diagonal elements read Ann = fn, where fn
is the functionality of the nth bead (i.e., number of nearest neigh-
bors of the nth bead). The other elements are Anm = Amn =−1, if
beads n and m are directly connected, and Anm = Amn = 0 else.

The dynamics of such a macromolecule is described by the
overdamped generalized Langevin equation.35–39 Here the beads
located in a three-dimensional space at

#„
R n(t) (n = 1,2, . . . ,N) and

connected by harmonic springs are put in a viscoelastic and active
bath:

γ
∫ t

0
dτ K(t− τ) #̇„

R n(τ) =−k
N

∑
m=1

Anm
#„
R m(t)+

#„

ξ T,n(t)+
#„

ξ A,n(t)H(t),

(1)

where γ is the friction coefficient, k is the spring constant and
H(t) denotes the Heaviside function. Moreover, K(t) is a power
law kernel which takes into account the memory of the friction
force due to the crowded viscoelastic environment,

K(t) = (2−α)(1−α)t−α . (2)

With this, due to the fluctuation-dissipation theorem,40 the be-
havior of random thermal forces { #„

ξ T,n(t)} reads〈
#„

ξ T,n(t)
#„

ξ T,m(t ′)
〉
= 3γkBT K(|t− t ′|)δn,m, (3)

where T is the temperature and kB is the Boltzmann constant.
The thermal forces have vanishing mean value and are Gaussian
distributed. We notice that for α → 1 we have K(t)→ δ (t) (i.e.,
white noise), which reflects viscous behavior, while α = 0 implies
elastic behavior. For 0 < α < 1, which is often observed in ex-
periments,1,41,42 the bath is vicsoelastic. Additionally to the vis-
coelastic bath, the system is driven, starting at time t = 0, to the
out-of-equilibrium state by the active forces

#„

ξ A,n(t). These forces
are taken to be Gaussian distributed with zero mean and the sec-
ond moment〈

#„

ξ A,n(t)
#„

ξ A,m(t ′)
〉
= 3C exp(−|t− t ′|/τA)δn,m, (4)

where C characterizes the strength of the active forces and τA

characterizes the time scale of the correlation. Such shot-noise
force correlations are typically observed in the biological sys-
tems.29 We note that, in general, driving a system from the equi-
librium leads to a violation of the fluctuation-dissipation theorem,
which is reflected in the absent contribution of the active forces
to the friction term of eqn (1). Nevertheless, as has been recently
shown in ref.14, the noise of eqn (4) preserves the generalized
Langevin equation for a tagged monomer so that the total noise

Fig. 1 Schematic representation of the problem studied in the paper: A
macromolecule having complex connectivity in a dense environment of
passive (blue) and active (orange) bath particles. Note that the spatial
conformations of the macromolecule in a three-dimensional space may
come in vastly different forms.

remains to be a centered Gaussian process.
Now, eqn (1) can be rewritten based on fractional derivatives

in the Caputo sense43

cDα x(t) = Im−α x(m)(t) (5)

where

Iµ x(t) =
1

Γ(µ)

∫ t

0
dτ (t− τ)µ−1x(τ) (6)

is the Riemann-Liouville fractional integral. With this, eqn (1)
reads

γΓ(3−α)cDα #„
R n(t) =−k

N

∑
m=1

Anm
#„
R m(t)+

#„

ξ T,n(t)+
#„

ξ A,n(t)H(t).

(7)

In order to decouple this set of equations we introduce normal
modes,

#„
X p(t) =

N

∑
n=1

#„
R n(t)Qnp, (8)

where p = 0,1, . . . ,N− 1 and Q is the matrix that diagonalizes A
(i.e., Q−1AQ = diag(λ0,λ1, . . . ,λN−1), with λ0 = 0). With eqn (8)
we obtain

Γ(3−α)cDα #„
X p(t) =−

kλp
#„
X p(t)
γ

+

#„

ξ p(t)
γ

(9)

with

#„

ξ p(t) =
N

∑
n=1

(
#„

ξ T,n(t)+
#„

ξ A,n(t)H(t)
)

Qnp. (10)

Eqn (9) can be solved using Laplace-transform techniques.43



At time t = 0 the system is in the thermal equilibrium, so that
the initial condition is given by 〈 #„

X p(0)
#„
X q(0)〉 = δpql2

0/λp, where
l2
0 = 3kBT/k is the mean squared length of the bond at time t = 0.
(Of course, one can think about out-of-equilibrium initial condi-
tions, bearing in mind, e.g., in vivo experiments. In such a case
the choice of the initial condition should be provided by the ex-
plicit experimental setup, which will then leave, due to the non-
Markovian monomer dynamics with non-stationary increments,
its fingerprints in the evolution of the macromolecule’s conforma-
tion.) Eqn (9)-(10) lead, in line with the results of ref.4 for a
linear chain, to the correlation functions〈

(
#„
X 0(t)−

#„
X 0(0))2

〉
=

2l2
0

αΓ(α)

(
t

τ0

)α

+
6Cτ2α

A
γ2G2

α

∫ t/τA

0
dyeyyα−1Γ

(
α;y,

t
τA

) (11)

with Gα = Γ(α)Γ(3−α), and for p 6= 0 or q 6= 0 to

〈 #„
X p(t)

#„
X q(0)

〉
=

l2
0δpq

λp
Eα,1

(
−
(

t
τ0

)α
λp

)
(12)

and

〈 #„
X p(t)

#„
X q(t)

〉
=

l2
0δpq

λp

+
3Cδpq

γ2Γ2(3−α)

∫ t

0
dτ
∫ t

0
dτ ′ e−|τ−τ ′|/τA Ξ(p)

α (τ)Ξ(q)
α (τ ′)

(13)

with

Ξ(p)
α (τ) = τα−1Eα,α

(
−
(

τ
τ0

)α
λp

)
. (14)

In eqn (11)-(14) Eα,β (z) describes the Mittag-Leffler function44

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, (15)

Γ(α;x1,x2) =
∫ x2

x1
dxe−xxα−1 is the difference between two incom-

plete gamma functions, τ0 =
(

γΓ(3−α)
k

)1/α
, and λp are the nonva-

nishing eigenvalues of matrix A.

Equations (11)-(13) allow to study different dynamical prop-
erties of the macromolecules. Here we concentrate on the
monomeric displacement,

∆ #„
R n(t) =

#„
R n(t)− #„

R n(0), (16)

by considering its variance

σ2
n (t) =

〈
∆ #„

R n(t)2
〉
−
〈
∆ #„

R n(t)
〉2

=
〈

∆ #„
R n(t)2

〉
. (17)

Having a random choice of the bead, the mean-square displace-
ment averaged over the structure reads

σ2(t) =
1
N

N

∑
n=1

σ2
n (t) =

1
N

〈
(

#„
X 0(t)−

#„
X 0(0))2

〉

+
1
N

N−1

∑
p=1

(〈
#„
X 2

p(t)
〉
−2
〈 #„

X p(t)
#„
X p(0)

〉
+
〈

#„
X 2

p(0)
〉)

= σ2
CM,v(t)+σ2

CM,a(t)+σ2
mon,v(t)+σ2

mon,a(t) (18)

where

σ2
CM,v(t) =

2l2
0

NαΓ(α)

(
t

τ0

)α
, (19)

σ2
CM,a(t) =

6Cτ2α
A

Nγ2G2
α

∫ t/τA

0
dyeyyα−1Γ(α;y, t/τA), (20)

σ2
mon,v(t) =

2l2
0

N

(
t

τ0

)α N−1

∑
p=1

Eα,α+1

(
−
(

t
τ0

)α
λp

)
, (21)

and

σ2
mon,a(t) =

3C
Nγ2Γ2(3−α)

N−1

∑
p=1

∫ t

0
dτ
∫ t

0
dτ ′ e−|τ−τ ′|/τA Ξ(p)

α (τ)Ξ(p)
α (τ ′).

(22)

In order to control the evolution of the macromolecular size we
are looking at the average value of the gyration radius at time t,45

〈
R2

g(t)
〉
=

〈
1
N

N

∑
n=1

( #„
R n(t)− #„

R cm(t)
)2
〉

=
1
N

N−1

∑
p=1

〈
#„
X 2

p(t)
〉
, (23)

where
#„
R cm(t) is the vector of the center of mass. Inserting

eqn (13) into eqn (23) it follows readily

〈
R2

g(t)
〉
=

l2
0

N

N−1

∑
p=1

1
λp

+σ2
mon,a(t). (24)

The first term of eqn (24) describes the gyration radius of a
macromolecule at thermal equilibrium17,45 and is independent of
time. The second term, which has exactly the shape of eqn (22),
grows with time, expressing the dynamics of swelling of the
macromolecule due to the external active forces.

2.2 Structures

In this subsection we present different structures, whose dynam-
ics in a viscoelastic and active bath we study in Sec 3. The con-
nectivity of the networks leads to the spectrum {λp} which can

be characterized by the density of states ρ(λ )∼ λ
ds
2 −1 and the re-

lated spectral dimension ds. In other words, for eigenvalues {λp}
numbered in an ascending order the spectral dimension ds is re-
flected through a λp ∼ (p/N)2/ds behavior. (We remark, however,
that there are structures which possess some eigenvalues that do
not follow the general tendency, vide infra.) Figure 2 shows the
four different networks on which we focus in this paper, while fig-
ure 3 shows their eigenvalue spectra. One can readily see that the



a) b)

c) d)

Fig. 2 Sketch of the structures studied in the paper: a) Vicsek fractal
(VF) of functionality f = 4. b) Dual Sierpiński gasket (DSG). c) Small-
world network (SWN) for parameter d = 3. d) NTD tree characterized
by parameter k = 2. All structures are exemplified at generation g = 3.
The sketch is aimed to show only the connectivity of the structures; their
spatial conformations in a three-dimensional space may come in vastly
different forms.

Table 1 Parameters of the structures studied in the paper

Structure Number of beads N Number of distinct
eigenvalues λi

VF, f = 3, g = 7 16384 2187
VF, f = 4, g = 7 78125 2187
VF, f = 6, g = 7 823543 2187
DSG, g = 10 59049 1535
SWN, d = 3, g = 12 531441 4096
NTD, k = 2, g = 7 21846 1761

spectra have degenerate eigenvalues related to the symmetry of
the structures. This fact drastically reduces the computational ef-
forts. Table 1 summarizes the molecular masses and the number
of distinct eigenvalues of the structures studied in the paper.

2.2.1 Vicsek fractals

Vicsek fractals (VFs) are regular, symmetric structures that are
constructed iteratively.46 They are defined by two parameters, f
and g, where the functionality f gives the number of neighbors
of a branching point and the generation g gives the number of
iteration steps. Starting with a single bead, a VF of generation
g+ 1 is constructed from f + 1 VFs of generation g. With this, a
VF of generation g has N = ( f + 1)g beads. A VF of functionality
f = 4 and generation g = 3 is shown in figure 2a.

For VFs the eigenvalues of matrix A can be calculated by solving
iteratively the polynomial equation25,47

λ (g+1)(λ (g+1)−3)(λ (g+1)− f −1) = λ (g)
i , (25)

where λ (g)
i 6= 0 is an eigenvalue of the fractal of generation g.

Fig. 3 Eigenvalue spectra of the Laplacian matrices for different macro-
molecular structures: a) VF of functionality f = 4 and generation g = 7.
b) DSG of generation g = 10. c) SWN with d = 3 and generation g = 12.
d) NTD tree with k = 2 and generation g = 7



Eqn (25) yields three new eigenvalues for each eigenvalue of the
previous generation. The ensuing set is supplemented at genera-
tion g by the eigenvalues 1 with degeneracy ( f −2)( f +1)g−1 +1,
f + 1 with degeneracy 1, and 0 with degeneracy 1.25 Based
on eqn (25) one can readily find the behavior of low eigen-
values,25,48 leading to the respective spectral dimension dVF

s =

2ln( f +1)/ ln(3 f +3).25 As can be readily seen, a huge advantage
of VFs is that their spectral dimension can be easily modified by
using different values of functionality f . The eigenvalue spectrum
of VFs is exemplified for functionality f = 4 and generation g = 7
in figure 3a.

2.2.2 Dual Sierpiński gaskets

Dual Sierpiński gaskets (DSGs) are fractal structures with
loops.49 They can be constructed iteratively starting from a trian-
gle of connected beads which represents the gasket of generation
g = 1. To construct the next generation, one takes three gaskets
and connects them to a new triangle. Therefore, a DSG of gen-
eration g consists of N = 3g beads. A DSG of generation g = 3 is
shown in figure 2b.

For DSGs, the eigenvalue spectrum can be calculated based on
the iterative expression24,50

λ (i)±
g =

5±
√

25−4λ (i)
g−1

2
(26)

which yields two new eigenvalues λ (i)±
g for each non-vanishing

eigenvalue λ (i)
g−1 of the previous generation. The eigenvalues 3

with degeneracy (3g−1+3)/2, 5 with degeneracy (3g−1−1)/2 and
0 with degeneracy 1 complete the spectrum of a DSG of genera-
tion g. The DSG spectrum is characterized by spectral dimension
dDSG

s = 2ln3/ ln5.24 An exemplary eigenvalue spectrum of a DSG
of generation g = 10 is displayed in figure 3b.

2.2.3 Small-world networks

We turn to discuss a family of small-world networks (SWNs) that
are defined by their generation g and a parameter d, see ref.33.
Starting with a complete graph of d beads which represents an
SWN of generation g = 1, one constructs the next generation by
replacing each bead with another complete graph. With that, the
number of beads of an SWN of generation g equals N = dg, which
in the case of d = 3 coincides with the number of beads of the
DSG. A SWN with d = 3 and generation g = 3 is shown in figure
2c.

The eigenvalues of SWNs can be calculated iteratively using33

λ (i)±
g =

1
2

(
d +λ (i)

g−1±
√

d2 +2dλ (i)
g−1 +(λ (i)

g−1)
2−4λ (i)

g−1

)
. (27)

This equation yields two new eigenvalues λ (i)±
g for each eigen-

value λ (i)
g−1 of the previous generation. The eigenvalue spectrum

of an SWN of generation g is completed by additional dg−2dg−1

eigenvalues d. Considering eqn (27) for small eigenvalues leads
to the spectral ds = 2, independently of the parameter d.33 This
implies that the eigenvalue spectrum scales with p, λp ∼ p1, that
can be observed in figure 3c for an SWN of parameter d = 3 and

σCM,a
2 +σCM,v

2

σCM,v
2
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Fig. 4 MSD of the center of mass of a macromolecule consisting of
N = 104 beads for α = 0.7, l2

0 = 3/Γ(3− α) ≈ 2.57, γ = 1, C = 10 and
τA = 103τ0. The solid orange line shows the full MSD, whereas for the
dashed blue line the active forces are turned off.

generation g = 12.

2.2.4 NTD trees

An NTD tree is a treelike graph that is characterized by its gen-
eration g and parameter k.30 To get a tree of generation g from
generation g− 1 one adds k linear chains constisting of 2g beads
to each peripheral bead. Thus, the number of beads at generation
g is given by N = 1+(4g+1− 1)/3. An NTD tree with k = 2 and
generation g = 3 is depicted in figure 2d.

The eigenvalue spectrum of the NTD trees is non-
homogenous.30,32 It is dominated by the behavior of the
linear chains characterized by the spectral dimension ds = 1.
However, the smallest eigenvalues that describe large relaxation
times (which correspond to the relaxation of the branches and
subbranches as a whole51–53 and related to large-scale character-
istics such as gyration radius at the thermal equilibrium45) march
to a different tune. Though the smallest eigenvalues represent
a discrete set (at the thermodynamic limit they build a set of
the Lebesgue measure zero), they possess a λp ∼ (p/N)2ln2/ ln(2k)

behavior.30 An exemplary spectrum for an NTD tree of generation
g = 7 and with parameter k = 2 is shown in figure 3d.

3 Results
3.1 Analysis of σ2(t)
We start our analysis of the mean squared displacement (MSD)
σ2(t) by looking first on the motion of the center of mass, rep-
resented by the terms σ2

CM,v(t)+σ2
CM,a(t) of eqn (18). We notice

that these terms include only the number of beads, but no infor-
mation about the topology of the macromolecule. This means that
the center of mass moves analogously for all macromolecules of
the same molecular mass. The term σ2

CM,v(t) represents the (sub-
diffusive) motion of the center of mass in a viscoelastic bath with-
out active forces, whereas σ2

CM,a(t) is added when active forces
come into play. In figure 4 we show the MSD of the center of mass
in a viscoelastic environment, with and without active forces.

As can be inferred from eqn (19) and shown in figure 4, in
the passive case the viscoelastic bath leads to a subdiffusive tα -



behavior of the center of mass. The active forces described by
σ2

CM,a(t) enrich for τ0 � t � τ∗ (see the definition of τ∗ in eqn
(31) below) the dynamics of the center of mass. For short times
t� τA one can use in eqn (20) that exp(−|τ− τ ′|/τA)≈ 1 leads to

3C
Nγ2G2

α

∫ t

0
dτ
∫ t

0
dτ ′ τα−1(τ ′)α−1 =

(
3C

Nγ2α2G2
α

)
t2α . (28)

Thus active forces cause for α > 1/2 a superdiffusive behavior.
On the other hand, for long times t� τA the function Γ(α;y, t/τA)

inside the integral of eqn (20) can be well approximated through
the incomplete Gamma function, Γ(α;y, t/τA) ≈ Γ(α;y). There-
fore, the integral of eqn (20) can be split into two parts

∫ t/τA

0
dyeyyα−1Γ(α;y)' Iα (x)+

1
2α−1

(
t

τA

)2α−1
(29)

with Iα (x) =
∫ x

0 dyeyyα−1Γ(α;y)− x2α−1/(2α − 1), where x � 1.
With this the long time behavior of σ2

CM,a(t) is dominated by(
6CτA

(2α−1)Nγ2G2
α

)
t2α−1. (30)

Comparing the above eqn (30) with σ2
CM,v(t) of eqn (19) one finds

(for α < 1) the time τ∗ at which the activity becomes irrelevant,

τ∗ =

(
l2
0(2α−1)γ2Γ(α)Γ2(3−α)

3τα
0 αCτA

)1/(α−1)

. (31)

Summarizing, the MSD of the center of mass displays the tα -
behavior for t � τ0 and t � τ∗ due to the viscoelastic bath; for
the in-between times one has then t2α and t2α−1 behaviors for
τ0 � t � τA and τA � t � τ∗, respectively, originating from the
active forces. For 1/2 < α < 1 the latter two regimes show a
change from a superdiffusive to subdiffusive behavior, that has
been also observed for single particles in active viscoelastic envi-
ronments.14,54

We turn to the analysis of the other two terms of σ2(t),
σ2

mon,v(t)+σ2
mon,a(t), which depend on the particular architecture

of the network. The term σ2
mon,v(t) is responsible for the monomer

motion in a passive viscoelastic bath. In order to analyze its be-
havior we use that the density of the eigenvalues ρ(λ ) scales as
λ ds/2−1 and make a continuous transition from the sum to an in-
tegral, i.e.,

tα
N−1

∑
p=1

Eα,α+1

(
−
(

t
τ0

)α
λp

)
→

tα(1−ds/2)ταds/2
0

∫ λmax·(t/τ0)
α

λmin·(t/τ0)α
dxxds/2−1Eα,α+1 (−x) , (32)

where λmin is the smallest non-zero eigenvalue and λmax is the
biggest eigenvalue of the Laplacian matrix A. For small values
x � 1, the Mittag-Leffler function Eα,α+1 (−x) can be approxi-
mated by the constant 1/Γ(α + 1). Under this approximation
the integral can be readily computed, yielding a time dependence
proportional to tα . This time regime holds for t � τ0/λ 1/α

max . For
large values x � 1, the Mittag-Leffler function Eα,α+1 (−x) be-
haves as 1/x. The integral then yields a time dependence propor-

tional to t0, i.e, a constant behavior. This time regime holds for
times t� τ0/λ 1/α

min . For intermediate times τ0/λ 1/α
max � t� τ0/λ 1/α

min
we divide the integral of eqn (32) into three parts and use the
small and long time behaviors of the Mittag-Leffler function dis-
cussed above,

tα(1−ds/2)ταds/2
0

∫ λmax·(t/τ0)
α

λmin·(t/τ0)α
dxxds/2−1Eα,α+1 (−x)

≈ tα(1−ds/2)ταds/2
0

[
2

dsΓ(α +1)

(
gds/2

1 −
(

λmintα

τα
0

)ds/2
)

+ c1(ds)+
1

ds
2 −1

((
λmaxtα

τα
0

)ds/2−1
−gds/2−1

2

)]
(33)

where g1� 1 and g2� 1 are the limits of the approximations for
the Eα,α+1 (−x).

Now, for spectral dimensions ds close to 1 and interme-
diate times τ0/λ 1/α

max � t � τ0/λ 1/α
min the constant c1(ds) =∫ g2

g1
dxxds/2−1Eα,α+1 (−x) is the dominating term of eqn (33). This

means the MSD is proportional to tα(1−ds/2). The range of validity
of this power law depends on ds. So, for ds advancing to 2, the
last term of eqn (33) is getting more important and eventually
diverges, which indicates a collapse of the tα(1−ds/2) time depen-
dence. Additionally, the exponent α(1− ds/2) is getting smaller
with increasing spectral dimension and finally vanishes. There-
fore, we take a closer look at the limiting case ds = 2. Using that
the spectral density for ds = 2 is constant we obtain

τα
0

∫ λmax·(t/τ0)
α

λmin·(t/τ0)α
dxEα,α+1 (−x)

≈τα
0

[
1

Γ(α +1)

(
g1−

λmintα

τα
0

)
+ c1(ds = 2)+ ln

(
λmaxtα

τα
0 g2

)]
.

(34)

Since the first term is getting suppressed by λmin we get for ds = 2
a logarithmic dependence of σ2

mon,v(t) in time over a large time
scale.

Finally we consider the fourth term of eqn (18), σ2
mon,a(t), re-

lated to the monomer motion under active forces. First we look
at times t� τA, for which one has exp(−|τ− τ ′|/τA)≈ 1. We then
get

σ2
mon,a(t)≈

3C
Nγ2Γ2(3−α)

t2α
N−1

∑
p=1

E2
α,α+1

(
− tα

τα
0

λp

)
. (35)

Following the calculation of eqn (32) ff., we make a transition
from the sum in eqn (35) to an integral,

t2α
N−1

∑
p=1

E2
α,α+1

(
− tα

τα
0

λp

)
→

tα(2−ds/2)ταds/2
0

∫ λmax·(t/τ0)
α

λmin·(t/τ0)α
dxxds/2−1E2

α,α+1 (−x) , (36)

For times t � τ0/λ 1/α
max , we again approximate the Mittag-Leffler

function Eα,α+1(−x) by 1/Γ(α + 1). Performing the integration



yields a time dependence proportional to t2α . Now, we split the
integral into

tα(2−ds/2)ταds/2
0

[
2

dsΓ2(α +1)

(
gds/2

1 −
(

λmintα

τα
0

)ds/2
)

+ c2(ds)+
1

ds
2 −2

((
λmaxtα

τα
0

)ds/2−2
−gds/2−2

2

)]
. (37)

with c2(ds) =
∫ g2

g1
dxxds/2−1E2

α,α+1 (−x). At intermediate times

τ0/λ 1/α
max � t� τA the second term yields a

σ2
mon,a(t)∼ tα(2−ds/2) (38)

power law.
When t approaches the time τA the exponential function

exp(−|τ−τ ′|/τA) starts to decay and the behavior tα(2−ds/2) breaks
down. Further, for t � τA the active noise acts as a white noise
(but of a higher temperature than the initial one), i.e., we use
exp(−|τ− τ ′|/τA)≈ 2τAδ (τ− τ ′). We then get

σ2
mon,a(t)' σ2

mon,a(τA)

+
6CτA

Nγ2Γ2(3−α)

N−1

∑
p=1

∫ t

τA

dτ τ2α−2E2
α,α

(
− τα

τα
0

λp

)
. (39)

To analyze the behavior of the second term of eqn (39) we make
a continuous transition and look at the integral

ταds/2
0

∫ t

τA

dτ τα(2−ds/2)−2
∫ λmax·(τ/τ0)

α

λmin·(τ/τ0)α
dxxds/2−1E2

α,α (−x) . (40)

For times τA � t � τ0/λ 1/α
min the second integral in

eqn (40) can be approximated by a constant leading
(for ds 6= 4 − 2/α) to a result that is proportional to
(tα(2−ds/2)−1− τα(2−ds/2)−1

A )/[α(2−ds/2)−1]. Depending on
ds and α, we then get the following behavior

σ2
mon,a(t)∼


tα(2−ds/2)−1− const, for ds < 4− 2

α

log(t), for ds = 4− 2
α

const− tα(2−ds/2)−1, for ds > 4− 2
α .

(41)

Finally, for times t � τ0/λ 1/α
min , σ2

mon,a(t) saturates to a constant
value.

3.2 Control of swelling under active forces

Before going to the illustration of the findings of Section 3.1, we
take a look at the gyration radius

〈
R2

g(t)
〉
, eqn (24), which con-

sists from the equilibrium value of the gyration radius
〈
R2

g(0)
〉

and from σ2
mon,a(t) (eqn (22), vide supra). The latter term de-

scribes a swelling of the macromolecule under active forces and
it can eventually lead to its overstretching. Therefore, by looking
at the change of the gyration radius, one can control the limits
of parameters C and τA characterizing strength and endurance
of the active forces. Given that the equilibrium distances in Gaus-
sian macromolecules have a square root dependence on the corre-
sponding curvilinear path, we have decided for this study to limit
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Fig. 5 Mean squared gyration radius for VF of generation g = 7 and
functionality f = 4. The other parameters are α = 0.7, l2

0 = 3/Γ(3−α) ≈
2.57, γ = 1, C = 10 and τA = 105τ0. In the main figure the equilibrium size
is subtracted while in the inset it is included.

the parameters C and τA to the values that do not allow
〈
R2

g(∞)
〉

to exceed the order of
〈
R2

g(0)
〉2

/l2
0 .

Figure 5 shows the gyration radius for a VF of generation g = 7
and functionality f = 4. Here we can see the discussed above time
evolution of σ2

mon,a(t) =
〈
R2

g(t)
〉
−
〈
R2

g(0)
〉
. This starts to grow ac-

cording to a t2α power law, followed by the regime proportional
to tα(2−ds/2) (before reaching τA) and then slowly saturates (fol-
lowing eqn (41), here ds > 4−2/α) to a constant value.

3.3 Monomer dynamics of different networks
In this subsection we make an explicit illustration of the MSD of
the monomers belonging to various structures presented in Sec-
tion 2.2. For all considered examples the parameters characteriz-
ing the active forces are chosen bearing in mind the discussion of
Section 3.2. In particular, in all cases the correlation time τA of
the active forces is about one percent of the large-scale character-
istic time τ0/λmin of the structures.

Figure 6 shows passive (dashed lines) and active (solid lines)
dynamics of the networks’ monomers. Independently of the net-
works’ architecture and the bath activity, at very small and very
large times one observes a universal tα time behavior reflecting
the viscoelasticity of the bath. The initial behavior t2α of the term
σ2

mon,a(t) (eqn (22)) is suppressed by the initial viscoelastic one
(tα ) due to the modesty of the active forces.

Starting with times t > τ0 one encounters the differences be-
tween the active and passive case. For these times, in the passive
viscoelastic bath the monomer motion is much slower than for the
case when also the active forces are present. In the passive envi-
ronment one observes a tα(1−ds/2) behavior for ds < 2 and log(t)
for ds = 2. In the active case one has a tα(2−ds/2) power law, whose
range for ds = 2 marginalizes (although one can certainly find the
corresponding tα power law in the active component σ2

mon,a(t)
of monomer MSD, see black dotted line on Figure 6c). For NTD

trees one clearly observes the scaling exponents tα/2 in the pas-
sive case and t3α/2 in the active case, the same as for a linear
chain4. Thus, the ground states related to the equilibrium size
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Fig. 6 Monomer MSD of different macromolecular structures: a) VFs of
different functionalities and generation g = 7. b) DSG of generation
g = 10. c) SWN with d = 3 and generation g = 12. d) NTD tree with k = 2
and generation g = 7. The solid lines show the full MSD (s2 of eqn (18))
while for the dashed lines the active forces are turned off
(s2

v = s2
CM,v +s2

mon,v of eqn (19) and (21)). The parameters are a = 0.7,
l2
0 = 3/G(3�a) ⇡ 2.57, g = 1 for all figures; tA = 105 for VFs, tA = 103 for

the other structures, C = 10 for VFs and DSG, C = 1 for SWN and
C = 100 for NTD. The green dotted lines represent eqn (41).

tant for the monomer dynamics (these states reveal themselves
only slightly in the passive case just before reaching the center
of mass motion). In general, for times t0 < t < tA the structural
differences (that are reflected in the spectral dimension ds) are
more pronounced in the passive case, because little changes in ds

are more visible in the exponent a(1�ds/2) than in a(2�ds/2).
Moreover, the ta(2�ds/2) power law of the active case holds only
until time t ⇡ tA, which has to be much smaller than the maximal
relaxation time of the structures in order not to overstretch them.

Next, for times t > tA, the monomer motion in the active vis-
coelastic bath changes, following the behavior of eqn (41). As
can be observed in figure 6a, one can clearly distinguish the
structures having different ds. The monomers of networks with
higher ds move much slower due to higher connectivity with other
monomers. Thus, reaching the monomer displacements that are
comparable with the total size of the structures takes more time
for the networks with higher ds leading then to a broader range
of validity of eqn (41). Finally, this results in the suppressing for
higher values of the spectral dimensions ds of the regime t2a�1

related to the motion of the center of mass under active forces at
times tA < t < t⇤.

4 Conclusions

In this work we have studied the dynamical behavior of macro-
molecular networks in an active and viscoelastic bath. In doing
so, we have analyzed the MSD of monomers, which can be formu-
lated based on the eigenvalue spectrum of the Laplacian matrix
of the respective network. The active forces lead to a tremendous
change in the dynamics of the macromolecules. At the intermedi-
ate times one observes structure-dependent dynamics of swelling,
which is characterized through the spectral dimension ds. The
monomer motion in this regime is much faster than in the passive
viscoelastic bath, that can be even superdiffusive for higher ex-
ponents a characterizing the bath and lower spectral dimensions
ds characterizing the connectivity of the structure. At times that
are higher than the typical duration of action of the active forces,
the dynamics of monomers slows down (being even slower than
in the passive case), reflecting the relaxation of tension caused by
the active forces acted at earlier times.

The dynamics of swelling is directly pronounced in the gyration
radius of the macromolecules. This fact allows one to control
the strength and endurance of active forces. Thus, in order to
prevent overstretching of the macromolecules one is restricted to
moderate activity of the bath and therefore in order to see the
characteristic behavior of the macromolecules one has to consider
very large structures. For this, the iterative schemes such as of
ref.24,25,27,28,33 are of much help.

This study has aimed to bridge microscopic connectivity with
the macroscopic behavior. The ensuing power laws (in the regions
of their appearance) can be also obtained based on the scaling ar-
guments,12 if one assumes self-similarity of the fractal networks.
However, in case of the structures with irregular relaxation spec-
tra, such as NTD trees, and for a detailed picture of the full func-
tional evolution rigorous calculations that account for the whole
spectrum are necessary.

Fig. 6 Monomer MSD of different macromolecular structures: a) VFs of
different functionalities f and generation g = 7. b) DSG of generation g =

10. c) SWN with d = 3 and generation g = 12. d) NTD tree with k = 2 and
generation g = 7. The solid lines show the full MSD (σ2 of eqn (18)) while
for the dashed lines the active forces are turned off (σ2

v = σ2
CM,v +σ2

mon,v

of eqn (19) and (21)). The parameters are α = 0.7, l2
0 = 3/Γ(3−α)≈ 2.57,

γ = 1 for all figures; τA = 105τ0 for VFs, τA = 103τ0 for the other structures,
C = 10 for VFs and DSG, C = 1 for SWN and C = 100 for NTD. The green
dotted lines represent eqn (41).

of the trees and hence to their fractal dimension are unimpor-
tant for the monomer dynamics (these states reveal themselves
only slightly in the passive case just before reaching the center
of mass motion). In general, for times τ0 < t < τA the structural
differences (that are reflected in the spectral dimension ds) are
more pronounced in the passive case, because little changes in ds

are more visible in the exponent α(1−ds/2) than in α(2−ds/2).
Moreover, the tα(2−ds/2) power law of the active case holds only
until time t ≈ τA, which has to be much smaller than the maximal
relaxation time of the structures in a passive bath in order not to
overstretch them.

Next, for times t > τA, the monomer motion in the active vis-
coelastic bath changes, following the behavior of eqn (41). As
can be observed in figure 6a, one can clearly distinguish the
structures having different ds. The monomers of networks with
higher ds move much slower due to higher connectivity with other
monomers. Thus, reaching the monomer displacements that are
comparable with the total size of the structures takes more time
for the networks with higher ds leading then to a broader range
of validity of eqn (41). Finally, this results in the suppressing for
higher values of the spectral dimensions ds of the regime t2α−1

related to the motion of the center of mass under active forces at
times τA < t < τ∗.

4 Conclusions
In this work we have studied the dynamical behavior of macro-
molecular networks in an active and viscoelastic bath. In doing
so, we have analyzed the MSD of monomers, which can be formu-
lated based on the eigenvalue spectrum of the Laplacian matrix
of the respective network. The active forces lead to a tremendous
change in the dynamics of the macromolecules. At the intermedi-
ate times one observes structure-dependent dynamics of swelling,
which is characterized through the spectral dimension ds. The
monomer motion in this regime is much faster than in the passive
viscoelastic bath (as it was also found in experimental studies of
fluorescently labeled chromosomal loci in bacterial cells1), that
can be even superdiffusive for higher exponents α characterizing
the bath and lower spectral dimensions ds characterizing the con-
nectivity of the structure. At times that are higher than the typical
duration of action of the active forces, the dynamics of monomers
slows down (being even slower than in the passive case), reflect-
ing the relaxation of tension caused by the active forces acted at
earlier times. (We note that one can observe such a slowing down
at higher times, e.g., in the MSD data of nucleosome movement
in living mammalian cells.16) In general, the tension relaxation is
much slower for the structures with a higher connectivity (or ds,
see Eq. (41)), that in turn reflects a higher amount of bonds to
which the active forces were exerted.

The dynamics of swelling is directly pronounced in the gyra-
tion radius of the macromolecules. Therefore, if one can define a
fractal dimension of the structure, it will not be constant as in a
passive bath anymore. On the contrary, the spectral dimension ds

is solely defined by the Laplacian matrix A, so that for the struc-
ture with a quenched connectivity it is a constant. Monitoring the
growth of a macromolecule allows one to control the strength and
endurance of active forces. Thus, in order to prevent overstretch-



ing of the macromolecules one is restricted to moderate activity of
the bath and therefore in order to see the characteristic behavior
of the macromolecules one has to consider very large structures.
For this, the iterative schemes such as of ref.24,25,27,28,33 are of
much help.

This study has aimed to bridge microscopic connectivity with
the macroscopic behavior. The ensuing power laws (in the regions
of their appearance) can be also obtained based on the scaling ar-
guments,12 if one assumes self-similarity of the fractal networks.
However, in case of the structures with irregular Laplacian spec-
tra, such as NTD trees, and for a detailed picture of the full func-
tional evolution rigorous calculations that account for the whole
spectrum are necessary.
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