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ABSTRACT

Context. Solar simulations and observations show that the detection of long-period Earth-like planets is expected to be very difficult
with radial velocity techniques in the solar case because of activity. The inhibition of the convective blueshift in active regions (which
is then dominating the signal) is expected to decrease toward lower mass stars, which would provide more suitable conditions.
Aims. In this paper we build synthetic time series to be able to precisely estimate the effects of activity on exoplanet detectability for
stars with a wide range of spectral type (F6-K4) and activity levels (old main-sequence stars).
Methods. We simulated a very large number of realistic time series of radial velocity, chromospheric emission, photometry, and
astrometry. We built a coherent grid of stellar parameters that covers a wide range in the (B–V , Log R′HK) space based on our current
knowledge of stellar activity, to be able to produce these time series. We describe the model and assumptions in detail.
Results. We present first results on chromospheric emission. We find the average Log R′HK to correspond well to the target values
that are expected from the model, and observe a strong effect of inclination on the average Log R′HK (over time) and its long-term
amplitude.
Conclusions. This very large set of synthetic time series offers many possibilities for future analysis, for example, for the parameter
effect, correction method, and detection limits of exoplanets.

Key words. techniques: radial velocities – stars: magnetic field – stars: activity – stars: solar-type

1. Introduction

It is now well recognized that stellar activity strongly affects
the detectability of exoplanets. First rough attempts to model
the amplitude of this effect through radial velocity (RV) have
been made with simple models that related simple activity cov-
erage with jitter (Saar & Donahue 1997; Hatzes 2002; Saar et al.
2003; Wright 2005). Desort et al. (2007) modeled the RV that
is caused by single spots. More sophisticated models describing
the full behavior of the activity that causes the RV variations are
needed, however, to estimate the effect of stellar activity more
quantitatively and to test analysis and correction methods. Such
models have been made for the Sun (Borgniet et al. 2015) and for
a few configurations of other stars (Dumusque 2016; Dumusque
et al. 2017). Other models have been proposed by Herrero et al.
(2016); they reproduce contributions of spots and plages. Santos
et al. (2015) modeled the contributions of spots alone.

We made a significant step when we modeled the solar RV
and photometry using observed solar spots, plages, and network
structures (Lagrange et al. 2010; Meunier et al. 2010a). This
allowed us to show that the inhibition of the convective blueshift
in plages dominates the long-term variability, which we vali-
dated by reconstructing the solar RV variation from MDI/SOHO
(Michelson Doppler Imaging/SOlar and Heliospheric Observa-
tory) dopplergrams (Meunier et al. 2010b). Direct or indirect

(Moon, asteroids, Jupiter satellites) observations of the Sun later
confirmed these results (Dumusque et al. 2015; Lanza et al. 2016;
Haywood et al. 2016). We also studied the effect of activity on
future astrometric measurements (Lagrange et al. 2011), which
are important in the context of the current Gaia mission. Our sec-
ond step was to generate similar time series based on randomly
generated solar spots and plages, for which we used realistic
properties over the solar cycle (Borgniet et al. 2015): this allowed
us to study the effect of inclination, and to open the way to model
stars other than the Sun. This is the objective of the present
paper. Our approach focuses on using the proper spatio-temporal
distribution of spots and plages, and on a physical relationship
between spots and plages together with realistic physical prop-
erties. This is complementary to other approaches that focus on
estimating finer details in contrast variations, for example (e.g.,
Cegla et al. 2018).

In this paper, we therefore extend the solar model described
in Borgniet et al. (2015) to other stars. We propose consis-
tent parameter sets to build RV, photometric, and astrometric
time series. We also implement a model to describe the chro-
mospheric emission as a function of time. The goal of such
simulations is threefold: (1) to compare our model with obser-
vations for these different observables; (2) to help with the
interpretation of these observations, and in particular to under-
stand the degeneracies and biases well, as well as the effect of
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Fig. 1. Variable parameters in our grid. Parameters with specific indications in orange depend on B–V and/or Log R′HK, and we also consider two
or three laws, as indicated. A few parameters depend on specific conditions (plage contrast). The 2D grid in B–V and Log R′HK is detailed in Fig. 3.

the various parameters (including “hidden” parameters such as
inclination); and (3) to test correction methods and estimate the
effect on exoplanet detectability through various techniques (RV,
transits, and astrometry). Our objective in building the whole
parameter set is to be as consistent as possible in the various
choices so that we retain a large amount of the complexity of
stellar variability while keeping the parameters to a reasonable
number for this first set: all parameters that correspond to a given
time series are compatible with each other.

The outline of the paper is the following. In Sect. 2 we
explain how we adapt the solar parameters to other stars to gener-
ate spots and plages: this section is devoted to the procedures and
laws we used to produce lists of spots and plages as well as their
properties at each time step. In Sect. 3 we describe the required
contrast and RV properties for producing the observables. We
then present the chromospheric emission model in Sect. 4 as
well as the calibration that must be made to produce realistic
time series. Finally, we compare in Sect. 5 the obtained Log R′HK
values with what is expected from the input parameters, followed
by a conclusion and a description of future works in Sect. 6.

2. Generation of spots and plages

2.1. General principles

The model we used to produce spots and plages at each time step
and to follow their evolution is described in detail in Borgniet
et al. (2015). We summarize here the main parameter categories:

– spatio-temporal distribution of spots and plages: butterfly
diagram and active longitudes;

– long-term variability: cycle length, amplitude, and shape;
– individual properties: size distributions, decay distributions,

plage-to-spot size ratio, and plage-to-network decay;
– dynamics: rotation period, differential rotation, meridional

circulation, and diffusion.
Plages are created at the same time as spots, then each type of
structure follows its own evolution. Part of the plage decay cre-
ates network features. This leads to an entirely coherent model

that describes spots, plages, and the network. In the following,
unless otherwise mentioned (Sect. 2.7), the term plage refers to
large plages and network structures, that is, all bright features, in
order to simplify the presentation. We also recall that Meunier
et al. (2010a) and Borgniet et al. (2015) considered plage sizes
that were obtained from MDI data with a threshold of 100 G,
leading to an adjustment of the various contrasts to match the
observed solar photometric variations (while associated with the
spot distribution). In this paper, we keep size distributions and
contrasts that are consistent with that definition. The detailed
parameters are described in Table E.1. The main differences with
the model of Borgniet et al. (2015) are that we simplified the
input spot number (see Sect. 4) and adapted the dispersion that
was added to the shape of the reference cycle (see Sect. 2.6.3).

A large number of parameters were involved in our solar sim-
ulation. When we adapted these parameters to other stars, we
did not have to explore the full space of possible parameters, as
some parameters may depend on others. For example, the rota-
tion period depends on the spectral type and on the activity level,
so that for a given spectral type and activity level, the range of
possible periods is limited. Empirical laws, sometimes with large
dispersion that represents an actual variability between stars,
have been established in the literature, allowing us to establish
a correspondence between certain variables. These relations are
sometimes multivariable. We use these laws in the following to
build the parameter sets.

Our objective is to study the effect of important parame-
ters on time series, for example, to establish which types of
stars are most suitable for exoplanet detection, or to estimate
the performance of correction methods in various conditions.
Some parameters are not constrained at all for stars other than
the Sun, therefore we keep some to the solar values in this work.
The list of parameters that are different from the solar values is
described in Fig. 1. A summary of the laws described in the next
sections is also given in Table E.3. For five of these parameters,
we used two (upper and lower bound) or three laws (median law
as well) to cover a range of realistic values because we estimate
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Fig. 2. First panel: Teff vs. spectral type. Second panel: B–V vs. spectral
type. Third panel: stellar radius (in R�) vs. spectral type. Fourth panel:
stellar mass (in M�) vs. spectral type.

that the observed variability is real. The remainder of this section
is devoted to describing the way in which we derived all these
parameters based on our current knowledge of stellar activity.

2.2. Fundamental stellar parameters

The spectral type constitutes our first axis in the grid (the second
is the average activity level, see the next section). We translate
it into B–V values because many empirical laws used in the fol-
lowing are available as a function of B–V in the literature. We
consider a wide range of stellar types, F6 to K4, that is, stars
whose activity patterns are not very different from that of the
Sun. For example, the convective blueshift, which has a critical
effect on the RV amplitudes, has been estimated with a good pre-
cision by Meunier et al. (2017b) for this range of spectral types,
but it is not well constrained beyond this range. The four laws we
use are illustrated in Fig. 2 and the values are listed in Table 1.

– Teff. Effective temperatures are derived from the spectral
type using a fourth-degree polynomial from the observa-
tions of Gray et al. (2003). The validity domain is A2–K3,

Table 1. Fundamental parameters.

B–V Spectral Teff Radius Mass
type (K) (R�) (M�)

0.49 F6 6334 1.41 1.20
0.52 F7 6218 1.30 1.14
0.55 F8 6112 1.22 1.09
0.58 F9 6017 1.14 1.04
0.60 G0 5931 1.09 1.01
0.62 G1 5854 1.04 0.98
0.64 G2 5784 1.00 0.95
0.67 G3 5719 0.97 0.93
0.69 G4 5658 0.94 0.91
0.71 G5 5598 0.92 0.89
0.73 G6 5536 0.89 0.87
0.76 G7 5470 0.87 0.85
0.79 G8 5397 0.85 0.84
0.83 G9 5314 0.82 0.82
0.87 K0 5215 0.80 0.80
0.92 K1 5099 0.78 0.78
0.99 K2 4960 0.75 0.76
1.06 K3 4793 0.73 0.74
1.15 K4 4594 0.71 0.72

Notes. Fundamental parameters for the grid from F6 to K4.

therefore we extrapolate this function over a small range for
K4.

– B–V. are derived from Teff (see above) with the law provided
by Gray (2005).

– Radius. Many stellar radii have been measured using inter-
ferometry (Boyajian et al. 2012, 2013). We use Eq. (8) from
Boyajian et al. (2012) to relate the radius to Teff . This for-
mula is valid for Teff up to 5500 K, and we verified that
the formula can be extrapolated from the measurements of
Boyajian et al. (2013): the extrapolation is appropriate up to
6400 K, but with a larger dispersion.

– Masses. Stellar masses are derived from the radius in
Boyajian et al. (2012, 2013) using a third-degree polynomial
fit from their Tables 6 and 3, respectively.

2.3. Average Log R ′HK–(B–V) relationship

The activity level we consider here is the average Log R′HK over
time for a given star over time-scales of a few years because a
star at a given age does not have a single Log R′HK. The average
activity level constitutes our second axis.

2.3.1. Lower limit in Log R ′HK

We first estimate the lower limit for the Log R′HK. Several papers
have estimated the average Log R′HK versus B–V for large sam-
ples of stars and dates (Henry et al. 1996; Gray et al. 2003, 2006;
Jenkins et al. 2008; Isaacson & Fischer 2010; Jenkins et al. 2011;
Arriagada 2011; Schröder et al. 2012; Mittag et al. 2013). We first
consider the B–V range from 0.45 to 0.94. Mittag et al. (2013)
obtained a flat minimum S-index in this domain. This limit is
not entirely strict because occasionally, a few stars lie below it,
but this lowest flux derived from Mittag et al. (2013) is con-
sistent with previous publications. Therefore we consider their
value (corresponding to a S-index of 0.144) in the following to
be the lower limit for activity in this B–V domain. This S-index
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Fig. 3. Upper panel: average Log R′HK versus B–V representing our 2D
grid (orange stars). The lower solid line shows the basal flux used in this
paper, from Mittag et al. (2013) and Schröder et al. (2012) and the upper
solid line shows the upper bound for the activity level versus B–V , from
Lockwood et al. (2007). The dashed line corresponds to the minimum
Log R′HK we consider for stars with B–V above 0.94. The vertical dotted
lines show the range in B–V covered by our simulations, the vertical
dashed line vizualises B–V = 0.94, and the red horizontal line approxi-
mately corresponds to the Vaughan-Preston gap (see text). Lower panel:
same for the S-index versus B–V .

can then be converted into a Log R′HK value using the commonly
used formula from Noyes et al. (1984a), as we do here.

Finally, we consider B–V above 0.94. A strong increase of
the lower limit in activity (Isaacson & Fischer 2010; Mittag et al.
2013) corresponds to stars with a significant degree of activity,
implying that low-activity stars are not observed in this B–V
range. We have checked the HARPS spectra of stars close to this
apparent limit, and they indeed show strong calcium emission.
This lower limit can therefore be used to identify where stars are
located in the 2D space (B–V , Log R′HK). In conclusion, the con-
sidered Log R′HK values lie above the dashed line in Fig. 3 (solid
for B–V below 0.94 as the two coincide in that domain).

2.3.2. Upper limit in Log R ′HK

We now consider the upper limit in Log R′HK. A first simple
choice would be to consider a threshold from the Vaughan-
Preston gap in the usually bimodal distribution of Log R′HK

values. Depending on the publication, the position of the gap
ranges from −4.80 (Noyes et al. 1984a; Jenkins et al. 2011) to
−4.6 or −4.7 (Mamajek & Hillenbrand 2008) with intermediate
values (Wright et al. 2004; Jenkins et al. 2008; Henry et al. 1996;
Gray et al. 2003, 2006). However, our purpose is to model stars
with properties similar to solar properties in terms of plage-to-
spot ratio, for example, at least given our current knowledge. We
therefore used the results from Lockwood et al. (2007), which
show this type of correlation versus B–V and Log R′HK. The inter-
face between the spot-dominated regime (younger stars) and the
plage-dominated regime (the older stars we are interested in)
varies with B–V , and is about −4.5 for the most massive and
−4.85 for the less massive stars. We use this as an upper limit for
our Log R′HK values (shown as the upper solid line in Fig. 3).

We could also have derived this upper limit from age
isochrones (Mamajek & Hillenbrand 2008), but because we are
more interested in the plage-to-spot ratio in our input parameters,
this choice would be less pertinent. The age range covered by our
simulations may therefore vary with B–V (see Sect. 2.4).

2.3.3. Log R ′HK values between the lower and upper limits

Stars are observed with Log R′HK between the lower and upper
limits that we defined in the previous sections. The distribution
of stars within that domain is not necessarily homogeneous, but
this was not taken into account when we built the grid.

We considered Log R′HK values higher than the lower level
by 0.07 dex and then with a step of 0.05 dex up to the upper
bound. Theses values are shown as orange stars in Fig. 3. They
lead to 141 points in 2D space and correspond to the average
Log R′HK over time. For each of these positions, parameters were
defined according to Fig. 1 and several time series were built.
These parameters are described in detail in the remainder of this
section.

2.4. Rotation period versus B–V and Log R ′HK

In this section we wish to determine which rotation rate (or range
of rotation rates) to use to simulate a star of a given spectral
type and average activity level. Several estimates of the rotation
period as a function of the average activity level have been pub-
lished using large samples of stars, either directly or through an
estimate of the Rossby number. A comparison of these different
laws is provided in Appendix A. We have then chosen to use the
law relating the Rossby number and the average Log R′HK from
Mamajek & Hillenbrand (2008), with the estimated turnover
time from Noyes et al. (1984a) to relate the rotation period and
the Rossby number. Long periods are difficult to estimate, and
samples are usually biased toward short periods. Laws are there-
fore uncertain for long periods, which correspond to our lower
mass stars. We have then taken into account the observed disper-
sion around the law provided by Mamajek & Hillenbrand (2008),
which we estimated from their data to be of about ±0.2 in Rossby
number: from these upper and lower bound laws we derived the
rotation period versus B–V for each Log R′HK, which we show in
Fig. 4 as red and green curves, respectively. Although we took
the observed dispersion into account, we might still underesti-
mate the longest rotation periods: if this were the case, the effect
on the final RV or photometric jitter is expected to be very small.
However, it is expected to affect the frequency analysis in two
ways: the power due to rotation will naturally be localized at
a different period, and this may affect the morphology of the
curves because the ratio between the rotation rate and the typical
lifetime of the magnetic features will be different. The fact that
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Fig. 4. Chosen rotation periods vs. B–V for eight different Log R′HK
values between −5.1 and −4.75 (from top to bottom) from Mamajek &
Hillenbrand (2008). The median law is shown in black, and extreme
laws are shown in green and red.

simulations are always made for three different rotation rates will
help to analyze the effect of our assumptions in future works.

Age is not a parameter in our simulation. However, we know
that there is a relationship between rotation, activity level, and
age (e.g., Wilson 1963; Skumanich 1972). For instance, when
we use the laws of Mamajek & Hillenbrand (2008) for the most
massive stars in our simulations, our range in Log R′HK corre-
sponds to ages between 0.5 and 3 Gyr. Lower mass stars in our
simulations correspond to older stars, typically between 4 and
more than 10 Gyr, depending on their average activity level.

2.5. Differential rotation and latitude coverage

The implementation of differential rotation is strongly related to
the latitudinal extension over which magnetic activity is present
because measurements of the differential rotation, based on the
presence on active structures, only provide the differential rota-
tion over that range in latitude and not the value corresponding
to a full range of 0–90◦. In this section we therefore discuss these
two parameters together.

2.5.1. Differential rotation versus temperature

To derive a practical relation using our other input parameters,
we used the differential rotation measured by Reinhold & Gizon
(2015) from Kepler data for a very large sample of stars. As for
the rotation period, we should keep in mind that observations
are biased toward active stars, that is, fast rotators. Our objec-
tive is to define a law Ω(θ), where Ω is the rotation rate and
θ is the latitude that can be used in our simulations. A param-
eter α is commonly defined from the minimum and maximum
rotation periods given in Reinhold & Gizon (2015), Pmin and
Pmax,

α=
Pmax − Pmin

Pmax
, (1)

which is a relative differential rotation. α is then available as
a function of Teff . We note that the Ω(θ) function for the Sun
is usually described with three parameters (e.g., Snodgrass &
Ulrich 1990) as Ω(θ) = Ω0 + Ω1sin2(θ) + Ω2sin4(θ). Because the
differential rotation for stars is much less well defined, we used
only the first two coefficients in the following (Ω2 = 0). When the
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Fig. 5. Upper panel: coefficient p0 vs. Teff from the fit of
Log(α) = p0+p1×Log(Prot) for stars with log(g) between 3.94 and 4.94.
Computations are made from the data published by Reinhold & Gizon
(2015). Middle panel: same for p1. Lower panel: number of stars in each
Teff bin.

following results are compared with solar differential rotation,
caution is therefore advised.

We considered the stars in the sample from Reinhold &
Gizon (2015) with log(g) between −3.94 and −4.94 as in some
previous analyses of solar type stars (Das Chagas et al. 2016).
For ten bins in Teff in our range in temperature, we performed a
linear fit between Log(α) and Log(Prot), where Prot is defined as

Prot =
Pmin + Pmax

2
. (2)

The two coefficients of these linear fits, p0 and p1, are shown
in Fig. 5 as a function of Teff . We then modeled p0 and p1 as a
linear function of Teff , which gives

p0 =−3.485 + 2.47810−4 × Teff (3)

and

p1 = 1.597 − 1.3510−4 × Teff . (4)
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For each Teff and Prot (previous section) in our grid, we can
then derive α. We discuss differential rotation in more detail in
Appendix B.

The effect of our choice of Ω(θ) is not expected to be critical
for our simulations. When differential rotation is present, peri-
odograms of the time series are thought to exhibit multiple peaks
around the rotation period, which complicates estimating the
rotation period, for example (in addition to the limited lifetimes
of structures). The precise choice of Ω(θ) therefore mostly affects
the complexity of the peak structures in the periodograms, but it
does not affect the signal amplitude, for example.

2.5.2. Maximum latitude

We assumed (1) that structures are always present at low latitude
at the end of the cycle (when the maximum latitude is higher,
there might be no activity close to the equator either, as shown,
e.g., by Işık et al. 2011, but these effects are not full understood
so far), and (2) that the latitude coverage is directly related to
the maximum latitude of the butterfly diagram (in the case of the
Sun, we used an average latitude at the beginning of the cycle
of 22◦, with a possible extension of activity to 42◦), hereafter
θmax. How θmax varies with Teff is not constrained. For lower mass
stars, where the convective zone is thicker, we expect higher val-
ues of θmax (e.g., Işık et al. 2011). On the other hand, for a shorter
Prot (in our case, for higher mass stars), we also expect larger
θmax (e.g., Schuessler & Solanki 1992). Because these two effects
compete with each other, we do not know the proper trend from
observations or numerical simulations. Simulations such as the
one made by Işık et al. (2011) are expected lead to some results in
the future, but so far, the coverage in parameters is too sparse to
conclude. As for the observation, the analysis of the data results
of Reinhold & Gizon (2015) does not allow us to conclude either.
Recent results using planetary transit across spot at the stellar
surface allowed determining the latitudinal distribution for a spe-
cific star over a short period of time, see Morris et al. (2017), but
the statistics is not yet sufficient to ascertain any trend.

Because the coverage in latitude of magnetic structures is
not well constrained by either observations or observations, we
considered in our simulations three possible levels for θmax,
remembering that we do not know how other stars differ from the
Sun in that respect: the solar value itself θmax,�, θmax,�+10◦, and
θmax,�+20◦. For each of these values of θmax, Prot (derived from
the previous section and as defined in Eq. (2)) and α (derived
as described above and defined in Eq. (1)) lead to Ω0 and Ω1,
assuming that Pmax corresponds to θmax and Pmin corresponds
to the equator. This allows us to estimate the effect of these
parameters on the time series.

2.5.3. Antisolar rotation

Numerical simulations have indicated that some stars probably
present antisolar differential rotation (rotation is slower at the
equator than at the poles). This would occur for stars with large
Rossby number, that is, long Prot and high masses (e.g., Brun
et al. 2017). This is very difficult to observe from light curves
(Santos et al. 2017), however, although there have been a few
indications that this could be present: Reinhold & Arlt (2015)
made tests on synthetic time series, applied their method to a
small sample of 50 Kepler stars, and estimated that there was
a possibility that the rotation in 10–20% of the stars is antiso-
lar. When we compare our parameter grid in the (Prot, stellar
mass) space with the results from the magnetohydrodynamics
(MHD) simulation of Brun et al. (2017), we find that fewer than

6% of our simulation stars (all are less massive than the Sun and
are very quiet) may have such an antisolar differential rotation,
although the threshold between the solar and antisolar regimes is
not well defined. It is therefore still very uncertain, especially for
stars with our parameter range, and probably does not concern
many stars. Because this effect would not significantly affect our
results, we consider only solar differential rotation here.

2.6. Cycle properties

The cycles of the stars we simulated are similar to the solar cycle
in shape, although the amplitudes and ratio between maximum
and minimum may be different. Stars with no variability will not
be reproduced adequately, although the simulation with a very
low cycle amplitude will present some similarities with such
stars.

How many stars have a cycle is subject of debate. How-
ever, the existence of long-term variations is crucial for us here
because these variations are critical for studying the effect on
exoplanet detectability. Baliunas et al. (1998) analyzed Mount
Wilson data and found that 15% of the stars had a constant
activity level, 25% had a variability without any obvious peri-
odicity (they did not show any smooth cycle like the Sun, but
rather some erratic variations, and they correspond to young
fast-rotating stars), and 60% had solar-like cycles. Lovis et al.
(2011) were unable to find any period (defined as the period
derived from the fit of a sine function on the data, even if a sin-
gle cycle was observed) for 66% of a large sample of variable
stars observed with HARPS, which is likely due to the sam-
pling: stars without an identified period are very strongly biased
toward a very poor sampling compared to the list of stars with
an identified “cycle” (“cycle” here means that a proper fit with
a sinusoidal was possible, not that it was repeating itself). When
this bias is taken into account, the percentage of stars without
a long-term variation similar to a “cycle” decrease to only 15–
20%. More recently, results obtained from the analysis of the
long-term Mount Wilson survey together with the Lowell survey
(Hall et al., in prep.) show that 40% of the stars may have a rela-
tively flat chromospheric emission over decades, although some
of them show high chromospheric emission.

The statistics of the various stellar categories is therefore still
uncertain. In practice, the lower cycle amplitude in our grid will
allow us to cover almost no variability reasonably well, at least
at low average activity level, because the ratio between the num-
ber of spots at cycle maximum and at cycle minimum will be
able to reach values close to 1 in some cases. We do not attempt
here to add more complexity to our time series, as this would
represent additional parameters that are not at all constrained
(e.g., what does the butterfly diagram look like when two cycle
periods are present?), but future work will have to consider
these configurations more precisely. Therefore our simulations
are quite representative of stars that have some significant vari-
ability, except for the more complex stars, as well as of stars with
very low variability.

2.6.1. Cycle period

We compared the cycle period versus rotation rate from vari-
ous sources (Baliunas et al. 1996; Saar & Brandenburg 1999;
Böhm-Vitense 2007; Oláh et al. 2009, 2016; Suárez Mascareño
et al. 2016) for the so-called inactive branch when relevant. Stars
on this branch are old stars similar to the Sun as in our model,
and not young active stars. Except for Böhm-Vitense (2007),
which lies apart, these stars provide a coherent picture. The slope
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that the latitude coverage is directly related to the
maximum latitude of the butterfly diagram (in the case of the
Sun, we used an average latitude at the beginning of the cycleof

Fig. 6. Pcyc (in years) vs. Prot used in our grid (upper bound as solid
line, lower bound and intermediate range as dashed lines).

of Log(Pcyc/Prot) versus Log(1/Prot) is in the range 0.74–1.09,
and we consider here an average between these different sources,
that is, a coefficient of 0.84: this gives the cycle period we show
in Fig. 6. The curve is relatively flat. However, the dispersion in
the observations is likely to be real, and the dashed lines shows
the two extreme laws that we also considered to account for the
observed variability. We therefore explored a wide range of cycle
periods.

2.6.2. Cycle amplitude

Several studies produced amplitudes for the cycle period, espe-
cially as a function of Log R′HK. We have compared the laws
from various sources: Radick et al. (1998), Saar & Brandenburg
(2002), Lockwood et al. (2007), Hall et al. (2009), and Lovis
et al. (2011). When the observed dispersions are taken into
account, the agreement between them is good overall, except
for the existence of very large amplitudes in Lovis et al. (2011);
we discuss this below. The trend for large amplitudes for larger
Log R′HK is globally weak. The values obtained by Hall et al.
(2009) seem to be slightly lower than in other studies. It is also
important to note that in general, these samples contain very few
quiet stars with Log R′HK below −5.0, so that the amplitudes in
this domain are not well constrained (and are also most likely to
be affected by noise).

Because the very large upper bound derived by Lovis et al.
(2011) is very puzzling, we verified the temporal variability of
all stars whose Acyc (half-amplitude in R′HK×105) was larger than
0.3 in their sample. To do this, we used HARPS archive data. We
find that with extended observations since 2011, all of them fall
below 0.33, which agrees very well with the other publications.

Figure 7 shows Acyc from Lovis et al. (2011) versus B–V and
average Log R′HK. Stars of different spectral types have different
Acyc. We used the boundaries indicated in the figure to derived
three laws: an upper value, a lower value, and an intermediate
between the two for each point of the grid in (B–V , Log R′HK).
We chose a minimum Acyc of 0.005: this corresponds to stars
with very low variability.

2.6.3. Cycle shape

As discussed at the beginning of this section, we considered
cycles similar to the solar cycles. The chosen shape of the cycle
is the shape of the last solar cycle, as shown in Fig. 8. The ratio

Fig. 7. Upper panel: half full amplitude of stellar cycles vs. B–V ,
derived from Lovis et al. (2011) after revision of the largest amplitudes
(see text) for different types of stars: B–V < 0.7 (black stars), 0.7< B–V<
0.9 (red squares), and B–V > 0.9 (green triangles). The black lines cor-
respond to the lower and upper boundaries that were taken into account
in building the grid. Upper panel: same vs. average Log R′HK. The solid
line represents the lower limit that was taken into account in building
the grid.

between maximum and minimum can be different, however. At
each time step, some random variability was added to that curve
(25% of the amplitude at that time step) to represent the stochas-
tic variability that can be introduced by the dynamo in terms
of flux emergence. This amplitude is somewhat arbitrary, but it
gives a final realistic dispersion for the Sun. The input param-
eters, in addition to this shape and dispersion (constant), are
therefore the minimum and maximum level in Log R′HK, which
must correspond to the average Log R′HK we wish to obtain.

2.7. Small-scale convection level and convective blueshift

The inhibition of the convective blueshift in plages is an impor-
tant contribution to the final RV. This parameter has no effect on
the other observables. We used the study of the activity effect
on convective blueshift based on a large sample of F-G-K stars
that was presented in Meunier et al. (2017b). We found that the
convective blueshift depended not only on B–V , but also on
Log R′HK. For several B–V bins, we extrapolated these convec-
tive blueshifts to the basal Log R′HK (i.e., the level of convective
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Fig. 8. Wolf number vs. phase smoothed over the last solar cycle that
was used as a reference.
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Fig. 9. Convective blueshift derived for the basal Log R′HK (dashed line),
adapted from Meunier et al. (2017b), and scaled with the solar values
derived in Meunier et al. (2017a). The solid line shows the local con-
vective blueshift we used in our model, after correction for projection
effects for a constant attenuation of the convective blueshift in plages
of 0.38 (see text). The dotted line shows the same parameter when the
trend of the attenuation factor vs. Teff is taken into account.

blueshift we would have if no activity were present). This gives
the dashed line in Fig. 9. The convective blueshift was estimated
as in Meunier et al. (2017a), that is, it is based on the Sun from
Reiners et al. (2016), with 355 m s−1 for the solar convective
blueshift.

After we derived the convective blueshift, we applied an
attenuation factor (which provides the amplitude of the RV in
plages and network structures) and a correction factor for projec-
tion effects (considering effects perpendicular to the surface, as
in our previous work). In previous work, we used an attenuation
factor of two-thirds based on Brandt & Solanki (1990), but also
a smaller solar convective blueshift. Because our amplitude led
to good results when we compared out results with a solar recon-
struction of the long-term RV variation (Meunier et al. 2010b),
we would need to use a smaller attenuation factor (0.38) to obtain
the same results, given our new convective blueshift: this is what
was used in our simulations, which gives the local ∆V applied to
each structure as a function of B–V , shown as the solid line.

Another result obtained by Meunier et al. (2017b) is a pos-
sible trend versus Teff for the attenuation factor, which would
imply a correction factor of −2.077+5.324 10−4 Teff . The effect

5000 5500 6000
Teff (K)

0

500

1000

1500

2000

2500

3000

T
ph

ot
-T

sp
ot

, (
K

)

Fig. 10. Upper and lower bounds for the difference between spot and
photosphere temperature vs. Teff from Berdyugina (2005). The lower
bound is the solar value derived in Borgniet et al. (2015).

of this trend is shown in Fig. 9 as the dotted line. However, this
trend is poorly constrained below 5300 K, and we therefore chose
to make our simulation without this factor. The effect on the
resulting RV can be estimated during analysis, as this correction
can be applied afterward to the time series.

Finally, the convective blueshift is higher in larger structures.
We implemented the dependence between the velocity and the
size derived in Meunier et al. (2010b). There is typically a ratio
of 6 between the largest and smallest structures.

2.8. Spot temperature

The temperature of stellar spots remains poorly constrained
because it is very difficult to measure (and strongly degenerated
with spot size in photometric light curves). We used the results
of Berdyugina (2005), which show a trend with Teff (lower spot
contrast for lower stellar Teff), and a large dispersion because
stars (including the Sun) exist at a much lower temperature
contrast. The trend and order of magnitude have recently been
confirmed in numerical spot simulations (Panja et al., in prep.).
We therefore used two laws that represent two extreme configu-
rations, assuming that stars have temperatures within that range.
This is shown in Fig. 10: the lower boundary law corresponds to
the solar contrast we used in Borgniet et al. (2015), and the upper
boundary is derived from Berdyugina (2005). The computations
were made at 6000 Å, as in Borgniet et al. (2015), and the con-
trasts were adjusted to correspond to the bolometric photometric
variability (see Borgniet et al. 2015, for details).

2.9. Plage contrasts

Contrasts of stellar plages are poorly constrained as well. In our
previous work for the Sun (Meunier et al. 2010a), we used a
law that described a temperature contrast versus µ (cosine of
the angle between the line of sight and the local vertical at the
solar surface) similar to the law described in Unruh et al. (1999).
We then adjusted this slightly (together with the contrast of the
spot temperature that we described in the previous section) to
fit the observed solar irradiance. Borgniet et al. (2015) used a
description in terms of intensity contrast (plage intensity divided
by quiet-Sun intensity, minus one), which was described as a
second-degree polynomial in µ. A similar adjustment was made
to fit the photometry (which was necessary because we used a
slightly different center-to-limb darkening function).
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In the present paper, we not only need to describe the contrast
as a function of µ for the Sun, but also for other spectral types.
We used the results from the MHD simulations performed with
the MURAM code by C. Norris (Norris et al. 2016, 2017; Norris
2018). She provided coefficients describing the plage intensity
for different magnetic field levels (0, 100, and 500 G) versus µ
(in the 0.2–1 range, not available for µ below 0.2) for G2, K0, and
M0 stars as described in Norris (2018). These intensities where
computed for the HARPS wavelength range. The contrasts take
slightly different shapes depending on the parameters, but the
global trend is a higher contrast for stronger magnetic fields and
higher Teff .

Different functions can be used to describe the intensity vari-
ations versus µ (e.g., Yeo et al. 2013), and they provide different
values in the 0–0.2 µ range: however, their effect on the final RV
is very low (lower than 0.1%), therefore we use a quadratic form
in µ in the following. We then compute the contrasts as quadratic
functions of µ for these three spectral types and two magnetic
field levels and interpolate (or extrapolate for stars in the F6–G1
range) for other spectral types and different magnetic fields.

Our simulations provide sizes. We therefore established a
law relating the size (A) and the magnetic field flux (B) for the
plages and magnetic features we are interested using MDI/SOHO
(Scherrer et al. 1995) magnetograms that cover a full solar cycle,
which gives

Log(B) = 2.1134 + 0.1355 × Log(A), (5)

where B is in G and A in ppm of the hemisphere. For each
structure in the simulation, we therefore computed its associated
magnetic field according to this law, to be able to interpolate (all
values are between 100 and 500 G).

When we apply this procedure to a G2 star with an activity
level similar to that of the Sun, we find that the contrasts are
slightly higher on average than those of Borgniet et al. (2015),
they are higher by a factor 1.5. We therefore divided the contrasts
by this value for all stars for consistency with our definition of
structures sizes and the good agreement with the solar irradiance
variability (and the corresponding definition of spot size and
spot contrast).

2.10. Other parameters

– Spatio-temporal distribution. Latitude and longitude dis-
tributions as well as north-south asymmetry and active
longitude parameters were kept to the solar values from
Borgniet et al. (2015). The latitude at the beginning of the
cycle (related to the maximum possible latitude) was also
tested with different values (see Sect. 2.5.2). Migration was
considered to be equatorward as for the Sun, although there
have been indications that poleward migration could exist
(Messina & Guinan 2003; Moss et al. 2011), but this is not
well constrained.

– Large-scale dynamics. The differential rotation discussed
in Sect. 2.5 that we adapted to each grid point is described
with only two coefficients (instead of three for the Sun). The
same law was used for all structures (spots, plages, and net-
work). The meridional circulation was kept to the solar value
used in Borgniet et al. (2015) based on Komm et al. (1993),
and was also the same for all structures.

– Spot properties. The distributions of spot size and decay
rate were kept to the solar values used in Borgniet et al.
(2015), which were adapted from Martinez Pillet et al.
(1993), Baumann & Solanki (2005), Lagrange et al. (2010),
and Meunier et al. (2010a).

– Faculae properties. The faculae properties were similar to
those used in Borgniet et al. (2015), which included the ratio
distribution between plage and spot sizes, and decay rates
(here we considered the plages that were produced each time
we generated a spot).

– Network properties. Network properties were similar to
those used in Borgniet et al. (2015), which include the
diffusion coeficient from Schrijver (2001), the fraction
of plage flux that was used to build the network, and
the decay rate. The diffusion coefficient was scaled with
the amplitude of the convective blueshift, as discussed in
Sect. 2.7.

3. From structures to observables

3.1. Filling factor and photometric and radial velocity
time series

Because of the huge number of simulations, it is not possible
to compute the observables as done in our previous work
(Lagrange et al. 2010; Meunier et al. 2010a; Borgniet et al.
2015), in which we computed maps, then spectra, and finally
RVs (and other observables) in the same way as for stellar obser-
vations. We therefore simplified the computations as follows:
we directly summed the contribution from each structure to the
RV, photometry, and astrometry. The filling factors were also
computed. This implies that we assumed that the structures
are point-like, which means that we did not need to check for
superimpositions. This is different to what was done in Borgniet
et al. (2015). This also means that we neglected any geometrical
effect that would be due to a large area covered by a structure,
which is a good assumption because we modeled relatively quiet
stars with moderate structure sizes. The assumption is very good
for spots because the maximum size of a spot would correspond
to a radius of about 3◦ (which would be a very rare case; typical
spots are much smaller, see Table E.1). Plages may cover a
larger area, which is expected to add a second-order distortion
to an ideal time series: in most cases, the extreme sections of a
structure (east and west) are expected to produce a signal that
is very similar to the central part of the structures on average; in
addition, we considered at each time step an irregular decay of
the structures that has a random amplitude, so that the distortion
produced by the assumption would not be identifiable given this
other source of irregularity. The same structures were used for all
stellar inclinations. The formulae are provided in Appendix C.

We recall that we chose to study different laws for several of
our parameters (as summarized in Fig. 1), so that several time
series of spots, plages, and network features were produced for
each of the 141 points of the 2D grid in (B–V , Log R′HK), each
corresponding to a different parameter set (Table E.1). This leads
to 11 421 time series, or 22 842 when the two levels for Tspot are
considered for each inclination and observable, hence a total of
228 420 realizations for each observable. Inclinations take val-
ues between 0◦ (pole-on) and 90◦ (edge-on), with a step of 10◦.
Figure E.1 shows a summary of all parameters.

3.2. Temporal sampling and duration

Time series must have a sufficiently long duration to allow us to
test analysis methods, and they must cover at least a cycle period.
To keep it reasonable, however, we imposed a maximum of 15 yr
(which is just above the maximum cycle period we considered).
We then simulated an integer number of cycles, choosing the
maximum number that would lead to a duration shorter than
15 yr.
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Table 2. Variable parameters.

Parameters Main grid Calibration grid

Log R′HK vs. B–V 141 values 19 B–V
Prot 3 laws 1 law
Pcyc 3 laws –
Acyc 3 laws 1 activity level
θmax (and ∆Ω) 3 θ 3 θ
TOTAL 11 421 57
Tspot 2 laws –
Inclinations 10 10

Notes. Number of values or laws determining the number of simula-
tions. The spot temperature is related to the observable and not to the
generation of structures, therefore the two values considered are used
for the same list of structures. The first column (main grid) corresponds
to the parameter sets described in Sects. 2 and 3. The second column
corresponds to the simulations dedicated to the calibrations described
in Sect. 4.

The time step was one day on average, but as in Borgniet
et al. (2015), we added a small random departure (within ±4 h)
from the regular sampling to mimic a realistic sampling.

3.3. Addition of short-term variablity in RV

3.3.1. Principle

To produce realistic RV time series that include all contributions
at various timescales, we added the contribution of oscillations,
granulation, and supergranulation, as was done in Dumusque
(2016). We call these three contributions to RV the OGS sig-
nal hereafter. The principle is the following. For each spectral
type and each variable, we computed one time series that cov-
ered 15 yr and had a time step of 30 s. From this, the time series
corresponding to a given sampling can be extracted. To produce a
time series like this, we computed the inverse Fourier transform
of the power spectrum as a function of the frequency ν, P(ν),
for each of these contributions. The parameters describing the
power depend on the spectral type. We also computed smoothed
time series (with a bin of one hour) to simulate the effect of long
exposure times. In the following, we mostly use such long-time
exposure time series, assuming some good observing conditions.
The series with no smoothing may be used for a comparison
with observations that were made with short exposure times,
however. In practice, a long-duration (15 yr) time series was
produced for each spectral type, with a time step of 30 s; for
a given time series in our grid, we extracted either the instanta-
neous values or the one-hour average corresponding to the same
sampling.

We can also add a white noise of 0.6 m s−1 to simulate instru-
mental noise (this value corresponds to typical uncertainties on
individual measurement from HARPS data for G stars). We
considered four types of time series in our analysis:

– 1: original RV time series caused by magnetic activity. These
are useful to study only the activity contribution.

– 2: original RV time series plus oscillation, granulation, or
supergranulation signal (no smoothing). This is useful to
compare with observations under ideal conditions (assuming
the instrumental noise was totally corrected for).

– 3: original RV time series plus oscillation, granulation, or
supergranulation signal (no smoothing) plus instrumental
noise.

– 4: original RV time series plus oscillation, granulation, or
supergranulation signal (one-hour smoothing) plus instru-
mental noise.

3.3.2. Oscillations

We used the following power function for the oscillations:

P(ν) = A × e−(ν−ν0)2/2/Γ2
, (6)

which describes the mode envelopes and not the individual
modes themselves (e.g., Kallinger et al. 2014). We adopted the
following scaling laws for different types of stars:

A = (Teff/Teff,�)4 × (R/R�)2/(M/M�)0.7 (7)

from Kjeldsen & Bedding (1995), with the adaptation of Samadi
et al. (2007) for the exponent, where A is relative to the solar
value,

ν0 = (M/M�)/(R/R�)2/
√

Teff/Teff,�, (8)

from Bedding & Kjeldsen (2003), where ν0 is relative to the solar
value, and

Γ =
√

(M/M�)/(R/R�)1.5 (9)

from Kippenhahn & Weigert (1990) and Belkacem et al. (2013),
where Γ is relative to the solar value.

These laws were scaled with the following solar val-
ues: A� = 200 (m s)−2 Hz−1 (which provides an amplitude
of the power that agrees well with the observed power,
e.g., from Davies et al. 2014), ν0,� = 3140× 10−6 Hz, and
Γ� = 361× 10−6 Hz (both from Kallinger et al. 2014).

3.3.3. Granulation

We used the following power function for the granulation signal:

P(ν) = A/(1 + (τν)β) (10)

from Harvey (1984). The power spectrum in RV of a few stars
was analyzed (Dumusque et al. 2011), but the sample is not large
enough to derive a proper trend. We therefore used a scaling
derived from the numerical simulation of Beeck et al. (2013)
to obtain the scaling of A and τ by fitting a linear law on their
results:

A = (0.3 + 6.323× 10−4 × (Teff − 4594)), (11)

and

τ = −2.831 + 1.574× 10−3 × Teff (12)

are normalized by the same amplitude and τ, respectively, com-
puted for 5784 K (G2). β was kept to the solar value. The
solar values were derived from a fit on the simulated time
series produced in Meunier et al. (2015): A� = 154 (m s)−2 Hz−2,
τ� = 2781 s, and β� = 1.97.

3.3.4. Supergranulation

The formula for the supergranulation power is similar to Eq. (10)
for granulation. Supergranulation seems to be present in stars
other than the Sun (Dumusque et al. 2011), but the statis-
tics is not sufficient to describe the parameters as a func-
tion of spectral type. Given the lack of knowledge on stel-
lar supergranulation and because it is likely to be related to
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Fig. 11. RV jitter due to the oscillation, granulation, and supergranu-
lation vs. B–V for instantaneous values (black) and averaged over one
hour (red).

the granulation pattern and amplitude (e.g., Roudier et al.
2016), we used the granulation scaling relation. We consid-
ered the solar time series simulated in Meunier et al. (2015),
which correspond to intermediate parameters between the
two extremes the authors evaluated (supergranulation is less
strongly constrained than granulation), and then fitted them,
which gives the following parameters: A = 43 000 (m s)−2 Hz−1

and τ= 1.1× 106 s. β was kept fixed to the granulation
value.

3.3.5. RV jitter caused by the OGS signal

The rms RV produced by the OGS signal alone is shown in
Fig. 11 as a function of B–V . It ranges from 1.8 to 1.1 m s−1 for
stars between F6 and K4. After averaging over one hour, the val-
ues are lower than 1 m s−1. They lie between 0.9 and 0.5 m s−1

from F6 to K4.

4. Chromospheric emission – calibrating the spot
number

4.1. Objectives and principle

The laws described in Sects. 2 and 3 depend on Log R′HK, which
is an observable. However, the input parameters of our sim-
ulations are the number of spots (Sect. 2.1) . We therefore
need to know how many spots to inject if we wish to reach a
given activity level that is described by its average Log R′HK. For
this purpose, we need two elements: a chromospheric emission
model that uses the input parameters of our simulations, and a
calibration law relating Log R′HK and spot number. This model
will also be very useful after the simulations are performed to
determine to which Log R′HK they correspond as well: the exact
average Log R′HK of simulation may be slightly different from the
one in Fig. 3, but our objective is that it should be close (so that
the input parameters we have used for that particular simulation
are valid).

Assuming a solar chromospheric emission model, we there-
fore performed a series of simulations with constant activity
levels, which will give the typical contribution per injected spot
to the S-index. This was made for a constant number of spots1

1 We note that in this paper the spot number is a true spot number, that
is the number of individuals spots we actually inject. This is different
from Borgniet et al. (2015), in which we considered the solar Wolf num-
ber, which is a combination of the number of spots and the number of

on eight-year time series. The average was then made on inclina-
tion (because the same structures were used for all inclinations,
they correspond to the same inputs in terms of spot number),
θmax (very small variation), and spectral type (no trend observed,
which is expected because we used the same law to compute the
plage contribution). We note that this calibration depends on the
plage-to-spot size ratio: we kept it constant in this paper, but if it
were to vary, new calibrations are required. The same is true if
the size distribution of spots changes.

4.2. Principle of the chromospheric emission model

A necessary step is therefore to implement a model providing an
S-index (and then Log R′HK) based on a list of plages and net-
work features at each time step. The full model is described
in Appendix D. We provide here the general principles. The
model is based on the work of Meunier (2018) for the Sun, and
includes three contributions: (1) the basal flux (when no activ-
ity is present, determined in Sect. 2.3.1); (2) the contribution
of plages and network structures, with a law that depends on
their size, following Harvey & White (1999); (3) the contribu-
tion of the quiet star (“quiet” here means outside active regions
and network, hereafter QS). This last contribution is important
because it must vary from one star to the other: if it were kept
constant, it would be impossible to observe stars with variability
while having an average activity level below that of the quiet Sun
because the level at solar minimum (corresponding to no struc-
tures) is significantly above the basal level. This is discussed in
more detail in Appendix D. We propose that this contribution
depends on the average activity level of the star: the more active
the star, the stronger the (weak) magnetic field in the quiet star,
and the larger the contribution of the quiet star to the chromo-
spheric emission. The exact choice of the QS contribution will
affect the number of spots, and most especially, the number at
cycle minimum.

For a given Log R′HK, we computed the S-index, from which
the basal flux was removed, as well as the QS contribution for
that Log R′HK (see Appendix D.1). The resulting flux was divided
by the typical flux per structure, providing the number of spots
to inject to obtain the Log R′HK we wish to reach. The resulting
calibration works very well, as we show in the next section.

4.3. List of the different time series

Table 3 shows the list of time series that we produced during the
simulations. We recall that except for the number of structures,
plage refers to all bright structures, from large structures in active
regions to the smallest structures in the network.

5. Log R ′
HK

behavior

5.1. Comparison between objective and realization

As explained in Sects. 2 and 4, we wish to simulate time series
with a given average activity level, as well as a certain cycle
amplitude (in Log R′HK), that is, Log R′HK,obj and ∆Log R′HK,obj.
A calibration was necessary to achieve this goal (Sect. 4.2),
therefore we must check that the simulations behave as planned.
We computed the average Log R′HK,out for each time series,
where “out” stands for the output Log R′HK from the simulations.
The properties of this realized Log R′HK (“out”) time series was

spots groups, which needed a conversion into a number of individual
spots to be injected. This complexity is not necessary here as this was a
purely solar approach which does not make sense for other stars.
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Table 3. Time series.

Variable

RV
RVspot1, RVspot2
RVplage
RVconv
OSG
Inst. Noise

Photometry
Ispot1, Ispot2
Iplage

Astrometry
Xspot1, Xspot2
Yspot1, Yspot2
Xplage
Yplage

Chromospheric emission
S-index
Log R′HK

Other variables
ff spot
ff plage
nb spot
nb plage
nb network

Notes. ff and nb are the apparent filling factor and number of structures,
respectively; they are not observables. The other variables are either
observables or can produce observables when several of these variables
are combined. Subscripts 1 and 2 refer to the two laws for ∆Tspot.

compared to the targeted Log R′HK (“obj”) from the grid of
parameters from Sect. 2.3. The amplitude, ∆Log R′HK,out, was
computed using a sinusoidal fit of each smoothed Log R′HK time
series.

The two upper panels (A and B) in Fig. 12 compare the
Log R′HK,obj and Log R′HK,out. We observe a strong inclination
effect on Log R′HK; departures from the average are within
0.05 dex. However, on average, the difference between the
expected value and the final value is much smaller when this
inclination dependence is removed (below 0.01 typically). The
differences are smaller than the typical uncertainties on Log R′HK
values as estimated by Radick et al. (2018), of about 0.06 dex,
and our Log R′HK should not be considered to be more precise
than this in absolute value (although for a given simulation, the
relative variability will be much more precise, of course).

In Appendix D, we mention the possibility of a trend in chro-
mospheric emission versus Teff . We did not include this trend
because it is still very uncertain. When it is applied, the differ-
ence is small; the largest difference for our lowest mass stars is
about 0.03 dex. If it is real, we would need fewer spots for the
stars with the lowest mass than are included in the present sim-
ulations to reach a given objective because the emission for a
given plage would be higher.

A fit of the time series with a sinusoidal provides an esti-
mate of the amplitude of the cycle and of its period, which
can be compared to expectations. Panel C in Fig. 12 shows the
inclination effect on the cycle amplitude, while panels D and E
in Fig. 12 compare ∆Log R′HK,obj and ∆Log R′HK,out for average
inclinations. The cycle amplitudes from the simulations are also
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Fig. 12. Panel A: Log R′HK,out–Log R′HK,obj vs. Log R′HK,obj for all simula-
tions. The color indicates stellar inclination from 0◦ (pole-on, yellow) to
90◦ (edge-on, blue). Panel B: Log R′HK,out averaged over all inclinations
vs. Log R′HK,obj. The solid red line indicates the y= x linear function.
Panel C: ∆Log R′HK,out–∆Log R′HK,obj vs. Log R′HK,obj, where ∆ represents
the amplitude of the cycle, for different inclinations (the color code is
similar to panel A). Panel D: ∆Log R′HK,out–∆Log R′HK,obj vs. Log R′HK,obj,
where ∆ represents the amplitude of the cycle, after averaging the sim-
ulations made for inclination of 40◦ and 50◦. Panel E: ∆Log R′HK,out
vs. ∆Log R′HK,obj, after averaging for inclination of 40◦ and 50◦. The
solid red line indicates the y= x linear function. Panel F: cycle period
(in years) derived from a fit on smoothed Log R′HK time series vs. the
prescribed cycle period.

very close to the expected ones. Finally, the last plot (panel F)
compares cycle periods, which for most simulations are in good
agreement. There are a few outliers, but these are mostly due to
low-amplitude simulations, for which the measurement itself is
not reliable.

We conclude that after averaging, the average Log R′HK, the
amplitude, and period of the cycle agree with the input parame-
ters. The inclination effect is discussed in the next section.

5.2. Dependence on inclination

We observe a strong inclination effect on the average Log R′HK,
with a stronger value for an edge-on than for a pole-on
configuration. This is in agreement with the results of Shapiro
et al. (2014), which were based on simulations with a simpler
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model of the chromospheric emission (no structures or size
dependence). Knaack et al. (2001) obtained a much weaker
dependence, probably because they used a model that did not
take all parameters into account. The inclination effect is also
strong on the long-term amplitude in Log R′HK, although it
presents a large dispersion. For the solar θmax, the amplitude is
larger for the edge-on configuration, with a difference of about
20–40% depending on the simulation. This has been observed
by Knaack et al. (2001). For larger θmax, the difference is smaller,
with a slight predominance of larger amplitude when edge-on for
θmax,�+10◦ and a reversal for θmax,�+20◦ (with a large dispersion
and difference occasionally up to 20%).

5.3. Example of RV and Log R ′HK time series

Figure 13 shows a few examples of time series for a small
sample of spectral types, activity levels, and inclinations in chro-
mospheric emission and radial velocity. The different activity
levels correspond to different ages. When the law derived by
Mamajek & Hillenbrand (2008) to relate rotation and age is
assumed, the first two panels would correspond to an age of
3.3 Gyr, the third panel to 4.3 Gyr, and the fourth to 8.2 Gyr.
This shows a good similarity between RV and Log R′HK long-
term variations. It is also possible to obtain relatively flat curves
for the lowest cycle amplitudes.

6. Conclusion

We have proposed a model to produce realistic time series of dif-
ferent variables (RV, photometry, astrometry, and chromospheric
emission) that represent complex activity patterns for a wide
range of stars. We have described the model in detail: a speci-
ficity of our simulations is that we use consistent parameter sets
for a wide range of stars, that is, old F6-K4 star with different
activity levels.

Our very large set of time series will be analyzed in detail in
subsequent papers. We will compare the RV jitter between simu-
lations and observations, analyze the effect of parameters on the
RV jitter, and use this RV jitter to predict the detectability of exo-
planets as a function of B–V and Log RHK (Meunier & Lagrange
2019a). The detailed relationship between RV and Log R′HK will
be studied in order to understand why the corrections of RV time
series using a linear function of Log R′HK are limited (Meunier &
Lagrange 2019b). RV times series will be further analyzed to
produce detection limits by taking the frequency behavior of the
stellar variability into account. Finally, a similar analysis will be
made for astrometry. The effect of oscillation, granulation, and
supergranulation will also be studied in more detail as a function
of spectral type and activity level.

These time series are a good tool to provide clues to help
interpret stellar variability from brightness time series: this is
crucial because there are many degeneracies and biases, and
synthetic time series are useful to determine the effect of the
different parameters. They can also be used to test new methods,
not only a correcting method for purposes of exoplanet detection,
but of stellar activity analysis.

When these globally consistent parameter sets are built, the
main limitation in our opinions is the poorly constrained QS
contribution to the chromospheric emission. We have made
two strong assumptions because our knowledge is incomplete.
First, we have neglected the variation of this contribution with
time, although we expect a small variation with a complex pat-
tern from our solar study Meunier (2018; competition between
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Fig. 13. First line: Log R′HK (left panel) and RV (right panel) vs. time
for a moderately active G2 star and an inclination of 90◦. Second line:
same for an inclination of 0◦. Third line: same for a quiet G2 star and
an inclination of 90◦. Fourth line: same for a moderately active K2 star
and an inclination of 90◦.

stronger magnetic field at cycle maximum, but also a lower sur-
face coverage). Second, we imposed that the number of spots
at cycle minimum varies within a small range (and is small). We
cannot exclude that for very active stars, for example, there could
be a trend of a lower QS contribution and larger spot number
at cycle minimum. This is not constrained, however, although
we know that the Sun, which lies in the middle of our grid,
has very few spots at cycle minimum and therefore conforms
to our assumption. The only way to go beyond this limitation
would be to better understand this QS contribution over the cycle
and for different activity levels, most likely from dedicated sim-
ulations (MHD or using flux tubes down to very small spatial
scales).
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Appendix A: Rotation period
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Fig. A.1. First panel: Comparison of the rotation period vs. B–V for
Log R′HK = −5.1 from various sources: the solid black line is from
Mamajek & Hillenbrand (2008), the green dot-dashed line from Noyes
et al. (1984a), and the dashed red line from Saar & Brandenburg (1999).
Second panel: Same for Log R′HK = −4.75. Third panel: Similar com-
parison vs. Log R′HK for eight levels in B–V between 0.5 and 1.1. The
vertical line approximately shows the lower limit for the validity of the
laws (the shaded area indicates the zones where it is not valid).

Figure A.1 shows a comparison of the rotation period derived
from observations presented in different sources. The first two
plots show the rotation period versus B–V for two values of
Log R′HK (−5.10 and −4.75, respectively) from Mamajek &
Hillenbrand (2008), Noyes et al. (1984a), and Saar &
Brandenburg (1999). Mamajek & Hillenbrand (2008) and
Noyes et al. (1984a) are quite close to each other. Saar &
Brandenburg (1999) give rotation periods longer than all the
others for the most quiet stars, as illustrated in the last plot, but
these are always poorly constrained.

Other papers also provide rotation periods for very large
samples, for example, from Kepler light curves (Nielsen et al.
2013; McQuillan et al. 2014; García et al. 2014; Reinhold &
Gizon 2015), but they depend on the photometric variability,
which cannot be translated directly into an average Log R′HK
level. Others are only given as a function of magnetic fields

(Vidotto et al. 2014) or without any indication of activity level
(Strassmeier et al. 2012). They can therefore not be easily
included in our set of parameters as such.

Appendix B: Differential rotation and maximum
latitude

Reinhold & Gizon (2015) compared their measured differential
rotations with previous results. They obtained a good agreement
with laws obtained by Hall (1991) and Donahue et al. (1996).
Barnes et al. (2005) and Collier Cameron (2007) obtained much
steeper laws versus Teff , however. We note that Das Chagas
et al. (2016) obtained a differential rotation that is very simi-
lar to the solar one from the analysis of 17 Kepler solar-type
stars. The results obtained by Balona & Abedigamba (2016)
are more difficult to compare because of their normalization.
Most numerical simulations of stellar differential rotation cover
a small range in parameters, either have very fast rotation peri-
ods (e.g., Küker & Rüdiger 2011), or they are too close to the
solar case (e.g., Küker et al. 2011). The simulations of Brun
et al. (2017) cover a wider range (G and K stars): they derive
a scaling law of ∆Ω versus mass and Ω. For their solar-type dif-
ferential rotation, they obtained a scaling as M0.73Ω0.66, for ∆Ω
between equator and 60◦. They attempted a comparison with the
scaling laws in the literature, which they found to be not very
conclusive, but they did not discuss the effect of θmax on the
observations. It is therefore difficult to use these laws to build our
simulations.

Appendix C: Computation of the observables

We detail here how the observables were computed at each
time step to produce the time series. The sum in all formulae
is made on all structures of a given type at the correspond-
ing time step, and all observables below are functions of time.
We use the following notations: A j is the size of the struc-
ture j (in ppm of the hemisphere); θ j and φ j are their latitude
(between −90◦ and 90◦) and longitude (between 0◦ and 360◦),
respectively; µ j is their position on the disk (cosine between
the local surface and the line of sight, it takes a value of 1 at
disk center and zero at the limb, and depends on θ j, φ j, and
inclination).

Other variables are as follows: i is the star inclination; Pcb is
the center-to-limb darkening function at a given temperature, as
in Borgniet et al. (2015), from Claret & Hauschildt (2003), using
a log(g) of 4.5 and solar metallicity; Cpl is the relative contrast
of the plages and is a function of µ; subscripts “phot”, “pl”, and
“sp” are for photosphere, plages (including network), and spots,
respectively; and Teff is the photospheric temperature.

C.1. Filling factors of the spots and plages

The filling factor of either spots or plages is defined as

ff = ΣA j × µ j × 2 (C.1)

and is in ppm of the stellar disk.

C.2. Photometry of the spots and plages

The plage contribution to the photometry is defined as

Ipl = ΣA j × µ j × Cpl(µ j,A j,Teff) × 2
× fphot(Teff) × Pcb(µ j,Teff)/Φtot(Teff), (C.2)
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where Cpl is a relative contrast DeltaI/I = (Ipl− Iphot)/Iphot
(local ( = Iplage/Iphot− 1)) and Φtot is equal to fphot × Pcb then
integrated over the disk, where f is the Planck function for the
indicated temperature.

The spot contribution to the photometry is defined
as

Isp = ΣA j × µ j × Csp(µ j,Tsp,Teff) × 2, (C.3)

where

Csp = (fsp(Tsp) × Pcb(µ j,Tsp) − fph(Teff)

×Pcb(µ j,Teff))/Φtot(Teff). (C.4)

f and Φtot are defined as above. The photometric contributions
are in ppm of the quiet-star brightness. The sum of the two
provides the total variability in ppm.

C.3. RV of spots, plages, and convection inhibition

The plage contribution to the RV is defined as

RVpl = ΣAj × µ j × 2 × 10−6 ×Ω(θ j) × sin(φ j) × sin(i)

×Cpl(µ j,Aj,Teff) × Pcb(µ j,Teff) × fph(Teff)/Φtot(Teff),
(C.5)

where Ω is the rotation rate converted in m s−1.
The inhibition of the convection contribution to the RV is

defined as

RVconv = ΣA j × µ j × 2 × 10−6 × ∆V(µ j) × Pcb(µ j,Teff)

× (1 + Cpl(µ j,Aj,Teff)) × fph(Teff)/Φtot(Teff), (C.6)

where ∆V is the attenuation of the convective blueshift (vertical
contribution, see Sect. 3.2 for a discussion).

The spot contribution to the RV is defined as

RVsp = ΣAj × µ j × 2 × 10−6 ×Ω(θ j) × sin(φ j) × sin(i)

×Csp(µ j,Tsp,Teff), (C.7)

where Csp is defined as above. All RV are in m s−1. The Zeeman
effect (Reiners et al. 2013) is not taken into account. The sum
of the three components then provides the total RV variation in
m s−1.

C.4. Astrometric displacements

The astrometric contribution in the x direction (x taken along the
equator) is the same for plages and spots:

∆x = ΣI j × x j × R(R�) × 180 × 3600 × /Dstar/π × N, (C.8)

where I j is the individual contribution of a structure to the pho-
tometry (see Eqs (C.2) and (C.3)). It is normalized to the quiet
star. The formula is similar in y (along the rotation axis): x j and
y j are positions in this referential system, relative to the stel-
lar radius. Dstar is arbitrarily chosen to be 10 pc (for a star at
a different distance, the corresponding factor must be applied).
N is a normalization factor equal to 1/(1+Ipl+Isp) to normalize
with the actual flux of the star. Astrometric displacements are in
µas.

Appendix D: Chromospheric emission model:
practical recipe

D.1. Model for a G2 star

We followed the approach described in Meunier (2018), with
some simplifications because magnetic field maps are not avail-
able. The S-index model consists of three components and is
described as

S (t) = S basal + [S act(t) + S qs(t)] × f /N, (D.1)

where N is equal here to 106 (areas are in ppm) and the three
contributions are therefore the following:

– The basal flux corresponds to stars with no activity (see dis-
cussion in Meunier 2018), and must not be confused with
the lower limit in Log R′HK discussed in Sect. 2.3.1. For
B–V lower than 0.94, we used the basal S-index of 0.144
derived by Mittag et al. (2013). For B–V above 0.94, the true
basal flux is significantly below the lower limit observed in
Log R′HK: we used the basal flux built from models and obser-
vations made by Schröder et al. (2012). The corresponding
basal flux used in this paper is shown as the lower solid line
in Fig. 3.

– The active component is due to the plages and network fea-
tures that are simulated in Sect. 2. We attributed a magnetic
field to each size. The sizes used in this work correspond
to a threshold of 100 G on MDI/SOHO Scherrer et al.
(1995) magnetograms (see Sect. 2.1), as defined in Meunier
et al. (2010a). These sizes were then converted into sizes
corresponding to a 40 G threshold as in Meunier (2018)
before we used the scaling law of the magnetic field versus
size from MDI/SOHO. Then we computed the contribution
of each plage as a multiplying factor times this magnetic
field to a certain exponent. The parameters were kept to
the solar values (see Appendix D.3 for a discussion) and
depend on the size of the region, as detailed in Meunier
(2018).

– The quiet-star component (QS) is due to the weak magnetic
field everywhere else on the surface. This contribution is
critical and necessary (see Meunier 2018, for a discussion):
if we had kept the solar relationship between filling factor ff
and S-index as obtained by Shapiro et al. (2014) for exam-
ple, it would be impossible to model the S-index for stars
with an activity level much below the minimum solar cycle
(since ff = 0 then). We assumed that the magnetic flux in the
quiet star is related to the average activity level of the star: if
it is more active, it provides more flux to the quiet star and
therefore a higher chromospheric emission. The procedure is
detailed below.

We tested a description of the QS component similar to the one
used in our solar model (Meunier 2018), with the form f ′×Bβ

QS,
where BQS is the average magnetic field in the quiet Sun. It
is difficult to apply directly, however, if f ′ is kept to the solar
value, this contribution remains strong even for very low val-
ues of BQS. If we adapt f ′ to BQS by allowing it to decrease
sharply toward zero at low activity levels, it leads to very strong
variations of the S-index with time due to the quiet star, which
does not seems realistic. A QS contribution that is too large for
quiet stars prevents us from modeling stars with a large cycle
amplitude because the expected level at cycle minimum would
then fall below the basal+QS level. Instead, we chose an empir-
ical approach, given the lack of constraints, which allowed us
to model stars with a large amplitude as observed. For a given
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cycle amplitude in our (B–V , Log R′HK) grid, given the average
Log R′HK and the minimum Log R′HK corresponding to the ampli-
tude, it is possible to compute the maximum QS contribution
that we should allow to model such variability. Then we chose
a QS level slighly below the minimum value: this imposed a
small number of spots at cycle minimum, typically about 2–4. A
more sophisticated model would require numerical simulations
of magnetic flux tubes from active regions down to very small
scales and is beyond the scope of this paper.

D.2. S-index for other stars

This S-index, built as in Appendix D.1, is valid for G2 stars
(because it has been validated for the Sun) but not for other
stars: the pertinent value to compare chromospheric emissions
between stars is the Log R′HK , however. For a given simulation at
B–V , we transformed the obtained S-index into a Log R′HK using
the solar value (0.65), then back into an S-index with the stellar
Log R′HK. In practice, we mostly used the Log R′HK.

D.3. Possible intrisinc chromospheric variability versus B–V?

A dependence of the chromospheric emission (for similar
plages) on the spectral type is not taken into account in the
previous model. There have been very few studies of the chro-
mospheric emission that would allow us to answer this question
precisely. Numerical simulations of magnetic structures (Steiner
et al. 2014; Beeck et al. 2015) suggest that the magnetic field

remains similar in their magnetic regions (and if the magnetic
flux increases, it is mostly due to the size, not the flux density).
Therefore, we do not expect large variations. Cuntz et al. (1999)
expected the rotation period to affect the chromospheric emis-
sion because a low rotation would lead to a smaller spreading
of the flux tubes, which in turn would cause a slightly higher
chromosperic emission, but it is difficult to directly apply to our
parameters. Fawzy et al. (2002c), based on models of magnetic
waves propagating in flux tubes to explain the chromospheric
heating (Fawzy et al. 2002a,b), established a relation between
chromospheric emission and magnetic coverage. They obtained
an increasing emission for larger B–V . We can derive an average
trend from their results, which would give a corrective fac-
tor equal to 1.12–0.18 ×(B–V). However, this is very uncertain
because they specified that they might have uncertainties of up
to a factor two on the flux emissions. Therefore, we chose not to
include this trend in our model.

Appendix E: Input parameters

In this appendix we summarize the parameters. Table E.1 shows
the list of parameters and their values (or ranges). These were
used to produce the list of spots, plages, and network features at
each time step (size and position). Table E.2 shows the same
summary for the parameters that allowed us to compute the
observables. Finally, Fig. E.1 illustrates the range of values cov-
ered by the parameters, which are adapted to each spectral type
as a function of B–V .
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Table E.1. Input parameters to generate spots and plages.

Category Parameter Value/range Unit Reference

Solar activity Cycle shape Smoothed average – Sect. 3.6.3
solar cycle

Cycle period 2–14.5 (yr) Sect. 3.6.1, Noyes et al. (1984b)
Baliunas et al. (1996)
Saar & Brandenburg (1999)
Böhm-Vitense (2007)
Oláh et al. (2009); Lovis et al. (2011)
Suárez Mascareño et al. (2016)
Oláh et al. (2016)

Cycle amplitude 0.03–0.43 (Log R′HK) Sect. 3.6.2, Lovis et al. (2011)
Radick et al. (1998)

Spot number random dispersion 25 % Adapted from Borgniet et al. (2015)
Stellar
fondamental Stellar radius 0.9–1.4 (R�) Sect. 3.2, Boyajian et al. (2012, 2013)
parameters Stellar Teff 4594–6334 (K) Sect. 3.2, Gray (2005)
Spatio-temporal Mean start latitude 22, 32, 42 (deg) Sect. 3.5
distribution Mean end latitude 9 (deg) Borgniet et al. (2015)

Standard lat. dispersion 6 (deg) id.
Max. lat. dispersion 20 (deg) id.
North-south asymmetry 0.5 – id.
Active longitude spot fraction 0.4 – id.
Active longitude extension area +/-20 (deg) id.

Large scale Differential rotation Ω0 = 6.6–112.5 (deg day−1) Sect. 3.5 Adapted from
dynamics Mamajek & Hillenbrand (2008)

Reinhold & Gizon (2015)
Ω1 = −2.10 to −7.25 (deg day−1) id.

Meridional flow α = 12.9 (m s−1) Komm et al. (1993)
β = 1.4 (m s−1) id.

Isolated Total fraction 0.4 – Martinez Pillet et al. (1993)
spots Mean initial size 46.51 (µHem) Adapted from Baumann & Solanki (2005)
properties Standard size deviation 2.14 (µHem) id.

Max. size 1500 (µHem) Papers I and II, Borgniet et al. (2015)
Mean decay −18.9 (µHem day−1) Martinez Pillet et al. (1993)
Median decay −14.8 (µHem day−1) id.

Complex Total fraction 0.6 – Martinez Pillet et al. (1993)
spots Mean initial size 90.24 (µHem) Adapted from Baumann & Solanki (2005)
properties Standard size deviation 2.49 (µHem) id.

Max. size 5000 (µHem) Papers I and II, Borgniet et al. (2015)
Mean decay −41.3 (µHem day−1) Martinez Pillet et al. (1993)
Median decay −30.9 (µHem day−1) id.

All spots Min. decay value −3 (µHem day−1) id.
Max. decay value −200 (µHem day−1) id.
Min. spot size 10 (µHem) Papers I and II, Borgniet et al. (2015)

Faculae q (facula-to-spot ratio) Borgniet et al. (2015)
properties Mean log(q) 0.8 – id.

Standard deviation (log(q)) 0.4 – id.
Min.- Max. log(q) 0.1–5 – id.
Mean decay −27 (µHem day−1) id.
Median decay −20 (µHem day−1) id.
Min. facula size 3 (µHem) Papers I and II

Network Diffusion coefficient 69–407 (km2 s−1) Sect. 3.7.2 Schrijver (2001)
properties Meunier et al. (2017b)

Remainder fraction for decay 0.975 (day−1) Borgniet et al. (2015)
Min. size 3 (µHem) Papers I and II, Borgniet et al. (2015)
Facula fraction recovered 0.8 – Borgniet et al. (2015)

Notes. Values kept to the solar values used in Borgniet et al. (2015) are in italics.
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Table E.2. Input parameters to generate the time series (photometry, astrometry, and radial velocity).

Category Parameter Value Unit Reference

Spot T contrast 600–2600 (K) Sect. 3.8, Berdyugina (2005); Borgniet et al. (2015)
Plage contrast 0.02–0.13 – Adapted from Unruh et al. (1999); Meunier et al. (2010a)

Borgniet et al. (2015); Norris (2018)
Convective blueshift ∆V 90–520 (m s−1) Sect. 3.7.1, Meunier et al. (2017b)
Attenuation factor of ∆V 0.37 Sect. 3.7.1,Meunier et al. (2017b)
Limb-darkening coefficients f(Teff) – Claret & Hauschildt (2003)
Chromospheric emission parameters Sect. 4, Harvey & White (1999); Meunier (2018)

Notes. Values kept to the solar values or laws used in Borgniet et al. (2015) are in italics.

Table E.3. Summary of the laws corresponding to Fig. 1.

Variable Law Section

Lower limit in activity level S = 0.144 for B–V < 0.94 2.3.1
S = 0.0269231× (B–V) + 0.118892 for B–V > 0.94

Upper limit in activity level Log R′HK =−0.375× (B–V)− 4.4 2.3.2
Prot (days) Prot = (R0 + δ)×τc 2.4

with R0 = 0.808−2.966× (Log R′HK + 4.52)
and δ= [−0.2,0,0.2]

Differential rotation Log(α) = p0(Teff) + p1(Teff)×Log(Prot) (a) 2.5
Pcyc (days) Pcyc = (Prot × 10y) 2.6.1

with y= 0.84×Log(1/Prot) + 3.14 + δ
and δ= [−0.3,0,0.3]

Acyc (limits from Fig. 7) 0.727× (B–V)-0.292 if B–V < 0.851, 0.33 otherwise 2.6.7
0.28×(B–V) −0.196
0.342×Log R′HK+1.703

Attenuation of the convective ∆V =−0.1718× (p0(Teff) + p1(Teff)×Log R′HK,basal) 2.7
blueshift (m s−1) with p0 = 198557.04-118.86301×Teff + 0.023348413×Teff

2−1.4980577e-06×Teff
3

and p1 = 46335.574-27.529228×Teff+0.0053657815×Teff
2 − 3.4108808e-07×Teff

3

∆Tspot (upper limit, K) 0.75×Teff − 2250 2.8
∆Tspot (lower limit, K) 605 2.8

Plage contrast C(µ,500 G,Teff) =
4∑

i = 0
ci(500 G,Teff) × µi (b) 2.9

C(µ,100 G,Teff) =
4∑

i = 0
ci(100 G,Teff) × µi

Notes. (a)See Sect. 2.5 for more details. (b)The coefficients ci(500 G,Teff) and ci(100 G,Teff) have been derived from Norris (2018) for M 0, K 0, and
G 2 stars and were then interpolated or extrapolated for each of our spectral types (see Sect. 2.9 for more details).
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Fig. E.1. Summary of the input parameters vs. B–V , illustrating the range they cover for each spectral type, for the 11 421 simulations. All activity
levels are superimposed. The color code corresponds to different average activity levels (well illustrated in the first panel). Temperatures correspond
to Teff (triangles), solar spot contrast (stars), and the largest spot contrast (diamonds).
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