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The atypical vesicular glutamate transporter VGLUT3 is present in subpopulations of GABAergic

interneurons in the cortex and the hippocampus, in subgroups of serotoninergic neurons in

raphe nuclei, and in cholinergic interneurons in the striatum. C56BL/6N mice that no longer

express VGLUT3 (VGLUT3−/−) display anxiety-associated phenotype, increased spontaneous

and cocaine-induced locomotor activity and decreased haloperidol-induced catalepsy. Inbred

mouse strains differ markedly in their sensitivity to anxiety and behavioral responses elicited by

drugs. The purpose of this study was to investigate strain differences in VGLUT3 expression

levels and its potential correlates with anxiety and reward-guided behaviors. Five inbred mouse

lines were chosen according to their contrasted anxiety and drugs sensitivity: C57BL/6N,

C3H/HeN, DBA/2J, 129/Sv, and BALB/c. VGLUT3 protein expression was measured in differ-

ent brain areas involved in reward or mood regulation (such as the striatum, the hippocampus,

and raphe nuclei) and genetic variations in Slc17a8, the gene encoding for VGLUT3, have been

explored. These five inbred mouse strains express very different levels of VGLUT3, which can-

not be attributed to the genetic variation of the Slc17a8 locus. Furthermore, mice behavior in

the open field, elevated plus maze, spontaneous- and cocaine-induced locomotor was highly

heterogeneous and only partially correlated to VGLUT3 levels. These data highlight the fact that

one single gene polymorphism could not account for VGLUT3 expression variations, and that

region specific VGLUT3 expression level variations might play a key role in the modulation of

discrete behaviors.

KEYWORDS
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1 | INTRODUCTION

Glutamate plays a major role in neurotransmission and around 50% to

70% of all brain synapses release glutamate.1 To act as a neurotrans-

mitter glutamate has to be accumulated inside synaptic vesicles,

allowing its exocytotic release in the synaptic cleft. The transport of

cytosolic glutamate into vesicles is operated by Vesicular Glutamate

Transporters types 1, 2 and 3 (VGLUT1, −2, −3).2 All three VGLUTs

have similar functional properties and show almost complementary

expression in the brain. VGLUT1 is mainly expressed by cortical areas,

and VGLUT2 by subcortical areas.3,4 While VGLUT1 and VGLUT2 are

present mainly in glutamatergic neurons, VGLUT3 is observed inDiana Y. Sakae and and Lauriane Ramet contributed equally to this study.
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neurons utilizing other neurotransmitters.2 For instance, VGLUT3 is

expressed by subpopulations of GABAergic interneurons in the cortex

and the hippocampus, serotoninergic neurons in the raphe nuclei, and

in cholinergic interneurons in the striatum.5,6 In these neurons,

VGLUT3 allows glutamate to be released as well as potentiate vesicu-

lar filling2,7 and therefore regulates the amount of release of other

neurotransmitters, that is, γ-aminobutyric acid (GABA), serotonin or

acetylcholine.7–10 C57BL/6N mice lacking VGLUT3 (VGLUT3−/− mice)

display higher anxiety-associated and striatal-related behaviors (such

as increased spontaneous hyperactivity and cocaine-induced locomo-

tor activity [LMA]8,9,11). The use of knockout mice is a powerful tool

to determine the contribution of selected genes in specific and com-

plex behaviors.12–17 However, these behaviors also depend on the

genetic background of various mouse strains.16,18,19 Several studies

already showed phenotypic differences between inbred mouse strains

for both anxiety and behavioral responses elicited by drugs.20–25

The first aim of this study was to assess whether the level of

VGLUT3 expression was different in various mouse strains. The sec-

ond aim was to investigate whether these variations of expression

could be related to some VGLUT3-dependent phenotypic traits previ-

ously reported in VGLUT3−/− mice.11 We measured VGLUT3 protein

expression levels in the striatum, hippocampus and raphe nuclei of dif-

ferent mouse strains and correlated them to their anxiety-like and

cocaine-induced locomotor behaviors. These brain regions were

selected for their known involvement in the regulation of mood or

reward behaviors. Five inbred mouse lines commonly used in labora-

tories were studied (C57BL/6N, C3HeN, DBA/2J and 129/Sv, BALB/

c) and compared with VGLUT3−/− mice (C57BL/6N background). Sub-

stantial differences between strains' behaviors were observed, as well

as variations in the level of VGLUT3 expression. However, no direct

correlation could be established between the strain-specific genetic

variations in Slc17a8, the gene encoding VGLUT3 and VGLUT3 levels.

VGLUT3 levels did correlate to some extent with a few behaviors.

This finding suggests that glutamatergic cotransmission and

VGLUT3-dependent vesicular filling of other neurotransmitters might

play a key role in modulating neuronal networks but only in some dis-

crete behavioral aspects.

2 | MATERIALS AND METHODS

2.1 | Animals

BALB/cJ, DBA2/J and C3H/HeN mice were supplied by Janvier Labs

(Le Genest St Isle, France), and 129S2/Sv by Charles River (L'Arbresle,

France). Male mice were 6 weeks old upon arrival. C57BL/6N and

VGLUT3−/− mice (C57BL/6N background) were obtained from our

breeding facility. All mice were kept in groups of 4 per cage, housed in

a temperature-controlled room (21 � 2�C) with ad libitum access to

water and food under a light/dark cycle of 12 hours (light ON from

7:30 AM to 7:30 PM). Three independent groups of mice were used:

one for the behavior (n = 58), one for the anatomy (immunoautoradio-

graphy [IAR]) (n = 19) and one for the genetics (n = 20) (see Table 1

for details). Behavioral experiments were performed on 8 to 12 weeks

old mice during light phase. All experiments were performed in accor-

dance with the European Union guidelines (directive 2010/63/EU),

and with the approval of the French Ministère de l'Agriculture et de la

Forêt, Service Vétérinaire de la Santé et de la Protection Animale (autho-

rization #01482.01 from ethics committee Darwin #5). All efforts

were made to minimize the number of animals used in the course of

the study and to ensure their well-being.

2.2 | Behavioral analysis

Animals were first tested in the open field (OF), a couple of days later

in the elevated plus maze (EPM), and after a week delay in a circular

corridor for cocaine-induced LMA. The group size varies from 7 to

10—exact numbers are presented in Table 1. All graphs represent the

mean � scanning electron microscope (SEM).

2.2.1 | OF test

The OF test was performed in a white perplex arena

(43 × 43 × 26 cm) located in a 50-lx illuminated room. The virtual

central compartment square represents one third of the total arena.

Mice were introduced into the central area and allowed to freely

explore the OF for 360 seconds. We recorded duration, frequency

and time course of various behaviors (exploration, walk, rear, stretch

and groom-data not shown) exhibited by mice in different regions of

the OF (central vs periphery zone) using Viewpoint tracking system

(Lyon, France).

2.2.2 | EPM test

The EPM consists of two white open arms (OAs) and two black-closed

arm (CA) (66 × 66 cm, 50 cm high) with a central zone named choice

area. The luminosity in the central zone is 50 lx. After 1 hour of habit-

uation in the testing room, animals were placed into the choice area

of the maze and tested for 360 seconds. The total time spent in each

compartment (open vs CAs) and the number of arms entries were

recorded using Viewpoint tracking system. The percentage of duration

was calculated using arms occupancy: (OA) duration × 100/(OA + CA)

duration, therefore excluding the time spent in the central zone.

2.2.3 | Locomotor activity

LMA was measured in cyclotron. It consists of a circular corridor with

four infrared beams placed at 90� angles (Imetronic, Pessac, France).

The device is connected to an electronic interface for data collection.

The consecutive interruption of two adjacent infrared beams (ie, mice

moving through one fourth of the circular corridor) was recorded and

represents the activity of the animal. For cocaine-induced LMA exper-

iment, after an hour habituation to the activity box, mice were

TABLE 1 Animals used in the different aspect of the study

n= BalB/
c

DBA/
2

C57BL/
6N

C3H/
HeN

129/
Sv

VGLUT3-/-

OF 10 10 8 9 9 8

EPM 10 9 8 10 8 7

LMA 10 10 7 10 10 10

IAR 4 4 5 3 3 -

Genetics 5 5 5 5 5 -

Abbreviations: EPM, elevated-plus maze; Immunoautoradiography (IAR,
n=19); LMA, locomotor activity induced by cocaine; OF, open field.
Note: Behavior (n=58), Genetics (n=20).



injected with saline (NaCl 0.9%, ip), and placed back into the cyclotron

for another 1 hour. They were then injected with cocaine (10 mg

kg−1, ip), and recorded for an additional 90 minutes. LMA was

recorded in 5-minute intervals for 210 minutes. To assess cocaine-

induced hyperlocomotion, we normalized the data by subtracting

LMA observed in the 30 minutes following saline injection to the

LMA observed in the 30 minutes following cocaine injection.

2.3 | IAR labeling of VGLUT3

To assess whether VGLUT3 was differently expressed in various

mouse lines, we analyzed multiple brain areas by IAR as previously

described.8 VGLUT3 density measurements were performed in the

striatum, the hippocampus and raphe nuclei of wild-type mice from

the different genetic backgrounds (n = 4) and compared with

VGLUT3−/− mice (C57BL/6N background; n = 4). After cervical dislo-

cation, brains were dissected and rapidly frozen in isopenthane at

−30�C. Fourteen-micrometer-thick coronal brains sections were cut

at −20�C, thaw-mounted on Superfrost Plus slides and stored at

−80�C until use. For each mouse, four coronal sections of each brain

area per strain were analyzed. Sections were fixed with 4% parafor-

maldehyde at room temperature for 15 minutes and washed with

phosphate buffered saline (PBS) containing 3% bovine serum albumin,

1% goat serum and 1-mM NaI for an hour (named Buffer A). Sections

were then incubated overnight at 4�C with buffer A supplemented

with VGLUT3 antiserum (1/20000; Synaptic System), wash out and

then incubated for 2 hours at room temperature (RT) in buffer A with

anti-rabbit [125I]-IgG (PerkinElmer, Villebon sur Yvette, France). Rinsed

sections were then exposed to X-ray films (Biomax MR, Kodak) for

3 days. Standard radioactive microscales were exposed onto each film

to ensure that labeling densities were in the linear range. The densi-

tometry measurements were performed with MCID analysis software

version 7.0 (Imaging Research Inc., St Catherines, ON, Canada). Back-

ground was determined on white matter areas on each section and

subtracted from the densitometry measurements. Areas were identi-

fied and defined by comparing sections to the Paxinos mouse brain

atlas (2001)26: dorsal striatum (DS) and ventral striatum (VS) were ana-

lyzed in coronal sections with +1.54 to +1.10 from bregma; dorsal hip-

pocampus (DH) ranging −1.34 to −2.30 from bregma; ventral

hippocampus (VH) from −2.80 to −3.16; dorsal raphe nuclei (DRN)

and median raphe nuclei (MRN) −4.16 to −4.60 from bregma.

2.4 | Genetic analysis of VGLUT3 promoter

In order to determine whether variation of VGLUT3 expression levels

in different mouse strains resulted from genetic differences, we

sequenced 2540 bp spanning the promoter region and exon 1 as well

as 4098 bp spanning the last coding exon and the 30 untranslated

region (30-UTR) of Slc17a8 (the gene encoding for VGLUT3). Five mice

per strain were used. Genomic DNA was extracted from mouse tail

using DirectPCR lysis reagent (Viagen Biotech Inc., Los Angeles, Cali-

fornia) and 0.2 mg/mL Proteinase K solution, according to manufac-

turers' protocol. The promoter region and the exon 1 flanking regions

of Slc17a8 (NM_182959.3) were defined as 1770 bp upstream to the

transcription start site, 451 bp of the exon 1 and 319 bp downstream

to exon 1. The last exon and its flanking region were defined as

809-bp upstream to exon 12, 2638 bp of exon 12, including 2296 bp

of 30-UTR, and 651-bp downstream to the end of transcription. These

regions were amplified by polymerase chain reaction (PCR) and

sequenced using BigDye Terminator v3.1 cycle sequencing kit

(Thermo Fisher Scientific, Carlsbad, California) and run on a

16-Capillary ABI PRISM 3130xl genetic analyzer after purification

using the BigDye XTerminator purification kit (Thermo Fisher Scien-

tific). Chromatograms were analyzed using Genalys 2.8.2b software.27

All primers used for PCR amplification and sequence analyses are

available on request. We used TargetScanMouse 7.128 to check

whether identified single-nucleotide polymorphism (SNP) may affect a

conserved mammalian microRNA (miRNA) regulatory target sites, and

MAPPER2
29 to study potential changes in binding sites.

2.5 | Statistics

Nonparametric Kruskal-Wallis H test was used to assess strain differ-

ences in VGLUT3 content and in behavioral measures. The Mann-

Whitney U test was used to compare VGLUT3+/+ and VGLUT3−/− mice

data. Repeated measures analysis of variance (ANOVA) was used to calcu-

late differences across time in the cocaine-induced hyperlocomotion

experiment. For correlations analyses, Pearson correlation coefficient

R2 was calculated. All statistical analyses were performed using Graph-

Pad Prism 6 (Graphpad Software Inc., La Jolla, CA, USA) for MacOS

X. The threshold for statistical significance was set at 5%.

3 | RESULTS

3.1 | Behavioral characterization

3.1.1 | OF and EPM

In the OF, a strong strain-specific difference in anxiety-associated

LMA (Figure 1A,C, kruskal wallis test (KW), W = 26.35; 24.04; 26.81,

P < 0.0001) and anxiety-like phenotype (Figure 1D, KW, W = 19.5,

P = 0.0006) was observed. Of all strains tested, the C57BL/6N strain

was the less anxious (Figure 1D: B6 vs BALB: P < 0.01; B6 vs C3H:

P < 0.0001). In this test, DBA/2 mice were globally more active than

129/Sv, BALB/c and C3H/HeN (Figure 1A-C, P < 0.01 for all compari-

sons). VGLUT3−/− mice show a strong reduction of LMA (boxed bar

graphs for: (Figure 1A), peripheral LMA: Mann Whitney test (MW)

U test, U = 5, P = 0.0127; (Figure 1B) central LMA: MW U test, U = 0,

P = 0.0007; (Figure 1C) total LMA: MW U test, U = 5, P = 0.0295), as

well as a fivefold higher center occupancy (boxed bar graph

Figure 1D, MW U test, U = 0, P = 0.0007).

In the EPM test, strain-specific differences were observed in the

time spent in OAs (Figure 2A, KW, W = 13.33, P = 0.0098), CAs (Fig-

ure 2B, KW, W = 22.95, P < 0.0001), percentage of time spent in

OAs (Figure 2E, KW, W = 10.9, P = 0.027), and in the frequency of

OAs (Figure 2C, KW, W = 11.36, P = 0.0228). However, no differ-

ences in CA entries were observed between the five strains

(Figure 2D, KW, W = 6.44, P = 0.1686). Regarding the OAs analyses

(Figure 2A,C,E), statistical differences can be explained by the over-

all higher exploration rate of the C57BL/6N strain. We observed

that 129/Sv also present a significantly lower exploration of the



CAs than BALB/c, DBA/2, and C57BL/6N mice (Figure 2B;

P < 0.01). As we previously published,9 VGLUT3−/− mice displayed

an anxiogenic-like phenotype. In the EPM, they visited less often

(Figure 2C boxed bar graph, MW U test, U = 10, P = 0.0264) and

spent less time in the OAs than control littermates (boxed bar graph:

Figure 2A, MW U test, U = 8.5, P = 0.0183; Figure 2E, MW U test,

U = 8.5, P = 0.02). VGLUT3 deletion impacts time spent and the

number of visits in the CAs (respectively, boxed bar graph in:

Figure 2B, MW U test, U = 11, P = 0.0485; Figure 2D, MW U test,

U = 7, P = 0.0115). VGLUT3−/− mice spent more time in the CAs

but show fewer entries, indicating a reduction in LMA in an anxio-

genic environment.
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3.1.2 | Cocaine-induced LMA

None of the strains reacted to saline injection (Figure 3A at

60 minutes). In contrast, all strains except 129/Sv mice showed a

hyperlocomotion after cocaine injection (Figure 3A see at

120 minutes; 2-way repeated mesures ANOVA (RM-2) ways ANOVA,

all P < 0.0001: F41,1722 = 69.97 for time, F4,42 = 9.456 for strains, and

F42,1722 = 11.37 for time × strains interaction). The highest LMA was

observed for C3H/HeN mice, whereas the lowest was observed in

BALB/c, − not including 129/Sv (Figure 3B; KW, W = 31.72,

P < 0.0001). Knock-out mice for VGLUT3 express a twofold increase

in cocaine-induced LMA compared with control littermates

(C57BL/6N), reaching the level of C3H/HeN animals (Figure 3B boxed

bar graph: MW test, U = 13, P = 0.033).

3.2 | VGLUT3 expression

As expected, VGLUT3 was not detectable in the whole brain of the

VGLUT3−/− mice8 (data not presented). In the DS and VS, VGLUT3

expression fluctuates between strains (KW-test, Figure 4A: DS,

W = 15.28, P = 0.0042, Figure 4B: VS, W = 12.83, P = 0.0121), with

levels around 2 times higher in 129Sv, C3HeN and C57BL/6N than

BALB/c and DBA/2 mice. In the hippocampus, VGLUT3 expression

gradually decreases from high expression in 129/Sv > C3H/HeN>

C57BL/6N to lower expression in DBA/2 > BALB/c (KW test,

Figure 4C: DH, W = 13.18, P = 0.0104, and Figure 4D: VH, W = 8.3,

P = 0.0505). In raphe nuclei, no differences of VGLUT3 expression

were found between strains (KW test, Figure 4E: DRN, W = 7.46,

P = 0.0874, and Figure 4F: MRN, W = 7.45, P = 0.0879).

Overall, in comparison to C57BL/6N mice (set up as the reference

100%; see supplementary data, Figure S1), 129Sv and C3HeN strains had

higher VGLUT3 expression levels (respectively 126.9 � 9.4% and

116.4 � 3.4%, P < 0.021), while BALB/c and DBA/2 mice displayed lower

VGLUT3 levels (respectively 63.9 � 3.7% and 80.8 � 5.7%, P < 0.035).

3.3 | SLC17A8 regulation regions

We identified 51 SNPs in the promoter region, and 40 SNPs and

4 indels in the 30-UTR (Supporting Information Table S1). Most of

these SNPs were in linkage disequilibrium (r2 = 1) and we thus

reduced to seven haplotype-tagging SNPs (ht-SNPs) to specifically

define each mouse strain (Figure 5A and Supporting Information

Table S1). Only one SNP (rs29353268) in the last exon might explains

the overall lower VGLUT3 expression observed both in DBA2 and

BALB/c (see Figure S1).

As the lowest expression observed was in BALB/c mice, we checked

which SNPs were shared by C57BL/6N, C3HeN and 129sv, but BALB/c.

Hap4 matched these criteria (Supporting Information Table S1). This hap-

lotype spanned two SNPs in the promoter region (rs46766687 and

rs29349498) and two SNPs in the last exon (rs29325887 and

rs29367655). In the promoter region, only rs29349498 was conserved

through evolution. Interestingly, we found this SNP was predicted to

change putative binding sites for the AhR and Pax-8 transcription factors

(Figure 5B). However, for both the G allele observed in BALB/c should

allow transcription factor binding and thus could not explain the lower

expression observed for VGLUT3. Downstream, only rs29367655 was

highly conserved through evolution, but no putative miRNA binding site

was found to be affected by this SNP (not shown).

3.4 | VGLUT3 expression and behavior
characterization: Correlation

In order to assess the possible link between VGLUT3 protein levels

and phenotypic traits, we ran correlation analyses for each parameter.

We first studied the anxiety trait. The only parameter showing

correlation with VGLUT3 expression was the time spent in CAs in the

EPM. We found a negative correlation between these parameters

both in DRN and MRN (Figure 6E,F).

We then performed correlative analysis between the cocaine-

induced LMA and VGLUT3 expression in the various brain regions

studied (Figure 7). The 129/Sv line that did not respond to cocaine

injection was excluded from this analysis. We found no correlation in

the DS or the VS (Figure 7A,B). In contrast, we observed a weak corre-

lation between VGLUT3 densities and LMA in the VH (Figure 7D) and

the DRN (Figure 7E).

4 | DISCUSSION

The application of animal models of anxiety and drug-responses for

experimentation in mice is becoming increasingly important for
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studying the contribution of genetic differences, as well as the roles

of selected genes, in specific behaviors. By running these experiments,

we wanted to better understand1 the contribution of genetic differ-

ences, as well as2 the contribution of the VGLUT3 gene in specific

behaviors of anxiety and addiction.

In previous studies, VGLUT3−/− mice were used to assess

VGLUT3 involvement in the regulation of anxiety and addiction. The

absence of VGLUT3 leads to severe changes in anxiety- and

addictive-like phenotypes, including cocaine-induced locomotor

hyperactivity.9,11 To further investigate the association between

VGLUT3 and anxiety- or addictive-like behaviors, we herein tested

whether variation of VGLUT3 endogenous expression in different

mouse strains might be correlated with differences in their anxiety- or

addictive-like behaviors.
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Surprisingly, in our hands, the 129/Sv mouse strain did not

respond to cocaine at 10 mg/kg. Published work showed controversial

results concerning 129/Sv strains.23,30–34 It seems that it is not only

dependent on the study (ie, behavioral design, provider and drug con-

centration), but also on the substrain used (129S1/Sv, 129S6/Sv, and

129X1/Sv). For instance, Miner (1997) was the first to describe loco-

motor activation by cocaine in the 129S1/Sv line.31 However, the

observed increased locomotion due to cocaine injection was not that

clear when compared with locomotor activation after saline injec-

tion. Crabbe et al31 also found highly variable behaviors in 129/Sv

substrains between labs following cocaine injections.30 In our study,

we used the 129S2/Sv line with a dose of 10 mg/kg that did not

elicit locomotor hyperactivity. This lack of increased-LMA also found

in various mutant mice targeting the dopamine receptor or trans-

porter (D1 or dopamine transporter (DAT)) is often consistent with

the absence of reinforcing effect of cocaine.35–38 Moreover, the

129/Sv line, as the C3H, is known to be especially hypoactive. How-

ever, in our hands, C3H mice showed the highest reaction to cocaine

injection, reaching the level of VGLUT3−/− mice. Our results, in

agreement with a previous study,34 identify C57BL6 and C3H mice

FIGURE 5 Slc17a8 sequence: (A) gene structure of Slc17a8. The coding exons are shown with thick blocks, whereas the thinner represents

UTRs. Six haplotype-tagging SNPs have been identified in the promoter region and one in the 30-UTR defining specific haplotypes for each mouse
strain. (B) Genomic alignment of rs29349498. This SNP is located 341-bp upstream to the transcription start site and affects a highly conserved
nucleotide. This variation is observed only in BALB/c mice as compared with other mouse strains and alters putative binding site of AhR and
Pax-8

FIGURE 6 Correlation between VGLUT3 expression level in various brain regions and LMA after cocaine injection (excluding 129/Sv strain).

Dots represent mean � SEM. Pearson correlation coefficients R2 are indicated, with P value when significant. (A) DS. (B) VS. (C) DH. (D) VH.
(E) DRN. (F) MRN. NS, non significant; OD, optical density



as the most appropriate lines to study behavioral responses to

cocaine.

Consistent with Keum et al39, we found that C3H/He mice are

low performers and very anxious, especially in the OF test (Figure 1C,

D).40 They spent less than 2% in the central zone of the OF whereas

B6 mice were the less anxious spending more than 8% of their time

exploring the center. In our hands, DBA/2 and 129/Sv mice display a

moderate anxiety-like phenotype, with BALB/c being more anxious,

as found by Lad et al.41 These discrepancies with published studies

can be explained by substrain differences because we used 129S2/Sv

instead of 129S1 and S4 as in.41,42 It could also be due to the fact that

mice spent considerable time in the central compartment, a behavior

that can be associated with high anxiety levels, because mice can

express freezing behavior in the central zone.

In anxiety tests, the illumination intensity is known to be a prime

parameter. However, we established the same ranking in anxiety

response as previous work despite very different conditions of illu-

mination.39 They used a very high intensity (300–330 lx), compare

with our lower measures (50 lx) supposedly less aversive for the

mice. The ranking of the various mouse strains we obtained in EPM

and OF is consistent. Indeed, in both cases, we observed the stron-

gest and the weakest state of anxiety for the BALB/c and B6 strains,

respectively, while the DBA/2 and the 129/Sv strains express a

moderate anxiety. The C3H line is the only line for which we noticed

discrepancies in the level of expressed anxiety in the EPM and OF

test. We observed high anxiety level of C3H mice in the OF (spend-

ing less than 2% in the central zone), However, in the EPM, they

explored more often the OAs, which can be interpreted as a sign of

low anxiety.

As we previously highlighted, the C3H strain is hypoactive. This is

also the only known strain used with visual impairments. Both these traits

could undoubtedly have a noticeable impact on the EPM exploration.41 A

possible explanation for the difference in anxiety levels observed for this

strain between the OF and the EPM is that LMA is recruited differently,

with the exploratory activity component priming in the EPM.

In mice, there is an inverse correlation between anxiety levels and

LMAs, that is clearly observed in VGLUT3−/− mice. In fact,

VGLUT3−/− mice that are hyperactive when placed in normal housing

conditions, turn out to be hypoactive when exposed to stressful

environments.9,43,44

Within each strain, VGLUT3 expression varies substantially

according to the brain region involved in anxiety- and drug-related

behavior. Between strains, the overall VGLUT3 expression is also dif-

ferent, with C3H/HeH = 129/Sv, C57Bl/6N and BALB/c = DBA/2,

from the highest VGLUT3 expression to the lowest, respectively.

More precisely, the striatum (dorsal and ventral) is the brain region

showing the highest variability in VGLUT3 expression between the

mouse lines. In this area, C57BL/6N mice express the same level of

VGLUT3 than C3H/HeH and 129/Sv strains.

Interestingly, the analysis of the Slc17a8 locus identified SNPs

associated with the low expression group including BALB/c and

DBA/2 strains. However, the relationships between these sequence

variations and their impact on the level of VGLUT3 expression has to

be elucidated.

We observed high heterogeneity of VGLUT3 expression depend-

ing on mice strain that might be partially explained by a SNP in the

BALB/c and DBA/2 strains. This nucleotide change does not alter the

amino acid sequence of the protein and is highly conserved through

FIGURE 7 Correlation between VGLUT3 expression level in various brain regions and the time spent in CAs in the EPM test. Dots represent

mean � SEM. Pearson correlation coefficients R2 are indicated, with P value when significant. (A) DS. (B) VS. (C) DH. (D) VH. (E) DRN. (F) MRN.
NS, non significant; OD, optical density



mammalian evolution (not shown), but no known putative miRNA

binding site has been described in this region.

Nevertheless, no clear correlation could be established between

VGLUT3 expression and behavioral traits, highlighting the fact that

even if the ablation of this gene in VGLUT3−/− mice lead to a clear cut

phenotypic pattern (ie, cocaine-induced hyperlocomotion, anxiety-like

phenotype), one single gene polymorphism could not be taken respon-

sible for the intrinsic variability observed in various mice line. How-

ever, the correlation analysis showed that VGLUT3 could play an

important role in two regions regarding LMA and anxiety traits: raphe

nuclei and hippocampus. Because VGLUT3 is present in serotoniner-

gic neurons of raphe nuclei and in GABAergic interneurons of the hip-

pocampus7,9 the use of mice with a floxed VGLUT3 will enable the

spatio-temporal control of VGLUT3 deletion. This method will open

the way to a more precise dissection of the contribution of VGLUT3

within specific neuronal populations and behaviors. Finally, this work

confirms that the C57BL/6N background was the more appropriate to

study the behavioral effect of VGLUT3 deletion and illustrates how

critical is the choice of the genetic background when engineering new

mice models.
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