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Abstract 31 

Impermanence is an ecological principle1 involving changes that can sometimes occur non-linearly 32 

as Abrupt Community Shifts (ACSs) to transform ecosystem states and the goods and services they 33 

provide2. Here, we present a model based on niche theory3 to explain and predict ACSs at the global 34 

scale. We test our model using 14 multi-decadal time series of marine metazoans from zooplankton 35 

to fish, spanning all latitudes and the shelf to the open ocean. Predicted and observed fluctuations 36 

correspond, with both identifying ACSs at the end of the 1980s4-7 and 1990s5,8. We show that these 37 

ACSs coincide with changes in climate that alter local thermal regimes, which in turn interact with 38 

the thermal niche of species to trigger long-term and sometimes abrupt shifts at the community 39 

level. A large-scale ACS is predicted after 2014 - unprecedented in magnitude and extent - coinciding 40 

with a strong El Niño event and major shifts in Northern Hemisphere climate. Our results underline 41 

the sensitivity of the Arctic Ocean, where unprecedented melting may reorganize biological 42 

communities5,9 and suggest an increase in the size and consequences of ACS events in a warming 43 

world. 44 

 45 

Main text  46 

The processes that cause long-term changes and Abrupt Community Shifts (ACSs) in ecosystems  are 47 

poorly understood despite decades of research2,4,10-12. We define an ACS as a stepwise shift in 48 

community structure12, a definition that does not necessarily imply the existence of stable states2,10, 49 

which are rarely observed in pelagic ecosystems10,12-14. Such ACSs correspond to rapid and major 50 

alterations in species composition15, which alter biodiversity with consequences for ecosystem 51 

services. Here, we apply a framework based on the MacroEcological Theory on the Arrangement of 52 

Life (METAL; Methods and Supplementary Table 1 for a list of acronyms)12,16-18. METAL integrates key 53 

ecological concepts (e.g. the ecological niche sensu Hutchinson) into a unique and coherent scheme 54 

that unifies space and time patterns at both species and community levels and enables quantifiable 55 

predictions. METAL has been used to explain responses of species and communities to climate change 56 

and the large-scale arrangement of biodiversity12,16-18.  57 

 58 

We applied the METAL-based model to investigate long-term community changes and ACSs in pelagic 59 

marine metazoans in the global ocean from 1960 to 2015. In each geographical cell of a gridded ocean, 60 

we built pseudo-communities from a pool of pseudo-species, i.e. simulated species characterised by 61 

unique thermal niches ranging from stenotherms (species with narrow temperature tolerance) to 62 

eurytherms (adapted to extreme temperature variations) and from psychrophiles (adapted to cold 63 

temperatures) to thermophiles (adapted to warm temperatures)12. Pseudo-communities were built 64 



from pseudo-species adapted to temperature fluctuations in a given region. We therefore focused on 65 

climate-induced changes that originate from fluctuations in the thermal regime and not from shifts 66 

induced by other environmental parameters19 (e.g. nutrients, salinity, oxygen) or anthropogenic 67 

pressures (e.g. fishing, eutrophication and pollution)2. It is now a key principle in ecology that thermal 68 

tolerance is species-specific3 and the strong influence of temperature on species through their thermal 69 

niche has been observed for a variety of ecosystems and taxonomic groups17,20,21. The novelty in this 70 

present analysis is our conceptual incorporation of the niche into a model that allows us to explore the 71 

influence of temperature at the community level in the context of climate-induced changes, including 72 

ACSs. 73 

 74 

We first tested if our model’s predictions of long-term changes in pseudo-communities agreed with 75 

independent observations from 14 multi-decadal series (Supplementary Figure 1; Supplementary 76 

Tables 2-3). These records included measurements of zooplankton (11 ecosystems), decapods (1 77 

ecosystem), and/or fish (4 ecosystems) spanning tropical (Hawaii) to polar regions (Southern Ocean), 78 

coastal (e.g. Adriatic and San Francisco Bay) to deep/open oceans (Pacific, Atlantic and Southern 79 

Oceans) and seas (Adriatic, Ligurian, North and Baltic Seas). For each observed community we 80 

performed a standardised Principal Components Analysis (PCA) on a matrix of years by biological 81 

variables (e.g. species abundance, biomass, or size fraction) and retained the first two Principal 82 

Components to investigate their long-term changes (Obs-PC1-PC2s). In each system, 10,000 PCAs were 83 

also performed on 10,000 pseudo-communities, each resulting from different simulated pseudo-84 

species associations. From these, we retained 10,000 pairs of predicted changes (Pred-PC1-PC2s)12. 85 

We provide an illustrative case-example of the skill of our model for the North Sea (Figure 1). Here, the 86 

first obs-PC shows a pronounced change at the end of the 1980s for 43% of taxa, and our simulated 87 

first PC also exhibits the same pattern for 71% of the pseudo-species; both PCs were highly correlated 88 

(Figure 1a-b,e-f; r=0.83,p=0.01,n=50).  89 

 90 

When all 14 ecoregions are considered (Fig. 2a-n), 89% (25) of all first two observed eigenvalues are 91 

significant (Supplementary Table 4). The observed and predicted community changes are highly 92 

correlated for every ecoregion, except for the highly dynamic and heterogeneous22 Western Pacific 93 

Transition Zone where only the two late-1980s and -1990s substantial shifts were predicted (Figure 2; 94 

Supplementary Note 1 and Table 5). Note that long-term changes shown in the figure are the examples 95 

showing the highest correlations between an observed and a predicted PC. As it might be expected, 96 

some observed PCs were weakly correlated with predicted PCs (Supplementary Table 5), which could 97 

be because i) some species may not react to temperature when their thermal optimum coincides with 98 

the mean local thermal regime12,23, or ii) some species may be more sensitive to other forcing (e.g. 99 



anthropogenic pressure, other ecological factors, biotic interactions or local complex circulation 100 

patterns)5,19,22,24. Such differences in response may explain why the climatic signal identified by the 101 

PCAs was sometimes associated with PC1 and at other times with PC2. Therefore, to consider the full 102 

complexity of the signal, we used the first 2 predicted PCs (mean Pred-PC1-2, averaged over 10,000 103 

simulated PCs; Figure 2a-n) and applied a regression (Methods) that explained 50.4% 104 

(r=0.71,p<0.01,n=567,Fig. 2o) of the total variance of all observed long-term changes in the 14 105 

ecoregions (red Obs-PCs; Figure 2a-n). Since predicted communities are independent of the observed 106 

communities, correlations of observed and predicted PCs are higher than we expected. This suggests 107 

that our framework captures the main drivers of changing communities.  108 

 109 

To verify that these results were not due to chance, we also examined correlations between 110 

observations and null models generated for each system and composed of random time series both 111 

with and without autocorrelation (Methods). Simulated Pred-PC1-PC2s from these null models 112 

exhibited a pronounced variability in each system, far exceeding that originating from METAL 113 

(Supplementary Figure 2 versus Figure 2a-n). All mean correlations were smaller than those expected 114 

from METAL, with the exception of the HOT time series. When all PCs were combined together (Fig. 115 

2o-p), the correlations based on METAL were substantially higher than could be explained by chance 116 

(Figure 2p). The small range in METAL/observation correlations (Fig. 2p, red bar) in comparison to null 117 

models (Fig. 2p, green and blue) indicates that results are stable, regardless of the selected pseudo-118 

species. This suggests that inclusion of all species might not be necessary to assess a community’s 119 

state. This is fortuitous because most monitoring programmes sample only a small part of a community 120 

(Supplementary Table 3).   121 

 122 

Next, we tested the capability of our framework to reveal large-scale community changes, including 123 

ACSs, by combining results from all 14 ecoregions (Figure 3). To extract the overall biological variability, 124 

we performed ‘global’ PCAs on the first two Pred-PCs extracted from (i) simulated (METAL and the null 125 

model based on autocorrelated time series) and (ii) observed communities for the 14 systems (14 126 

systems x 2 PCs =28 variables for each PCA). Therefore, we used all of the first two observed and 127 

predicted PCs for this analysis, which represents the full set of interactions within the observed and 128 

predicted PCs (Supplementary Table 6). We chose the period 1960-2007 because it had less than 50% 129 

missing data per year in each time series (Supplementary Figure 3). We performed this procedure in 130 

two ways: (i) a single ‘global’ PCA based on the average of 10,000 PC1-PC2s for each system to calculate 131 

the correlation between observations and predictions from METAL, and (ii) 10,000 ‘global’ PCAs to 132 

compare the variability of long-term changes from METAL and the null model. The first global PC 133 

originating from observed communities was highly correlated (r=0.87) with the first global PC derived 134 



from the mean of 10,000 theoretical communities (Figure 3a). Predicted and observed PC2s and PC3s 135 

were also significantly correlated, although at a lower level (Figure 3b-c). METAL predictions had 136 

smaller variability than predictions based on the null model (Figure 3a-c, green versus blue curves).  137 

 138 

We verified the representativity of these time series with respect to the global ocean. While our 14 139 

initial sites or ecoregions span a range of water depths from 31 to 5492m, many are close to the 140 

coastline and so our results could be biased towards shallow marine environments (Supplementary 141 

Table 3). To address this possibility, we analysed observations in 5 additional regions of the North 142 

Atlantic where we had spatially and temporally consistent data from nearshore and offshore and from 143 

shallow to deep waters (Supplementary Note 1). This analysis confirmed the validity of our framework 144 

in open oceanic domains (Supplementary Note 1) even if no data were available to us from the centre 145 

of oceanic basins nor from the South Pacific, South Atlantic or Indian Oceans (Supplementary Note 1).  146 

 147 

We then tested METAL predictions of abrupt shifts. Using pooled data from the 14 initial sites, we 148 

identified ACSs using an Abrupt Shift Detection (ASD) algorithm on 10,000 global PC1-PC3s (Methods). 149 

The algorithm detected a significant shift circa 1987 in our North Sea example for both predicted and 150 

observed first PCs (Figure 1c-d). For global PCs, the first two observed and predicted PCs showed 151 

significant ACSs at the end of the 1980s and 1990s respectively (Figure 3d-e). Predicted ACSs (blue 152 

curves) occurred one year before observed ACSs (red curves), possibly reflecting inertia related to 153 

species’ life cycles16. This analysis shows that the most frequent (but not necessarily the most intense) 154 

shift in the ecoregions coincided with the well-documented events of the late 1980s (Figure 3a,d)4,6,7. 155 

Although they were not significant, we detected acceleration phases on both third predicted and 156 

observed PCs (Figure 3c,f). The well documented 1976/77 ACS15 was not significant when all systems 157 

were considered (Fig. 3), probably because our observations did not include many areas where this 158 

shift occurred (Figure 2k, Supplementary Note 1). No significant trends were observed in global PCs 159 

based on autocorrelated time series (Figure 3d-f, green curves). These results suggest that our model 160 

can predict a substantial part of long-term community change, including ACSs.  161 

 162 

We then used our ASD algorithm to predict ACSs in space and time by applying it to the whole ocean 163 

for the period 1960-2015 and covering areas and years not monitored. For this analysis, we did not use 164 

any PCA but applied our algorithm to pseudo-species and retained only ACSs when they involved half 165 

or more pseudo-species for a given location and year. Our analysis suggests that ACSs may occur every 166 

year, but only in a limited part of the ocean (~2.8%), involving on average an area of ~10 million km² 167 

of ocean per year (Figure 4a and Supplementary Figure 4). Some periods had geographically limited 168 

ACSs (e.g. 0.89 million km² for 1984-1987) whereas others showed more extensive shifts (e.g. 50.5 169 



million km² for 2012-2015). Widespread predicted ACSs were always observed after El Niño events 170 

(e.g. weak El Niño episode of 1977-1978 and very strong episodes of 1997-1998 and 2015-2016) but 171 

not all El Niño events led to widespread ACS predictions (e.g. very strong episodes of 1982-1983; Figure 172 

4a). The late-1980s ACS, so frequently found in areas where monitoring took place4-6,8,11,12, was not 173 

predicted on a global scale. Despite similar strength in the two strong El Niño events 1997-1998 and 174 

2015-2016, the spatial extent of the predicted ACSs was very different, the recent one being more 175 

widespread (50 million km² circa 2014 versus 29 million km² circa 1999). The mean magnitude of ACSs 176 

increased substantially after the mid-2000s with a peak circa 2012 (Figure 4b). When both spatial 177 

extent (number of geographical cells) and magnitude were combined, an unprecedented shift (5 and 178 

3 times the average extent and magnitude, respectively) occurred after 2010 with a maximum ~2014 179 

(Figure 4c). Our null model (Figure 3d-f) showed that such an ACS at the end of the time series is 180 

unlikely to be an artifact as is sometimes reported with other techniques4 (Methods).   181 

 182 

The next question was whether the predicted ACSs could be associated to climate. We investigated 183 

these relationships using six climate parameters measured at a global scale: annual Sea Level Pressure 184 

(SLP), meridional and zonal winds, wind intensity, cloudiness, and Sea Surface Temperature (SST) 185 

(Methods). Using maps of ACSs and climatic shifts calculated for each year (Supplementary Figures 4-186 

5), we found significant correlations (Supplementary Table 7) between the spatial extent of both 187 

predicted and observed ACSs from 1960 to 2015 with annual SLP (r=0.69,pACF<0.01,n=53), atmospheric 188 

circulation (wind intensity and direction) variables (r=0.54-0.57,pACF<0.01,n=53) and, as expected, with 189 

annual SST (r=0.97,pACF<0.01,n=53). No significant correlation was found with cloudiness. These results 190 

identify a strong link between the spatial extent of predicted ACSs and shifts in atmospheric circulation 191 

and SST.  192 

 193 

We subsequently calculated predicted shifts on a global scale, focusing on 5 time periods: 1975-1979, 194 

1985-1989 and 1995-1999 because these include previously documented ACS4-8,11,15, 2005-2009 as an 195 

example of a relatively stable period; and 2010-2014 because of its exceptional nature (Figure 5). The 196 

predicted 2014-2015 ACS, clearly evident by visual inspection (Supplementary Figure 4), is much more 197 

intense and widespread than previous shifts (Figures 4-5), encompassing meteo-oceanic warm 198 

anomalies in the Northwest Atlantic, Northeast Pacific Ocean and many areas of the Arctic Ocean and 199 

the central North-Atlantic cold blob9,25-27(Figure 5). Although changes in the North Atlantic and Pacific 200 

Oceans resulted in part from changes in atmospheric and oceanic circulation and its influence on 201 

regional thermal regimes, changes in the Arctic resulted mainly from abrupt shifts in annual SST (Figure 202 

5e,j, Supplementary Figure 6). 203 

 204 



Our framework provides a theoretical explanation for long-term biological changes and ACSs. Each 205 

species responds individually, depending upon the interaction between its thermal niche and 206 

fluctuations in the thermal environment12, with cumulative responses leading to ecosystem shifts. The 207 

close correspondence between shifts in predicted and observed communities supports our framework 208 

and provides a useful basis for predicting climate/temperature-induced ACS at the community scale. 209 

However, large unexpected events such as the collapse or explosive growth of some populations 210 

(black-swan events28) may not be predicted by our approach.  211 

 212 

Our ability to resolve the spatial extent of oceanic community shifts is severely constrained by a paucity 213 

and unrepresentative coverage of observations. Most marine communities, in particular marine 214 

metazoans, are hidden from earth observation tools and adequate monitoring coverage for the entire 215 

ocean is logistically unlikely. Our framework could therefore be meshed with existing monitoring 216 

programmes to provide a macroscopic tool for identifying regions likely to develop ACSs and to help 217 

anticipate biological perturbations that could affect production of ecosystem goods and services27. For 218 

example, our framework has predicted an ACS of unprecedented scale in 2014-2015 that may have 219 

substantial ecological consequences25,27 across the Northern Hemisphere, including in the Arctic where 220 

current changes such as sea-ice melting are accelerating9. Finally, our study alerts us to the potential 221 

for a growing size and consequence of future ACS events as the world warms in response to rapidly 222 

increasing concentrations of atmospheric greenhouse gases. Even though it will remain difficult to 223 

predict ACSs, both because of model uncertainties and the fact that some event types will remain 224 

unpredictable29,30, the ability to forecast putative ACS events is an important development in our 225 

understanding of climate change biology. 226 
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Figure legends 329 

Figure 1 | Long-term biological changes and abrupt community shifts (ACSs) for both the observed 330 

community and a simulated pseudo-community in the North Sea. a-b. Long-term changes of the first 331 

principal components (PCs) and in biological variables related to them (i.e. absolute values of the 332 

normalized eigenvector ≥0.6; blue): (a) observed species and (b) simulated pseudo-species. The first 333 

PC, reflecting major changes in community structure, is in black for observed taxa (a,e) and red (b,e) 334 

for simulated pseudo-species. Taxa related to the observed first PC included Calanus finmarchicus 335 

(negative relationship, -), C. helgolandicus (positive relationship, +), Candacia armata (+), Centropages 336 

typicus (+), Corycaeus spp. (+), and Oithona spp. (-). Ten pseudo-species were related to the simulated 337 

first PC. The grey band shows the timing of the ACS revealed in panels c-d. c-d. Detection of ACSs for 338 

the first PC based on (c) the observed community and (d) the simulated pseudo-community. The 339 

dashed red horizontal line indicates the threshold of 3 used throughout this study. e-f. Measured 340 

(black) and simulated (red) first PCs (e) and their relationships (f). This ecosystem, and most biological 341 



systems considered in this study (except HOT, Southern Ocean and San Francisco Bay; see Methods) 342 

were also analysed in detail by Beaugrand12 and Beaugrand and colleagues7, respectively.   343 

Figure 2 | Predicted (grey) and observed (red) long-term community changes for 14 systems. 344 

Principal components were standardised between -1 and 1. Pred-PC: 10,000 Principal Components 345 

(grey) based on 10,000 simulated communities. Obs-PC: Principal Component based on observed 346 

communities (red). a. North Sea (Pred-PC1s and Obs-PC1), b. Baltic Sea (Pred-PC1s and Obs-PC1), c. 347 

Adriatic Sea (Pred-PC1s and Obs-PC1), d. Ligurian Sea (Pred-PC2s and Obs-PC1), e. Northwest Atlantic, 348 

southern area (Pred-PC1s and Obs-PC2), f. Northwest Atlantic, northern area (Pred-PC1s and Obs-PC1), 349 

g. West Pacific Transition zone (Pred-PC1s and Obs-PC1), h. Oyashio (Pred-PC1s and Obs-PC1), i. 350 

CALCOFI (Pred-PC1s and Obs-PC1), j. San Francisco Bay (Pred-PC1s and Obs-PC1), k. East Pacific region 351 

(Pred-PC1s and Obs-PC1), l. West Pacific region (Pred-PC1s and Obs-PC2), m. HOT (Pred-PC1s and Obs-352 

PC2), n. Antarctic Peninsula area (Pred-PC1s and Obs-PC2). a-n. rm are the mean linear correlations 353 

between the mean of 10,000 predicted and the observed community PC. Biological variables 354 

considered at each site are indicated by D (benthic decapods), Z (zooplankton), and F (Fish). Biological 355 

variables are indicated in the Methods. x|y: x is the number of pseudo-species used in METAL and y is 356 

the number of time periods (1 indicates the annual value).  The total number of variables used in 357 

METAL model is the product of x and y. For California Current (total zooplankton biomass) and Hawaii 358 

(zooplankton size fractions), we chose arbitrarily pseudo-communities composed of 30 pseudo-359 

species. o. Long-term community shifts predicted from a regression on principal components, using 360 

the first two Pred-PCs from the 14 systems (averaged from the 10,000 first 2 PCs) and observed 361 

community shifts as in panels a-n. p. Histograms of the 10,000 correlations between selected Obs-PCs 362 

and predictions based on the first 2 Pred-PCs from (i) the null model based on random time series 363 

(grey), (ii) randomly generated time series with an order-1 autocorrelation ≥ 0.5 (blue), and (iii) the 364 

METAL theory (red).  365 

 366 

Figure 3 | Comparisons of observed (red) and predicted (blue and green; 10,000 simulations) 367 

community shifts, all ecoregions combined. Model predictions are in blue and predictions from a null 368 

model with autocorrelation in green. (a) First PC (30.72% of the total variance): predicted and observed 369 

community changes. (b) Second PC (21.46%): predicted and measured community changes. (c) Third 370 

PC (15.47%): predicted and observed community changes. Index of abruptness of predicted and 371 

observed community changes: (d) First PC. (e) Second PC. (f) Third PC. Correlation (r), probability of 372 

significance without (p) and with (pACF) correction for temporal autocorrelation, and degree of freedom 373 

(n) are indicated in panels a, b and c and correspond to the correlation calculated between 374 

observations and METAL predictions when all local PCs are averaged. In d-f, the wide blue (METAL) 375 



and green (null model) curves correspond to the medians of 10,000 simulations and the lower and 376 

upper part, are the 5th and 95th percentiles, respectively. The first three axes of the PCA performed on 377 

observed data were significant using a statistical test based on a broken-stick distribution (Methods). 378 

  379 

Figure 4 | Predicted long-term variation of Abrupt Community Shifts (ACSs) in the global ocean. (a) 380 

spatial extent, (b) magnitude and (c) spatial extent and magnitude of ACS. Curves in red are order-1 381 

moving average of predicted values (blue bars) (Methods). Thin-dashed, thin-solid and thick red arrows 382 

identify weak, moderate, and strong El Niño events, ‘E’  =  super El-Niño events. Thin and thick blue 383 

arrows identify moderate and strong La Niña events. 384 

 385 

Figure 5 | Predicted Abrupt Community Shifts (ACSs; a-e) and climatic shifts (f-j) during the period 386 

1960-2015 with a focus on the years 1975-1979 (a and f), 1985-1989 (b and g), 1995-1999 (c and h), 387 

2005-2009 (d and i) and 2010-2014 (e and j). Colour bars show the percentage of individual time series 388 

having a significant shift (threshold>3). For ACSs, 50% means that half the pseudo-species exhibited a 389 

significant shift for a given pseudo-community. For climatic shifts, 50% means that half the climate 390 

parameters (3 of 6 parameters) had a significant shift. White areas are regions with no shift. When the 391 

percentage of shifts is >0, the percentage is indicated by a colour: yellow and red for low and high 392 

percentage, respectively. The six climatic parameters are: annual Sea Level Pressure (SLP), meridional 393 

wind, zonal wind, wind intensity, cloudiness and annual sea surface temperature (SST). The spatial 394 

extent of ACSs increases when the climatic shifts are more widespread. Individual maps of all predicted 395 

ACSs and observed climatic shifts are displayed in Supplementary Figures 4-5. Black arrow: direction 396 

and intensity of mean annual wind (1960-2015). Black line: isobar based on mean annual SLP (1960-397 

2015).  398 

  399 



Methods section 400 

 401 

Materials 402 

 403 

Sea surface Temperature 404 

 405 

Annual SSTs originated from the dataset ERSST_v3 (1960-2015). The dataset is derived from a 406 

reanalysis based on the most recently available International Comprehensive Ocean-407 

Atmosphere Data Set (ICOADS). Improved statistical methods have been applied to produce a 408 

stable monthly reconstruction, on a 2° x 2° spatial grid, based on sparse data31. Data were 409 

interpolated on a global grid of 1° latitude x 1° longitude. 410 

 411 

Sea Level Pressure, wind and cloudiness 412 

 413 

Sea Level Pressure (SLP), cloudiness and both the meridional (V) and the zonal (U) components 414 

of the wind were extracted from the National Center for Environmental Prediction/National 415 

Center for Atmospheric Research (NCEP/NCAR) Reanalysis project32. NCEP uses a climate 416 

model that is initialised with observations originating from a variety of sources (e.g. ships, 417 

planes and satellite observations). The spatial grid (2.5° latitude x 2.5° longitude) of annual 418 

average SLP and U and V wind data were constructed for the period 1960-2015. Wind intensity 419 

was calculated from U and V wind. Data were interpolated on a global grid of 1° latitude x 1° 420 

longitude for the period 1960-2015.  421 

 422 

Observed biological data 423 

 424 

We used a summary of long-term community shifts (i.e. the first 2 principal components after 425 

applying a Principal Components Analysis, PCA) in 14 regions located in three oceans (the 426 

Atlantic, the Pacific and the Southern Oceans) and four Longhurst biomes33 (Polar, Westerlies, 427 

Trade-Winds, and Coastal biomes). The first 11 regions have been analysed by standardised 428 

PCA in Beaugrand and colleagues7, the 12th has been analysed in Cloern and colleagues using 429 

the same technique34 and both the 13th and 14th time series were added to the present study, 430 

following the same procedure. Supplementary Note 2 summarized the main characteristics of 431 

the 14 selected regions (see also Supplementary Figure 1 and Supplementary Table 2 for more 432 

details).  433 

 434 

 435 

 436 

  437 



Models and numerical procedures 438 

 439 

Overview of the METAL theory 440 

 441 

We applied a framework based on the MacroEcological Theory on the Arrangement of Life 442 

(METAL)12,16-18,35,36, a theory that explains how marine pelagic metazoans are arranged in the 443 

sea and how changing environmental conditions alter biological arrangements in space and 444 

time at different organisational levels (e.g. species, community, ecosystem), allowing precise 445 

predictions to be tested. METAL proposes that biodiversity is to a large extent influenced by 446 

climate and the environment. This influence mainly takes place through the interactions 447 

between the species ecological niche (sensu Hutchinson37) and both climatic and 448 

environmental changes. This interaction determines in large part the arrangement of life in 449 

the oceans at different organisational levels from the species to the ecosystem level and from 450 

small to large ecosystems18. More information on the METAL theory is available in 451 

Supplementary Note 3.  452 

 453 

Generation of pseudo-species and pseudo-communities 454 

 455 

To construct long-term changes in pseudo-community in each geographical cell of the global 456 

ocean, we used here the model described in Beaugrand12 and Beaugrand and colleagues17; 457 

this model only uses one environmental parameter: temperature. We create pseudo-species, 458 

each having a unique Gaussian thermal niche with distinct degrees of eurythermy and 459 

thermophily16,17,38 (Supplementary Figure 7, step 1). The response curve of the abundance E 460 

of a pseudo-species s in a given site i and time j to change in SSTs was modelled by the 461 

following function17,39:  462 
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 465 

With Ei,j,s the expected abundance of a pseudo-species s at location i and time j; cs the 466 

maximum value of abundance for species s fixed to one; xi,j the value of SST at location i and 467 

time j; us the thermal optimum and ts the thermal amplitude for species s. The thermal 468 

tolerance is an estimation of the breadth (or thermal amplitude) of the species thermal 469 

niche39.  470 

 471 

A large number of pseudo-species was created with us varying between -1.8°C and 40°C by 472 

0.1°C increments and ts varying between 1.1°C and 10°C by increments of 0.05°C. This 473 

represented a total of 39,218 potential species. However, to consider niche vacancy38, we 474 

randomly selected half of this number17. At the end of the procedure, the global pool of 475 

pseudo-species was equal to 19,609; pseudo-species were randomly chosen to create local 476 

pseudo-communities (Supplementary Figure 7, step 1) so long as they could withstand the 477 

local temperature (annual SST) regime (Supplementary Figure 7, steps 1-3).  478 

 479 



In each geographical cell, a pseudo-community was composed of a given number of pseudo-480 

species (see the map in Supplementary Figure 7). A similar biodiversity map generated by the 481 

procedure can also be seen in Beaugrand and colleagues (their figure 1a)17. Each pseudo-482 

species has an index of abundance varying between 0 and 1 (Supplementary Figure 7, step 4). 483 

The expected abundance of such pseudo-species was determined by linear interpolation from 484 

the pseudo-species’ thermal niche and monthly SSTs in a given geographical cell from 1960 to 485 

2015 (Supplementary Figure 7, step 4). The procedure has been evaluated in detail for the 486 

North Sea by Beaugrand12. 487 

 488 

A summary of the state of the community is subsequently made by Principal Components 489 

Analysis (PCA), using the first two principal components (Supplementary Figure 7, step 5). 490 

More details on this analysis are presented in subsequent sections.  491 

 492 

Detection of Abrupt Community Shifts  493 

 494 

Many methods have been proposed40,41. Shift detection can be accomplished by the use of 495 

the coefficient of variation41, the measure of the autocorrelation42, or the quantification of 496 

the multi-scale variance along time series43. Here, we calculated an index of abruptness to 497 

identify in a simple way Abrupt Community Shifts (ACSs). Our abrupt shift detection algorithm 498 

was a simplified version of the methodology developed in Beaugrand and colleagues43. This 499 

index was developed because (i) it does not require stable states in contrast to other 500 

algorithms, (ii) it identifies a shift by evaluating the variability of the time series and (iii) it can 501 

be applied in the intensive research of ACSs on a global scale. For a given time series, we first 502 

calculated the order-1-5 difference of a time series where observations were standardised 503 

between 0 and 1. Be Z a time series, Z=[zi] was standardised as follows: 504 

 505 
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The amplitude vector Ap=[ap
i] was subsequently calculated as the first p difference between a 508 

value of X=[xi] at year t+p and year t, with 1≤p≤5: 509 
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 512 

After transformation, the time series has a length of n-p. This transformation enables the time 513 

series to become stationary (i.e. constant mean, variance and autocorrelation structure), an 514 

important assumption for many statistical tests. The magnitude vector Mp=[mp
i] was 515 

subsequently calculated by making the ratio of the amplitude of change a on the average 516 

amplitude of the time series: 517 
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 520 

The denominator can reach values up to 1; therefore, for a constant numerator, the smaller 521 

the denominator the higher the values of M. On 100 simulated time series of 10,001 points, 522 



95% of the 10,000 first differences ranged between 2.29 and 2.37. To be conservative, we 523 

selected a detection threshold of 3. Any values above 3 were considered to be indicative of an 524 

abrupt shift. We also used an order-1 symmetrical moving average prior to the application of 525 

the abrupt shift detection algorithm to diminish the influence of white noise in biological time 526 

series. Test of the procedure can be found in Supplementary Note 4 (see also Supplementary 527 

Figures 8-13).  528 

 529 

Relationships between observed and predicted long-term community shifts 530 

 531 

To test whether the METAL model was able to reproduce well long-term community shifts 532 

(including Abrupt Community Shifts or ACSs), we compared METAL predictions of long-term 533 

pseudo-community shifts with observed community shifts in 14 oceanic regions 534 

(Supplementary Figure 14). We applied a standardised PCA on a table years x biological 535 

variables and used the first 2 principal components to characterise biological changes in each 536 

of the 14 regions for which we had data. For 12 of those regions, the standardised Principal 537 

Components Analyses (standardised PCAs) were already performed7 and we applied a similar 538 

procedure for the two others: (i) HOT station and (ii) Antarctic Peninsula area. Note that the 539 

standardised PCA for San Francisco Bay was updated to 2013 using the same procedure34. We 540 

tested the significance of the first two axes (eigenvalues) by using a broken-stick distribution44 541 

(Supplementary Table 7). 542 

 543 

We calculated long-term pseudo-community shifts in each of the 14 regions by applying the 544 

procedure described in Beaugrand12; we produced a pool of pseudo-species that were able to 545 

colonise each of the 14 regions so long as they could withstand annual changes in SSTs 546 

(Supplementary Figure 7; see the section “Generation of pseudo-species and pseudo-547 

communities”). The generation of the pseudo-species was made using Equation (1) for the 548 

period 1960-2015. Many pseudo-species were produced. However, only pseudo-species with 549 

an annual relative (i.e. expressed as percentage) abundance > 0.005 and a presence > 6% for 550 

all years of the time period were kept45. As more pseudo-species were generated than 551 

observed biological variables involved in the calculations of the summary of each observed 552 

community shifts, we chose randomly, for each region, a number of pseudo-species that 553 

corresponded to the number of biological variables (Supplementary Table 3 and 554 

Supplementary Figure 14). For example in the Pacific Rim, we selected a number of pseudo-555 

species that corresponded to the number of biological variables used to perform the PCA. 556 

However, when total zooplankton biomass (CalCOFI) or size fractions (HOT) were used, we 557 

arbitrarily chose 30 pseudo-species and also chose two 2-month periods instead of a single 4-558 

month period for the Southern Ocean. For CalCOFI and HOT, the selection of this number of 559 

pseudo-species did not affect significantly the results above 5 pseudo-species. For the 560 

Southern Ocean, the selection of two 2-month periods instead of one 4-month period reduced 561 

the variability of the different trajectories but did not strongly affect our conclusions. We 562 

repeated the selection of the pseudo-species 10,000 times and recalculated each time the first 563 

two principal components on pseudo-species (Supplementary Figure 14). Therefore, 10,000 564 

PCAs were performed for each of the 14 regions. When the number of pseudo-species was 565 

high in a given system, variability in the METAL predictions was low. 566 

 567 

We subsequently compared the first two observed and predicted Principal Components (PCs) 568 

of the 14 regions; Obs-PC for PCs from the PCA based on observed community and Pred-PC 569 



for PCs from the PCAs based on pseudo-communities (PC1 and PC2 for first and second 570 

principal components, respectively). This comparison was made in 3 different ways 571 

(Supplementary Figure 14). 572 

 573 

First, we calculated the linear correlation coefficients between each Obs-PC and the average 574 

of the 10000 Pred-PCs (Supplementary Table 4); when the average was calculated, 575 

probabilities were calculated with and without adjusting the degree of freedom to correct for 576 

temporal autocorrelation46. Based on the correlation coefficients, we represented the best 577 

relationships between one of the two Obs-PCs and Pred-PCs for the 14 systems (Figure 2).  578 

 579 

Second, we performed a regression on Principal Components47 between the Obs-PC selected 580 

in Figure 2a-n and the first two corresponding Pred-PCs (averaged for the 10000 simulations) 581 

for the 14 systems. Those analyses were performed because they better integrate the 582 

complexity of the temporal signal of predictive PCs and removes any bias related to the 583 

selection of a given Pred-PC. A scatterplot was then performed between observed and 584 

modelled Obs-PCs of all systems and a linear correlation coefficient was calculated (Figure 2o). 585 

We also repeated the procedure for every simulation (10000) to examine the variability of the 586 

correlations between observed and predicted PCs (Figure 2p, red bars).  587 

 588 

Third, we calculated two ‘global’ standardised PCAs: the first, on the matrix that combined the 589 

first 2 Obs-PCs obtained from each PCA applied on observed communities; the second, on the 590 

matrix that resulted from the combination of the first 2 Pred-PCs obtained from PCAs applied 591 

on simulated pseudo-communities (after averaging the 10,000 simulations). Prior to these 592 

analyses, we estimated the number of missing data from 1950 to 2014 to select a time period 593 

for which years had less than 50% of missing data (period 1960-2007; Supplementary Figure 594 

3). This threshold of 50% was chosen to have a maximum of years in the analyses with an 595 

alteration towards the beginning and the end of the selected time period as low as possible.  596 

We examined the relationships between the first 3 global Obs-PCs and Pred-PCs. We tested 597 

the significance of the first three axes by using a broken-stick distribution44. Normalised 598 

eigenvectors (i.e. correlations between long-term changes in the value of each variable with 599 

the first three principal components) are in Supplementary Table 5. This analysis focused on 600 

the different long-term and more abrupt patterns that were observed in the 14 systems. We 601 

also repeated the procedure for every simulation (10000) to examine the variability of the first 602 

3 predicted global PCs (Figure 3a-c; curves in blue) and its influence on the detection of ACSs 603 

(Figure 3d-f; curves in blue). We applied our abrupt shift detection algorithm to identify ACSs 604 

in the three global Obs-PCs and Pred-PCs. For this analysis, we used an order-3 weighted 605 

difference in all analyses after having applied an order-1 symmetrical moving average (see 606 

Equation 4 with p=3). This procedure was chosen to remove the effects of episodic events and 607 

to concentrate on ACSs that may have persistent effects. 608 

 609 

Null models 610 

 611 

We designed two null models to examine whether our METAL predictions fit better the 612 

observations than those obtained randomly (with and without temporal autocorrelation; 613 

Supplementary Figure 14). The first null model generated a number of random time series for 614 

each station corresponding to the species richness simulated by METAL, with a length 615 

corresponding to the time period covered in each sampling site (Figure 2) and a length 616 



corresponding to the time period chosen to perform ‘global’ PCAs (Figure 3). The second null 617 

model generated the same number of time series but using random time series with an order-618 

1 temporal autocorrelation ≥ 0.5 as many of our observed and METAL-simulated time series 619 

were autocorrelated. We analysed those data using the same procedures applied to analyse 620 

METAL-simulated data (see the previous section) and to examine the relationships with 621 

observed biological data (Supplementary Figure 14). We only represented expected biological 622 

changes based on the null model using randomly generated time series with an order-1 623 

autocorrelation ≥ 0.5 as the null model based on random time series gave similar results. The 624 

average correlation between expected and observed changes was reported for each site 625 

(Supplementary Figure 2).  626 

 627 

Subsequently, we calculated regression on PCs (the first two PCs for each system) using the 628 

same procedure as above for every expected Pred-PCs (therefore 10000 times). We 629 

performed this analysis for both random time series and randomly generated time series with 630 

an autocorrelation ≥ 0.5. A histogram of all correlations (random time series and randomly 631 

generated time series) was performed and compared with correlations based on the METAL 632 

model (Figure 2p). Green: correlations between Pred-PCs based on random time series and 633 

Obs-PCs; Blue:  correlations between Pred-PCs based on randomly generated time series with 634 

an order-1 autocorrelation ≥ 0.5 and Obs-PCs; Red: correlations between Pred-PCs based on 635 

the METAL model and Obs-PCs. 636 

 637 

We calculated ‘global’ PCAs based on the 10000 Pred-PCs originating from Pred-PCs based on 638 

randomly generated time series with an order-1 autocorrelation ≥ 0.5; 10000 global PCAs were 639 

thereby calculated to examine the variability of the first 3 ‘global’ PCs (Figure 3a-c; green). We 640 

also applied the Abrupt Shift Detection algorithm on each global PC (1-3 global PCs) and 641 

represented the 5th, 50th (median) and 95th percentiles (Figure 3d-f; green).   642 

 643 

Predictions of Abrupt Community Shifts 644 

 645 

After testing our theoretical framework and abrupt shift detection algorithm against field 646 

observations, we estimated theoretically ACSs from 1960 to 2015 in all areas of the oceans. 647 

Here also, only pseudo-species with an annual relative (i.e. expressed as percentage) 648 

abundance > 0.005 and a presence >6% for all years of the time period were kept 45. In each 649 

geographical cell of the oceans, we estimated ACSs for all pseudo-species composing a 650 

pseudo-community. To estimate ACSs, we used an order-3 weighted difference after having 651 

applied an order-1 symmetrical moving average (see Equation 4 with p=3), as above. Then, we 652 

represented for each tested time period from 1960-1963 (mean year 1961.5) to 2012-2015 653 

(mean year 2013.5) the amount of species that exhibit ACSs out of the pseudo-species 654 

composing the pseudo-community (Supplementary Figure 4). Data of mean sea level pressure 655 

and mean wind circulation were superimposed on maps for the corresponding time period. 656 

Because the number of maps was large (see Supplementary Figure 4 for all maps), we chose 657 

5 time periods: (i) 1975-1979, 1985-1989 and 1995-1999 because these include already 658 

documented ACSs4,7,8,15,48, (ii) 2005-2009 because it is an example of a relatively calm period 659 

and (iii) the last period 2010-2014 (Figure 5). To pool different mean year of shift (e.g. 1976.5 660 

as an average of period 1975-1978) within those time periods (e.g. 1975-1979), we calculated 661 

the highest percentage of pseudo-species’ shift in each geographical cell (e.g. 1975.5, 1976.5, 662 

1977.5, 1978.5, 1979.5).  663 



 664 

Observations of abrupt climatic shifts 665 

 666 

We applied the same procedure to identify abrupt climatic shifts from 1960 to 2015. We also 667 

applied an order-3 weighted difference after having applied an order-1 symmetrical moving 668 

average (see Equation 4 with p=3). The abrupt shift detection algorithm was performed on 669 

annual sea level pressure, meridional (U) and zonal (V) wind, wind intensity, cloudiness and 670 

SST. We then added the number of significant shifts observed in each geographical cell from 671 

1960-1963 to 2012-2015 (Supplementary Figure 5). To examine the potential relationships 672 

between predicted ACSs and climatic shifts, we applied the same procedure as above for the 673 

same time periods: 1975-1979, 1985-1989, 1995-1999, 2005-2009 and 2010-2014 (Figure 4d-674 

f). Abrupt climatic shifts were mapped for the period 2010-2014 for each climatic variable 675 

(2010-2014) in an attempt to understand the exceptional nature of the time period identified 676 

by our theoretical framework (Supplementary Figure 6).  677 

 678 

Long-term changes in spatial extent and magnitude of abrupt shifts 679 

 680 

For each year, we estimated the spatial extent, the magnitude, and both combined, of ACSs 681 

(Figure 5).  682 

 683 

Estimation of spatial extent of ACSs 684 

 685 

For each geographical cell that had a percentage of pseudo-species that shifted significantly 686 

above 50% in a given pseudo-community, geographical distances in a geographical cell were 687 

calculated as follows 49: 688 

 689 

d(i,j)=6377.221 x hi,j   (5) 690 

With di,j being the geographical distance between point i and j, the constant the Earth radius 691 

and hi,j computed as follows49:  692 
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With ϕi the latitude (in radians) at point i, ϕj the latitude (in radians) at point j and g the 694 

difference in longitude between i and j. The area was subsequently calculated by multiplying 695 

the zonal and meridional distance of the cell. Finally, we added all areas to obtain the spatial 696 

extent concerned by ACSs (Figure 4a). The same type of calculation was applied for each 697 

climatic variable that shifted significantly. This procedure allowed us to calculate the 698 

correlation (and its probability of significance pACF; ACF means autocorrelation function) 699 

between long-term changes in spatial extent of significant ACSs and the spatial extent of 700 

climatic shift (threshold of 3) for each variable taken individually (Supplementary Table 6).  701 

 702 

Estimation of the magnitude of ACSs 703 

 704 

We also estimated the magnitude of ACSs for each year of the time period (1960-2015) by 705 

averaging the index of abruptness for each geographical cell for which more than 50% of 706 

pseudo-species shifted significantly (threshold of 3; Figure 4b).  707 

 708 



Estimation of both magnitude and spatial extent 709 

 710 

The last index was calculated by summing the magnitude of all ACSs characterised by at least 711 

50% of pseudo-species’ shifts inside a pseudo-community. This index takes into consideration 712 

both the magnitude of the shift and the number of geographical cells concerned by an ACS 713 

(Figure 4c).  714 
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