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MULTIPLE ASYMPTOTICS OF KINETIC EQUATIONS WITH INTERNAL STATES

BENOIT PERTHAME, WEIRAN SUN, MIN TANG, AND SHUGO YASUDA

Abstract. The run and tumble process is well established in order to describe the movement of bacteria

in response to a chemical stimulus. However the relation between the tumbling rate and the internal state

of bacteria is poorly understood. The present study aims at deriving models at the macroscopic scale from

assumptions on the microscopic scales. In particular we are interested in comparisons between the stiffness

of the response and the adaptation time. Depending on the asymptotics chosen both the standard Keller-

Segel equation and the flux-limited Keller-Segel (FLKS) equation can appear. An interesting mathematical

issue arises with a new type of equilibrium equation leading to solution with singularities.

1. Introduction

Chemotaxis is the movement of bacteria in response to a chemical stimulus. Individual bacteria moves by

alternating forward-moving runs and reorienting tumbles. The velocity jump model has been proposed to

describe the switching between these two states, in which the two processes, run-to-tumble and tumble-to-

run, are modelled by two Poisson processes. The frequencies of these two poisson processes are determined by

intracellular molecular biochemical pathway. Therefore, to study the chemotaxis behaviour quantitatively,

it is crucial to understand the response of bacteria to signal changes and relate this information to the

switching frequency. The mechanism has been well understood for Escherichia coli (E. coli) chemotaxis and

other bacteria using similar strategies to move have also been observed ([6, 14]). In what follows we will

focus on the behavior of E. Coli.

It is known that E. coli responds to signal changes in two steps: excitation and adaptation. Excitation

is when E. coli rapidly changes the tumbling frequency as it detects external signal changes, while the slow

adaptation allows the cell to relax back to the basal tumbling frequency (the frequency when the intracellular

chemical reactions are at equilibrium) [10]. In the simplest description of the biochemical pathways, a single

variable m is used to represent the intracellular methylation level. The methylation has an equilibrium level

M(t, x) which is a function of extra-cellular chemical concentration. Using F (m,M) as the adaptation rate,

the equation for the adaptation process has the form

dm

dt
= F (m,M(t, x)) .

The switching frequencies of run-to-tumble and tumble-to-run are determined by both m and M(t, x). The

tumbling time can be ignored since it is usually much shorter than the running time, thus one can combine

the two successive processes run-to-tumble and tumble-to-run together and assume that once the bacterium

stops run it will immediately choose randomly some direction and start running again. Tumbling frequency is

used to describe this Poisson process and it depends on the methylation level m and its equilibrium M(t, x).

In order to understand the relation between individual bacteria movement and their population level

behaviour, pathway-based kinetic-transport model has been proposed in [7, 20]. This model governs the

evolution of the probability density function p(t, x, v,m) of the bacteria at time t, position x ∈ Rd, velocity
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v ∈ V, and methylation level m. The velocity space V is [−V0, V0] for d = 1 and V0Sd for d ≥ 2 (the sphere

with radius V0). The general form of the kinetic equation is

∂tp+ v · ∇xp+ ∂m[F (m,M)p] = Q[m,M ](p) , (1.1)

where the tumbling term Q[m,M ](p) satisfies

Q[m,M ](p) =
1

||V||

∫
V

[λ(m,M, v, v′) p(t, x, v′,m)− λ(m,M, v′, v) p(t, x, v,m)] dv′. (1.2)

Here λ(m,M, v, v′) is the methylation-dependent tumbling frequency from v′ to v and ||V|| =
∫
V dv.

The pathway-based kinetic equation in (1.1) is at the mesoscopic level. It can bridge the microscopic

(individual) and macroscopic (population) level models by using moment closure or asymptotic analysis

[8, 20–22, 24]. In this paper, we are interested in building such connections of some macroscopic models

with (1.1). Particular attention will be paid to the flux-limited Keller-Segel (FLKS) model. The most

standard and popular macroscopic population level model describing the dynamics of the bacteria density is

the classical Keller-Segel (KS) model [12, 13, 16]. There has been extensive mathematical studies of the KS

equation [1]. Analytically it has been discovered that depending on the cell number, solutions of KS model

can either undergo smooth dispersion or blow up in finite time [2,5]. The reason that blow-up could happen

is because the drift velocity is proportional to the gradient of the external chemicals |∇S|. Therefore it is

not bounded when |∇S| → ∞. This is in discrepancy with reality since the population level drift velocity

is expected to saturate when the chemical gradient is large. Hence in [9] a more physically relevant FLKS

model is proposed, which has the form

∂tρ−∇x · (D∇xρ) +∇x (ρ φ(|∇xS|)∇S) = 0, (1.3)

∂tS −DS∆S + αS = ρ, (1.4)

where ρ(t, x) is the cell density at time t and position x, φ(|∇xS|)|∇xS| is a bounded function in |∇xS|.
Unlike the classical KS model, the solution to (1.3) exists globally in time [4,15]. Interesting features of the

FLKS are specific stiff response induced unstability and existence of traveling waves (stable or unstable),

[3, 19].

The classical KS model has been recovered from the kinetic equation (1.1) as diffusion limits, as well as the

FLKS [18]. In [7,25], the authors derived the KS equation by incorporating the linear adaptation. Recently,

intrinsically nonlinear signaling pathway are considered [21, 24]. The derivations in [7, 20, 21, 24, 25] are

formal and are based on moment closure techniques. When the internal state is not far from its expectation,

the moment closure method provides the correct behavior of E. coli on the population level. However,

the closeness assumption is only valid when the chemical gradient is small so that the internal states of

different bacteria can concentrate and yield the KS equation [20,22,23]. In general this assumption does not

always apply for other scales of the chemical gradient and adaptation time. Our goal is to derive different

macroscopic models for different chemical gradient and adaptation time by asymptotic analysis.

We assume that the tumbling frequency λ depends only on M(t, x)−m. This assumption is valid for E.

coli chemotaxis [20]. Moreover, we use the following linear model for the adaptation

dm

dt
= F (m,M(t, x)) =

1

τ

(
M(t, x)−m

)
, (1.5)

where τ gives the characteristic time scale of the adaptation process [7]. Introducing a new variable

y = M(t, x)−m,
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and letting f(t, x, v, y) = p(t, x, v,m), one can rewrite the original model (1.1) as

∂tf + v · ∇xf + (∂tM + v · ∇xM)∂yf −
1

τ
∂y(yf) = λ(y)

[
1

||V||

∫
V
f(t, x, v′, y) dv′ − f(t, x, v, y)

]
. (1.6)

In this paper, we only consider the case when M(t, x) is independent of time and ∇xM is uniform in space.

This special case is physically interesting: for E. coli chemotaxis, since M(t, x) is related to the extra-cellular

attractant profile by a logarithmic dependency, a uniform ∇xM corresponds to the exponential environment

as in the experiment in [11]. Let G be the constant vector given by

G = ∇xM . (1.7)

Let λ0 be the characteristic rate of tumbling and δ the stiffness of the response. We denote

〈f〉 =
1

||V||

∫
V
f(t, x, v′, y)dv′ , λ(y) = λ0Λ

(y
δ

)
.

Then equation (1.6) becomes

∂tf + v · ∇xf + ∂y

((
v ·G− y

τ

)
f
)

= λ0Λ
(y
δ

)
(〈f〉 − f) , (1.8)

To perform the asymptotic analysis, we introduce the non-dimensional variables

x̃ = x/L0 , ṽ = v/V0 , t̃ = t/t0 , ỹ = y/δ ,

where L0, V0, and t0 are the characteristic length, speed, and time respectively. Then the equation 1.8 is

reformulated as

σ∂t̃f + ṽ · ∇x̃f + ∂ỹ

((
ṽ · G̃

δ
− ỹ

τ̃

)
f

)
= λ̃0Λ (ỹ) (〈f〉 − f) , (1.9)

with the parameters given by

λ̃0 = λ0L0/V0 , τ̃ = τ/(L0/V0) , G̃ = GL0 , σ = L0/(t0V0) .

Since there will be no confusion, in the remainder of the paper we drop the tilde sign for simplicity. The

final form of the kinetic equation under consideration is

σ∂tf + v · ∇xf + ∂y

((
v · G

δ
− y

τ

)
f

)
= λ0Λ (y) (〈f〉 − f) , (1.10)

Our goal in this paper is to start from (1.10) and systematically derive macroscopic limits from it: assuming

λ0 is large and G = O(1), we consider the seamless reorientation by runs and tumbles with different scalings

of τ and δ. More specifically, we investigate the following three cases:

I. Fast adaptation and stiff response: both τ and δ are as small as λ−1
0 ;

II. Very fast adaptation and very stiff response: both τ and δ are much smaller than λ−1
0 ;

III. Moderate adaptation and moderate response, i.e. both τ and δ are of O(1).

The common theme in these limits is to decide when the classical KS and the FLKS equations will occur.

A brief summary of our result is

(1) In Case I, both the hyperbolic model and a FLKS type model can be found. In particular, when the

leading order behaviour of the bacteria population satisfies a hyperbolic model, we further consider

the motion of its front profile and find a FLKS model in the moving frame.

(2) In Case II, a FLKS type model can be derived.

(3) In Case III the solution will tend to the solution of a classical KS model.
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The rest of the paper is organized as follows. In Section 2, we use asymptotic analysis to formally derive

the leading-order macroscopic equations from (1.1). Some properties of the leading order distribution are

rigorously shown in Section 3. In Section 4, we show numerical results that are consistent with the analytical

properties in Section 3. Finally we conclude in Section 5.

2. Formal Asymptotic Limits

In this section we show that both classical and flux-limited Keller-Segel equations can arise in different

physical regimes characterized by the stiffness of the chemotactic response and the rate of adaptation. In all

the cases considered below we fix λ0 as

λ0 =
1

ε
with ε� 1 .

2.1. Fast adaptation and stiff response. In this case we assume that

δ = τ = ε = λ−1
0 , σ = εα−1 , α = 1 or 2 .

We also assume that the tumbling frequency Λ has the specific structure

Λ(y) = Λ0(y) + εΛ1(y) > 0 , Λ0, Λ1 ∈ Cb(R) , (2.1)

where Λ0 is a strictly positive continuous function and Λ1 is independent of ε. The space Cb(R) is the

collection of continuous and bounded functions on R.

Consider the scaled equation

εα∂tqε + εv · ∇xqε + ∂y ((v ·G− y)qε) = Λ(y)(〈qε〉 − qε) , (y, v) ∈ R× V . (2.2)

The leading-order term of qε is of the form ρ(t, x)Q0(y, v) where Q0 satisfies

∂y ((v ·G− y)Q0) = Λ0(y)(〈Q0〉 −Q0), Q0 ≥ 0,

∫∫
R×V

Q0 dy dv = 1 . (2.3)

The existence and uniqueness of such Q0 is shown in Theorem 3.1.

Remark 2.1. In Theorem 3.1 we show that Q0 is compactly supported on [−|G|, |G|] × V and is strictly

positive in (−|G|, |G|)×V. In the rest of the current section, all the integration involving Q0 are performed

over (−|G|, |G|) × V, although we often write the integration domain as R × V for the sake of simplicity in

notation.

Let v0 be the leading-order average velocity given by

v0 =

∫
R

∫
V
v Q0 dv dy . (2.4)

In the case where v0 6= 0, by letting α = 1 one can derive that the leading-order approximate of qε satisfies

a pure transport or hyperbolic equation. More specifically, we have the formal limit

Theorem 2.1. Suppose α = 1 and Λ satisfies (2.1) together with the assumptions in Theorem 3.1. Suppose

the average velocity v0 defined in (2.4) is nonzero. Let qε be the non-negative solution to (2.2). Suppose

qε → q0 in L1(dv dy dx). Then q0 = ρ0(t, x)Q0(y, v) and ρ0 satisfies the hyperbolic equation

∂tρ0 +∇x · (v0ρ0) = 0 . (2.5)

Proof. Since (2.2) is a linear equation, we can pass ε→ 0 and obtain q0 as a non-negative L1 solution to the

steady-state equation such that

∂y ((v ·G− y)q0) = Λ0(y)(〈q0〉 − q0) .
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By the uniqueness shown in Theorem 3.1, q0 is a multiple of Q0 with a coefficient ρ0 ∈ L1(dx). The

conservation law associated with (2.2) and α = 1 has the form

∂tρε +∇x ·
∫
R

∫
V
vqε dv dy = 0 ,

The limiting equation (2.5) is obtained by passing ε→ 0 and using that q0 = ρ0Q0. �

To observe nontrivial diffusive behaviour from equation (2.2), we make a change of variable such that

fε(t, x, y, v) = qε(t, x+ v0t, y, v) ,

where again v0 is the average speed defined in (2.4). Physically speaking, we consider the motion of the

front profile of qε. Now we let α = 2. Then the equation for fε reads

ε2∂tfε + ε(v − v0) · ∇xfε + ∂y ((v ·G− y)fε) = Λ(y)(〈fε〉 − fε) . (2.6)

Before showing the formal limit for fε, we prove a lemma of the classical entropy-estimate type:

Lemma 2.1. Let T0 be the operator defined as

T0g = ∂y ((v ·G− y)g)− Λ0(y)(〈g〉 − g) . (2.7)

Let Q0 be the unique solution in (2.3). Then for any g that makes sense of all the integrals and satisfies that

lim
y→±|G|

g2

Q0
(v, y) = 0 for all v ∈ V. (2.8)

we have ∫
R

∫
V

g

Q0
T0g dv dy ≥ 1

2

∫
R

∫
V

Λ0(y)

(
g

Q0
−
〈
g

Q0

〉)2

Q0(v) dv dy ≥ 0 .

Note that a particular case for (2.8) to hold is when g/Q0 ∈ L∞(R× V).

Proof. The proof follows from a direct calculation. Indeed, by integration by parts,∫
R

∫
V

g

Q0
T0g dv dy =

∫
R

∫
V

g

Q0
∂y

(
(v ·G− y)

g

Q0
Q0

)
dv dy −

∫
R

∫
V

g

Q0
Λ0(y)(〈g〉 − g) dv dy

=
1

2

∫
R

∫
V

(
g

Q0

)2

∂y ((v ·G− y)Q0) dv dy −
∫
R

∫
V

g

Q0
Λ0(y)(〈g〉 − g) dv dy ,

where condition (2.8) is used to guarantee that the boundary terms vanish in the integration by parts. Using

the equation for Q0, we have∫
R

∫
V

g

Q0
T0g dv dy =

1

2

∫
R

∫
V

(
g

Q0

)2

Λ0(y) (〈Q0〉 −Q0) dv dy −
∫
R

∫
V

g

Q0
Λ0(y)(〈g〉 − g) dv dy .

=
1

2

∫
R

∫
V

Λ0(y)

((
g

Q0

)2

〈Q0〉 − 2
g

Q0
〈g〉+

g2

Q0

)
dv dy

≥ 1

2

∫
R

∫
V

Λ0(y)

(
g

Q0
−
〈
g

Q0

〉)2

Q0(v) dv dy ≥ 0 .

The equal sign holds only when g/Q0 is independent of v. �

Equipped with Lemma 2.1, we show the formal asymptotic limit of (2.6) in the following theorem:
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Theorem 2.2. Let fε be the non-negative solution to (2.6) and ρε =
∫
R
∫
V fε(t, x, y, v) dv dy such that

fε → f0 locally in L1(dtdv dy dx)

for some f0(t) ∈ L1( dv dy dx). Then f0 = ρ0(t, x)Q0(y, v) and ρ0 satisfies the drift-diffusion equation

∂tρ0 −∇x · (D0,2∇xρ0) +∇x (c0,2ρ0) = 0 , (2.9)

where the diffusion coefficient and drift velocity are given by

D0,2 =

∫
R

∫
V

(v − v0)⊗ T−1
0 ((v − v0)Q0) dv dy , (2.10)

c0,2 =

∫
R

∫
V

(v − v0)T−1
0 (Λ1(y)(〈Q0〉 −Q0)) dv dy . (2.11)

Moreover, D0,2 is strictly positive.

We conjecture that c0,2 is bounded in G, thus rising again a FLKS type equation. A possible route toward

a proof is as follows. We write

c0,2 =

∫
R

∫
V
T−1∗

0 (v − v0) Λ1(y)(〈Q0〉 −Q0) dv dy

and it remains to establish that T−1∗
0 (v − v0) is uniformly bounded in G in L∞. Numerics sustain this

boundedness, see Fig. 5.

Proof. First, we use the same argument as in Theorem 2.1 to deduce that there exists ρ0 ∈ L1(dx) such that

f0 = ρ0Q0 and ρε → ρ0 in L1(dx). Next, the conservation law for (2.6) reads

∂t

∫
R

∫
V
fε dv dy +

1

ε
∇x ·

∫
R

∫
V

(v − v0)fε dv dy = 0 . (2.12)

By the definition of v0 and Q0, we have∫
R

∫
V

(v − v0)Q0(y, v) dv dy = 0

Hence (2.12) can also be written as

∂t

∫
R

∫
V
fε dv dy +

1

ε
∇x ·

∫
R

∫
V

(v − v0) (fε − ρεQ0) dv dy = 0 . (2.13)

Then we can re-write equation (2.6) as

T0 (fε − ρεQ0) = −ε (∇xρε) · (v − v0)Q0 − ε(v − v0) · ∇x (fε − ρεQ0)− ε2∂tfε + εΛ1(y) (〈fε〉 − fε) .

By Theorem A.1, we apply the pseudo-inverse of T0 and obtain that

1

ε
(fε − ρεQ0) = − (∇xρε) · T−1

0 ((v − v0)Q0) + T−1
0 (Λ1(y)(〈fε〉 − fε))

− T−1
0 ((v − v0) · ∇x (fε − ρεQ0) + ε∂tfε) .

Note that every term on the right-hand side of the above equality is well-defined since the terms inside T−1
0

all satisfy the orthogonality condition given in (A.2). By the limit fε − ρεQ0 → 0 we have

(v − v0) · ∇x (fε − ρεQ0) + ε∂tfε → 0 in the sense of distributions.

Hence, it formally holds that

1

ε
(fε − ρεQ0)→ − (∇xρ0) · T−1

0 ((v − v0)Q0) + ρ0T
−1
0 (Λ1(y)(〈Q0〉)−Q0) as ε→ 0.

Inserting such limit in the limiting form of the conservation law in (2.12) gives (1.3) with D0,2 and c0,2

satisfying (2.10) and (2.11) respectively.
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Finally, we show that D0,2 is a positive definite matrix. To this end, denote

h = T−1
0 ((v − v0)Q0) ,

or equivalently,

T0h = ∂y ((v ·G− y)h)− Λ0(y)(〈h〉 − h) = (v − v0)Q0 . (2.14)

Then for any arbitrary α ∈ Rd,

T0(h · α) = ∂y ((v ·G− y)(h · α))− Λ0(y)(〈h · α〉 − (h · α)) = ((v − v0) · α)Q0 .

Hence,

αTD0,2α =

∫
R

∫
V

((v − v0) · α)T−1
0 (((v − v0) · α)Q0) dv dy =

∫
R

∫
V
T0(h · α)

h · α
Q0

dv dy .

By Lemma 2.1, if we multiply (h · α)/Q0 to T0(h · α) and integrate in (y, v), then∫
R

∫
V
T0(h · α)

h · α
Q0

dv dy ≥ 1

2

∫
R

∫
V

Λ0(y)

(
h · α
Q0
−
〈
h · α
Q0

〉)2

Q0(v) dv dy ≥ 0 .

This shows αTD0,2α is non-negative and the equal sign of the above inequality holds only when (h · α)/Q0

is independent of v. Now we show that for any α independent of (y, v), the quantity (h ·α)/Q0 must depend

on v. Hence the strict positivity of αTD0,2α must hold. To this end, suppose on the contrary that there

exists α0 ∈ Rd independent of (y, v) and β(y) such that h · α0 = β(y)Q0. Then

∂y ((v ·G− y)β(y)Q0)− Λ0(y)β(y) (〈Q0〉 −Q0) = ((v − v0) · α0)Q0 ,

which, by the definition of Q0 simplifies to

β′(y)(v ·G− y) = (v − v0) · α0 .

Since α0 is independent of y, v, the only solution to such equation is β′ = 0 and α0 = 0. Hence αTD0,2α > 0

for any α 6= 0. This proves the strict positivity of the diffusive coefficient matrix D0,2. �

In order to justify that (1.3) is indeed a flux-limited Keller-Segel equation, ideally we want to show that

the drift velocity c0,2 is generally nonzero, it is uniformly bounded in the chemical gradient G and vanishes

when G approaches zero. In what follows we show that these properties are satisfied in the special case

where Λ0 is a constant. In Section 4 we give some numerical evidence that c0,2 is uniformly bounded in G

even when Λ0 depends on y.

Lemma 2.2. Suppose Λ0 is a constant. Then the drift velocity c0,2 satisfy that

(a) c0,2 is nonzero.

(a) c0,2 is bounded for all G. Moreover, c0,2 → 0 as G→ 0.

Proof. (a) Since Λ0 is a constant, Q0 must satisfy the symmetry condition (3.4) in Theorem 3.1. Hence

v0 = 0. Moreover, we have the relation
(
T−1

0

)∗
v = 1

Λ0
v since v satisfies the equation

(v ·G− y)∂yv − Λ0(〈v〉 − v) = Λ0v .

The drift velocity c0,2 is now reduced to

c0,2 =

∫
R

∫
V
v T−1

0 (Λ1(y)(〈Q0〉 −Q0)) dv dy

=

∫
R

∫
V

((
T−1

0

)∗
v
)

(Λ1(y)(〈Q0〉 −Q0)) dv dy

=
1

Λ0

∫
R

∫
V
v (Λ1(y)(〈Q0〉 −Q0)) dv dy = − 1

Λ0

∫
R

∫
V

Λ1(y)vQ0 dv dy ,

(2.15)
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We want to show that
∫
V vQ0(y, v) dv as a function in y is not zero. To this end, we integrate (2.3) in v.

This gives

∂y

(
G ·
∫
V
vQ0 dv − y

∫
V
Q0 dv

)
= 0 .

Since Q0 is compactly supported on [−G,G]× V, one must have

G ·
∫
V
vQ0 dv − y

∫
V
Q0 dv = 0 .

Since
∫
VQ0 dv is not a zero function in y, we deduce that

∫
V vQ0(y, v) dv is not a zero function in y either.

Since
∫
V vQ0 dv ∈ L1(dy), there exists Λ1 ∈ L∞(dy) such that

c0,2 = − 1

Λ0

∫
R

Λ1(y)

(∫
V
vQ0 dv

)
dy 6= 0 .

(b) With the assumption that Λ0 is a constant, we have derived the simplified form of c0,2 in (2.15). Then

|c0,2| ≤
‖Λ1 ‖L∞(dy)

Λ0

∫∫
R×V

Q0 dv dy =
‖Λ1 ‖L∞(dy)

Λ0
.

Hence c0,2 is uniformly bounded in G. Since Λ1 is continuous and suppQ0 = [−|G|, |G|]× V, we have

lim
G→0

c0,2 = −Λ1(0)

Λ0

∫∫
R×V

vQ0 dy dv = 0 .

Hence c0,2 vanishes as G approaches zero. �

2.2. Very fast adaptation and very stiff response. In this subsection we show a second scaling where

flux-limited Keller-Segel equations can also arise. We consider the regime that combines the scalings in [17]

and [18]. In particular, let

δ = τ = ε2 , σ = ε .

Then the scaled equation becomes

ε2∂tfε + εv · ∇xfε +
1

ε
∂y ((v ·G− y)fε) = Λ(y) (〈fε〉 − fε) . (2.16)

Assume that Λ satisfies the same condition as in [18] such that

Λ(y) = Λ0 + εΛ1(y) > 0 , (2.17)

where Λ0 is a positive constant and Λ1 ∈ Cb(R). Denote P(Rd×R×V) as the space of probability measures

in (x, y, v). The formal asymptotic limit is

Theorem 2.3. Let fε be the solution to (2.16) with Λ satisfying (2.17). Suppose there exists f0(t, ·, ·, ·) ∈
P(Rd × R× V) such that fε

∗
⇀ f0 as probability measures. Then

f0(t, x, y, v) = ρ0(t, x) δ(y − v ·G) .

Moreover, ρ0 satisfies the flux-limited Keller-Segel equation

∂tρ0 −∇x · (D0,3∇xρ0) +∇x · (c0,3ρ0) = 0 (2.18)

with

D0,3 =
1

Λ0

∫
V
v2
d dv > 0 , c0,3 =

1

Λ0

∫
V
vΛ1(v ·G) dv . (2.19)
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Proof. Passing ε→ 0 in (2.16) gives the equation for f0 as

∂y ((v ·G− y)f0) = 0 .

By the non-negativity of f0 (and a similar argument as in Theorem 3.1 showing its support), we have

(v ·G− y)f0 = 0 .

Hence, there exists ρ0(t, x) ≥ 0 such that

f0(t, x, y, v) = ρ0(t, x)δ(y − v ·G) . (2.20)

The conservation law associated with (2.16) is

∂tρε +
1

ε
∇x ·

∫∫
R×V

vfε dy dv = 0 .

To derive the limit of the 1
ε -term, we multiply (2.16) by v and integrate in (y, v). This gives

ε∂t

∫
R

∫
V
vfε dv dy +∇x ·

∫
R

∫
V
v ⊗ vfε dv dy = −Λ0

ε

∫
R

∫
V
vfε dv dy −

∫
R

∫
V
vΛ1(y)fε dv dy .

Passing ε→ 0 and applying (2.20), we have

1

ε

∫
R

∫
V
vfε dv dy → −∇xρ0 ·

1

Λ0

∫
V
v ⊗ v dv −

(
1

Λ0

∫
V
vΛ1(v ·G) dv

)
ρ0

= −D0,3∇xρ0 + c0,3ρ0 ,

where D0,3, c0,3 satisfy (2.19). �

Note that in general the drift velocity c0,3 is non-zero. If V = Sd with d ≥ 1, then by the rotational

invariance, c0,3 is along the direction of the chemical gradient G. Moreover, it is bounded for all G as long as

Λ1 is a bounded function. Similar as in the proof of Lemma 2.2, for Λ1 being continuous, we have c0,3 → 0

as G→ 0. These observations justify that (2.18) is of the flux-limited Keller-Segel type.

2.3. Moderate Adaptation and Moderate Response. The classical Keller-Segel equation can also be

derived from kinetic equations with the internal state. The particular scaling is for a slow adaption and a

moderate gradient where

δ = τ = 1 , σ = ε .

The scaled equation is

ε2∂tfε + εv · ∇xfε + ε∂y ((v ·G− y)fε) = Λ(y) (〈fε〉 − fε) . (2.21)

In this case we only need to require that Λ ∈ C1(R), in particular, it does not have to satisfy the specific

form in (2.1). The formal asymptotic limit is

Theorem 2.4. Suppose Λ ∈ C1(R) and Λ(y) > 0 for all y ∈ R. Let fε be the non-negative solution

to (2.21). Suppose there exists f0(t, ·, ·, ·) ∈ P(Rd ×R×V) such that fε
∗
⇀ f0 as probability measures. Then

f0 = ρ0(t, x)δ0(y) and ρ0 satisfies the Keller-Segel equation

∂tρ0 −∇x · (D0,4∇xρ0) +∇x · (c0,4ρ0) = 0

with the diffusion coefficient and drift velocity given by

D0,4 =
1

Λ(0)

∫
V
v2
d dv > 0 , c0,4 = −GΛ′(0)

Λ2(0)
.
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Proof. The conservation law associated with (2.21) is

∂tρε +
1

ε
∇x ·

∫∫
R×V

vfε dy dv = 0 . (2.22)

We apply the Hilbert expansion for equation (2.21). Write formally

fε = f0 + εf1 +O(ε2) , f0 ≥ 0 .

Then the leading order f0 satisfies

f0 = 〈f0〉 .

Hence f0 is independent of v. The next order in equation (2.21) gives

Λ(y) (〈f1〉 − f1) = v · ∇xf0 + ∂y ((v ·G− y)f0) .

The solvability condition requires that∫
V

(v · ∇xf0 + ∂y ((v ·G− y)f0)) dv = 0 .

Since f0 is independent of v, this reduces to

∂y

(
y

∫
V
f0 dv

)
= 0

By the non-negativity of f0, we must have

yf0 =
1

‖V ‖

∫
V
yf0 dv = 0 for all y ∈ R.

Hence, f0 concentrates at y = 0, that is, there exists ρ0 ≥ 0 such that

f0(t, x, y, v) = ρ0(t, x)δ0(y) .

Divide (2.21) by Λ, and then multiply by v and integrate in (y, v). We obtain

−1

ε

∫
R

∫
V
vfε dv dy = ε∂t

∫
R

∫
V

v

Λ(y)
fε dv dy +∇x ·

∫
R

∫
V
v ⊗ v 1

Λ(y)
fε dv dy

+

∫
R

∫
V

v

Λ(y)
∂y ((v ·G− y)fε) dv dy .

Passing ε→ 0, we formally obtain that

− lim
ε→0

(
1

ε

∫
R

∫
V
vfε dv dy

)
=

(
1

Λ(0)

∫
V
v2
d dv

)
∇xρ0 +

(
G

Λ′(0)

Λ2(0)

∫
V
v2
d dv

)
ρ0 ,

Apply such limit in (2.22) gives the regular Keller-Segel where the drift velocity c0,4 is linear in the chemical

gradient G as long as Λ′(0) 6= 0. �

Remark 2.2. One can consider a fourth case with slow adaptation and stiff response where

δ = ε , τ = 1 , σ = ε .

The scaled equation is

ε2∂tfε + εv · ∇xfε + ∂y ((v ·G− εy)fε) = Λ(y) (〈fε〉 − fε) . (2.23)

If we change the variable y to z = εy, then the model becomes

ε2∂tfε + εv · ∇xfε + ε∂z ((v ·G− z)fε) = Λ
(z
ε

)
(〈fε〉 − fε) . (2.24)

A special choice of Λ = Λ0 + εΛ1 with Λ0 will give rise to a pure diffusion equation, as can be seen by

letting Λ to be a constant in Case III. The case of actual interest for further studies is of course when the

tumbling rate takes the general form Λ( zε ) as in section 2.3.
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3. Existence and Properties of Q0

In several scaling limits, the equilibrium Q0 occurs as the solution of the eigenfunction problem

∂y ((v ·G− y)Q0) = Λ0(y) (〈Q0〉 −Q0) , y ∈ R, v ∈ V , (3.1)

Q0(y, v) ≥ 0,

∫
R

∫
V
Q0(y, v) dy dv = 1 . (3.2)

Here, we prove existence and uniqueness of Q0 assuming that Λ0 may depend continuously on y and satisfies,

for two constants 0 < λ1 ≤ λ2, the bounds

0 < λ1 ≤ Λ0(y) ≤ λ2 ∀y ∈ R . (3.3)

We also derive some basic properties of Q0. The precise statement is

Theorem 3.1 (Existence and regularity of Q0). Suppose Λ is continuous and satisfies (3.3), then there exists

a unique probability solution Q0 of equation (3.1). Moreover, Q0, is compactly supported on [−|G|, |G|]×V,

strictly positive on (−|G|, |G|)× V and satisfies

(a) 〈Q0〉 ∈ L∞(−|G|, |G|) and Q0 is Lipschitz continuous in compact subsets of R× V\{v ·G = y};
(b) If λ2 < 1, then Q0 blows up at the diagonal {v ·G = y, |y| < |G|}, with a rate no less than |v ·G− y|λ2−1

;

(c) If λ1 > 1, then Q0 ∈ L∞([−|G|, |G|]× V);

(d) If λ1 < 1, then Q0 blows up at the diagonal at most as

Q0(y, v) ≤ λ2(2|G|)1−λ1

1− λ1
‖〈Q0〉 ‖L∞ |v ·G− y|

λ1−1
.

Furthermore, for y fixed, Q0 only depends on v in the direction G. In the special case where Λ is an even

function in y, Q0 is even in (y, v),

Q0(y, v) = Q0(−y,−v) . (3.4)

Remark 3.1. Additionally, one can check that for λ2 = 1 the blow-up is at least logarithmic and for λ1 = 1,

the blow-up is at most logarithmic.

Proof. The proof is organized as follows. We build a probability solution by a time evolution method

and denote integration by Q0 dv dy rather than dQ0(y, v). Then, we prove that such solution satisfies the

announced properties. Finally we prove uniqueness.

Compact Support First we show that any probability solution to (3.1) must be compactly supported on

[−|G|, |G|]× V. Indeed, integrating (3.1) in v gives

∂y

∫
V

(v ·G− y)Q0 dv = 0 .

Therefore, there exists a constant α0 such that∫
V

(v ·G− y)Q0 dv = α0 , ∀y ∈ R.

We claim that α0 = 0 by the following observations:

α0 =

∫
V

(v ·G− y)Q0 dv ≤ 0 for y > |G| ,

α0 =

∫
V

(v ·G− y)Q0 dv ≥ 0 for y < −|G| .

For any y > |G|, repeating the above argument, we have

0 =

∫
V

(v ·G− y)Q0 dv ≤ (|G| − y)

∫
V
Q0(y, v) dv ≤ 0 .
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Therefore
∫
VQ0(y, v) dv = 0 for any y > |G| which implies Q0(y, v) = 0 if y > |G|. Similar argument applies

when y ≤ −|G|. Hence Q0 is compactly supported on [−|G|, |G|]× V.

Existence Second, we show the existence of a solution of (3.1) with a support contained in [−|G|, |G|]×V.

To this end, let ε > 0 be arbitrary and consider the evolution equation

ε∂thε + ∂y ((v ·G− y)hε) = Λ0(y) (〈hε〉 − hε) , (3.5)

hε
∣∣
t=0

= hin(y, v) . (3.6)

where the initial data satisfies

supp hin ⊆ [−|G|, |G|]× V ,
∥∥hin ∥∥

L1(R×V)
= 1 , hin ≥ 0 . (3.7)

The global existence of a non-negative solution to (3.5) is a classical matter. Moreover,

‖hε(t, ·, ·) ‖L1(R×V) = 1, ∀t ≥ 0.

We can show that hε also has a support included in [−|G|, |G|] × V. To this end, let φ ∈ C1(R) be a

non-negative function such that

φ(y) =


0 , y ∈ [−|G|, |G|] ,

increasing , y > |G| ,

decreasing , y < −|G| .

Because we always have φ′(y)(v ·G− y) ≤ 0, multiplying φ(y) to (3.5) and integrate in (y, v) gives

ε
d

dt

∫
R

∫
V
φ(y)hε(t, y, v) dv dy =

∫
R

∫
V
φ′(y)(v ·G− y)hε dv dy ≤ 0 .

Using the compact support property for hin(y, v), we conclude that

0 ≤
∫
R

∫
V
φ(y)hε(t, y, v) dv dy ≤

∫
R

∫
V
φ(y)hin(y, v) dv dy = 0, ∀t ≥ 0 .

The compact support property follows.

Now, consider the family of probability measures {hε} on [0, 1]×R×V. Being compactly supported, it is

tight. Therefore, there exists a probability measure h0(t, x, v) such that, after extraction of a subsequence,

hε
∗
⇀ h0 as ε→ 0.

Take the limit ε→ 0 in equation (3.5), we have

∂y ((v ·G− y)h0) = Λ0(y) (〈h0〉 − h0) .

Define the probability measure Q0 by

Q0 =

∫ 1

0

h0(t, y, v) dt ,

then it satisfies the equation (3.1) with support contained in [−|G|, |G|]× V.

The next steps are to prove that this measure is an L1 function with the announced properties.

Some general bounds on Q0 In the sequel, we will make use of the following representation of any weak

solution of (3.1). We first deal with the values of v and y such that y < v ·G. For λ > 0 to be chosen later,

we multiply equation (3.1) by (v ·G− y)−λ and use the chain rule to obtain

∂y
(
(v ·G− y)1−λQ0

)
= (v ·G− y)−λΛ0(y) 〈Q0〉+ (v ·G− y)−λ(λ− Λ0(y))Q0 .

The choices λ = λ2 and λ = λ1 yield successively

∂y
(
(v ·G− y)1−λ2Q0

)
≥ (v ·G− y)−λ2Λ0(y) 〈Q0〉 ,
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∂y
(
(v ·G− y)1−λ1Q0

)
≤ (v ·G− y)−λ1Λ0(y) 〈Q0〉 .

Integrating for z ∈ (−∞, y) (in fact (−|G|, y) and we keep this bound −|G| which is more convenient for

later computations), we find

(v ·G− y)1−λ2Q0 ≥ λ1

∫ y

−|G|
(v ·G− z)−λ2 〈Q0〉 (z) dz, y < v ·G , (3.8)

(v ·G− y)1−λ1Q0 ≤ λ2

∫ y

−|G|
(v ·G− z)−λ1 〈Q0〉 (z) dz, y < v ·G . (3.9)

Q0 does not carry mass on the diagonal. We conclude from (3.9) that Q0 is an L∞loc function away

from the diagonal where v · G = y. However, this is not enough because our arguments below require that

Q0 does not carry mass on the diagonal. To do so, decompose Q0 = H0 + µ with µ a measure supported by

{y = v ·G} and H0 ⊥ µ. Inserting this decomposition in the equation, we find

0 = 〈Q0〉 (y)− µ on the diagonal {y = v ·G} .

Since 〈Q0〉 is independent of v, its restriction on y = v ·G as a measure is zero. Hence µ = 0.

Bound 〈Q0〉 ∈ L∞(−|G|, |G|) We estimate Q0 on the sets v ·G− y > 0 and v ·G− y < 0 separately since

the diagonal does not carry mass. For v ·G− y > 0, we integrate inequality (3.9) in v and obtain∫
v·G>y

Q0(y, v) dv ≤ λ2

∫
v·G>y

∫ y

−|G|

(v ·G− y)λ1−1

(v ·G− z)λ1
〈Q0〉 (z) dz dv .

The inner integral in v is bounded as∫
v·G>y

(v ·G− y)λ1−1

(v ·G− z)λ1
dv ≤ cd

∫ 1

y/|G|

(w|G| − y)λ1−1

(w|G| − z)λ1
dw =

cd
|G|

∫ |G|−z
y−z

(w + z − y)λ1−1

wλ1
dw ,

and thus , for z < y, we conclude, using cd as a constant which may change from line to line and depend on

d, G, λ1, λ2, that∫
v·G>y

(v ·G− y)λ1−1

(v ·G− z)λ1
dv ≤ cd

|G|

∫ |G|−z
y−z

1

(w − 1)λ1−1

wλ1
dw ≤ cd

|G|λ1
+

cd
|G|

ln
|G| − z
y − z

. (3.10)

Therefore, we find ∫
v·G>y

Q0(y, v) dv ≤ cd
∫ y

−|G|
ln
|G| − z
y − z

〈Q0〉 (z) dz + cd . (3.11)

As a first step, we now show that 〈Q0〉 ∈ L2(−|G|, |G|). To this end, the contribution to the L2-norm of

Q0 on {v ·G− y > 0} satisfies, using Jensen’s inequality,∫ |G|
−|G|

(∫
v·G>y

Q0(y, v) dv

)2

dy ≤ cd
∫ |G|
−|G|

(∫ y

−|G|
〈Q0〉 (z) ln

|G| − z
y − z

dz

)2

dy + cd

≤ cd
∫ |G|
−|G|

∫ |G|
z

〈Q0〉 (z)
(

ln
|G| − z
y − z

)2

dy dz + cd

≤ cd
∫ |G|
−|G|
〈Q0〉 (z) dz + cd ≤ cd ,

where we have used the fact that Q0 is a probability measure and the last inequality holds because∫ |G|
z

(
ln
|G| − z
y − z

)2

dy =

∫ |G|−z
0

(
ln

y

|G| − z

)2

dy = (|G| − z)
∫ 1

0

(ln y)2 dy <∞ .

The estimate for the integral where v · G − y < 0 is similar. Combining the two parts over v · G > y and

v ·G < y, we conclude that 〈Q0〉 ∈ L2(−|G|, |G|).
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Building on the L2-bound of 〈Q0〉 we can now show that 〈Q0〉 ∈ L∞(−|G|, |G|). To this end, use (3.11)

and the Cauchy-Schwarz inequality,∫
v·G>y

Q0(y, v) dv ≤ cd ‖〈Q0〉 ‖L2

(∫ y

−|G|

(
ln
|G| − z
y − z

)2

dz

)1/2

+ cd ≤ cd ,

since∫ y

−|G|

(
ln
|G| − z
y − z

)2

dz ≤ 2

∫ y

−|G|
(ln(|G| − z))2 dz + 2

∫ y

−|G|
(ln(y − z))2 dz ≤ 4

∫ 2|G|

0

(ln z)2 dz <∞ .

The L∞-bound of
∫
v·G<y Q0(y, v) dv follows in a similar way and the details are omitted. Combining these

two parts, we obtain that 〈Q0〉 ∈ L∞(−|G|, |G|).
Q0 is Lipschitz continuous away from the diagonal. We now prove continuity of Q0 and thus we also

obtain that Q0 = 0 for |y| = |G| except for the diagonal points v · G = ±|G|. Such behaviour of Q0 is

depicted in the numerical results in Section 4. The proof for continuity uses the representation formula for

the solution. We re-write the Q0-equation as

∂y

(
e
∫ y
−|G|

Λ0(z)−1
v·G−z dz

Q0(y)

)
= e

∫ y
−|G|

Λ0(z)−1
v·G−z dz Λ0(y)

v ·G− y
〈Q0〉 (y) .

Away from the diagonal {v · G = y}, the exponential term is smooth in v and continuous in y, and the

right-hand side is in L∞loc(dv dy), which implies that Q0(y, v) is Lipschitz continuous on every compact set

in R× V \ {v ·G = y}.
Strict positivity of 〈Q0〉 and Q0 Again we first deal with the values of v and y such that y < v · G.

Using inequality (3.8) one has∫
v·G>y

Q0(y, v) dv ≥ λ1

∫ y

z=−|G|

∫
v·G>y

(v ·G− y)λ2−1

(v ·G− z)λ2
dv 〈Q0〉 (z) dz .

As before we begin with the inner integral and estimate it, for z ≤ y, as∫
v·G>y

(v ·G− y)λ2−1

(v ·G− z)λ2
dv ≥ cd

∫
v·G>y

(v ·G− y)λ2−1 dv

= cd

∫ |G|
y

(w − y)λ2−1
(
|G|2 − |w|2

) d−2
2 dw ≥ cd (|G| − y)

λ2+ d−2
2 ,

where cd is again a constant depending on d, G, λ1, λ2 which changes from line to line. This yields∫
v·G>y

Q0(y, v)dv ≥ cd(|G| − y)λ2+ d−2
2

∫ y

−|G|
〈Q0〉 (z)dz .

The same calculation, for y > v ·G gives,∫
v·G<y

Q0(y, v)dv ≥ cd(|G|+ y)λ2+ d−2
2

∫ |G|
y

〈Q0〉 (z)dz .

Finally we arrive at

〈Q0〉 ≥ cd(|G| − |y|)λ2+ d−2
2

∫ |G|
−|G|
〈Q0〉 (z)dz = cd(|G| − |y|)λ2+ d−2

2 . (3.12)

The strict positivity of Q0 then follows from the lower bound on 〈Q0〉 and (3.8).

Upper bound for Q0 Using the upper bound on 〈Q0〉 and (3.9), we conclude that for y < v ·G

Q0 ≤ λ2 ‖〈Q0〉 ‖L∞ (v ·G− y)λ1−1

∫ y

−|G|
(v ·G− z)−λ1dz =

λ2

1− λ1
‖〈Q0〉 ‖L∞

((
v ·G+ |G|
v ·G− y

)1−λ1

− 1

)
and a similar inequality for y > v ·G concludes the points (c) and (d).
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Uniqueness, v ·G dependency and symmetry Finally, we show that a probability solution to (3.1)

must be unique. Suppose instead there are two probability solutions, denoted as Q1 and Q2. From the steps

above, these are L1 functions. To avoid the difficulty that Q1, Q2 vanish near the boundary y = ±G, we

introduce

Q3 =
1

2
(Q1 +Q2) .

The main advantage of Q3 is the uniform boundedness given by

Q1

Q3
≤ 2 .

Such bound is elusive a-priori for Q1/Q2, which renders integration by parts involving Q1/Q2 invalid. Note

that by the linearity of (3.1), Q3 is also a normalized non-negative solution which satisfies all the properties

shown above. In particular, Q3 is strictly positive in
(
(−|G|, |G|)×V

)
. The uniqueness is shown by a similar

argument as proving the positivity of D0,2 in Theorem 2.2. In particular, to make use of the entropy-type

estimate, we multiply Q1/Q3 to the Q1-equation and integrate in (y, v). Since Q1, Q3 are both solutions

to (3.1), we apply the same estimate as in the proof of Lemma 2.1 and obtain that∫ |G|
−|G|

∫
V

Λ(y)Q3(y, v)

(
Q1

Q3
−
〈
Q1

Q3

〉)2

dv dy = 0 .

Therefore, Q1/Q3 is independent of v. Hence there exists a function γ(y) such that

Q1 = γ(y)Q3 .

Inserting such relation in the Q1-equation gives

∂y ((v ·G− y)γ(y)Q3) = γ(y)Λ(y) (〈Q3〉 −Q3) .

We can now use the Q3-equation to derive that

γ′(y)(v ·G− y)Q3 = 0 .

This implies that γ is a constant function in y. If we denote it as γ0, then Q1 = γ0Q3. By the normalization

conditions for both Q1, Q3, we get Q1 = Q3, which further implies that Q1 = Q2, therefore the uniqueness.

From uniqueness, the symmetry in (3.4) follows immediately since Q0(−y,−v) is also a non-negative and

normalized solution to (3.1). To show that Q0 depends only on v ·G, we remark that the solution in d = 1,

with v1 the direction of G can be extended to a solution in d dimension in v (independent of the orthogonal

directions to v1) and this provides the unique d-dimensional solution. �

4. Numerical illustration on Q0

We now numerically illustrate the properties established previously on the solution Q0 of equation (3.1)

with d = 1 which means V = (−1, 1). We also make the connection with the coefficients found for the

continuum FLKS limits and compute the flux c0,2 defined by (2.11).

In order to calculate c0,2, we first solve the leading order equation (3.1) to obtain Q0, and then we solve

the following equation of the next order by using Q0(y, v), i.e.,

∂y((vG− y)h) = Λ0(y)(< h > −h) + Λ1(y)(< Q0 > −Q0), (4.1)

with the constraint ∫ ∞
−∞

∫ 1

−1

h(y, v)dvdy = 0. (4.2)
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The flux c0,2 is finally obtained by the integration of the solution h(y, v) such that

c0,2 =
1

2

∫ ∞
−∞

∫ 1

−1

h(y, v)dvdy. (4.3)

We note that in the case when Λ0(y) is a constant, i.e., Λ0(y) = Λ0, the flux c0,2 is directly calculated from

Q0 by

c0,2 = − 1

2Λ0

∫ ∞
−∞

∫ 1

−1

vΛ1(y)Q0(y, v)dvdy. (4.4)

4.1. Numerical Scheme. We consider the lattice mesh system on the domain [−G,G]× [−1, 1] ⊂ R2 such

that

yi = −G+ i∆y, (i = 0, · · · , 2I), (4.5)

vj = −1 + j∆v, (j = 0, · · · , 2J), (4.6)

with ∆y = G/I and ∆v = 1/J .

We choose the mesh system such that for each yi, there exists a mesh point on the diagonal y = vG. More

precisely, J/I is an integer. Denote the mesh point on the diagonal by (yi∗ , vj∗). For each vj , depending

on if yi ≤ vjG or yi ≥ vjG, the discretizations at the grid point (yi, vj) are different. The details are as

following.

For fixed j, when yi ≤ vjG, equation (3.1) is discretized by using the first- and second-order backward

difference scheme , i.e.,

W1,jQ1,j −W0,0Q0,j

∆y
= Λ1

0 (< Q >1 −Q1,j) , (4.7a)

3Wi,jQi,j − 4Wi−1,jQi−1,j +Wi−2,jQi−2,j

2∆y
= Λi0 (< Q >i −Qi,j) for y2 ≤ yi ≤ vjG, (4.7b)

and for yi ≥ vjG, using the first- and second-order forward difference scheme, i.e.,

WI,jQI,j −WI−1,jQI−1,j

∆y
= ΛI−1

0 (< Q >I−1 −QI−1,j) , (4.8a)

−3Wi,jQi,j + 4Wi+1,jQi+1,j −Wi+2,jQi+2,j

2∆y
= Λi0 (< Q >i −Qi,j) for vjG ≤ yi ≤ yI−2, (4.8b)

with the boundary condition

Q0,j = Q2I,j = 0. (4.9)

Here, we write Qi,j = Q0(yi, vj), < Q >i=< Q0 > (yi), Λi0 = Λ0(yi), and

Wi,j = vjG− yi. (4.10)

At each mesh point on the diagonal (yi∗ ,vj∗), we calculate two values for Qi∗,j∗ by using equation (4.7)

and (4.8) with letting Wi∗,j∗Qi∗,j∗ = 0 on each eqaution. The values calculated at the left side of the diagonal

by (4.7), say QLi∗ , are used in the integration
∫ 1

vj∗
Q0(yi, v

′)dv′ and the values calculated at the right side of

the diagonal by (4.8), say QRi∗ , are used in the integration
∫ vj∗
−1

Q0(yi, v
′)dv′.

Thus, we calculate < Q >i (i = 1, · · · , 2I − 1) as

< Q >i=
∆v

4

Qi,0 + 2

j∗−1∑
j=1

Qi,j +QRi +QLi + 2

2J−1∑
j=j∗+1

Qi,j +Qi,2J

 , (4.11)
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and < Q >0=< Q >2I= 0. Hereafter, the trapezoidal rule is used for the integration with respect to

v while Simpson’s rule is used for the integration with respect to y. Thus, for example, the integration

Q =
∫ G
−G < Q0 > (y)dy is calculated as

Q =
∆y

3

(
< Q >0 +4

I∑
i=1

< Q >2i−1 +2

I−1∑
i=1

< Q >2i + < Q >2I

)
. (4.12)

To obtain the solution of Eqs. (4.7)–(4.9), we consider the following time-evolution semi-implicit scheme,

Qn+1
1,j −Qn1,j

∆t
= −

W1,jQ
n+1
1,j −W0,jQ

n+1
0,j

∆y
+ Λ1

0

(
< Q >n1 −Qn+1

1,j

)
, (4.13a)

Qn+1
i,j −Qni,j

∆t
= −

3Wi,jQ
n+1
i,j − 4Wi−1,jQ

n+1
i−1,j +Wi−2,jQ

n+1
i−2,j

2∆y
+ Λi0

(
< Q >ni −Qn+1

i,j

)
, (4.13b)

for y1 ≤ yi ≤ vjG with a uniform initial condition. This scheme uses a lower diagonal matrix which solves

Qn+1
i,j very quickly. For vjG ≤ yi ≤ y2I−1, we replace the backward difference in (4.13) with the forward

difference (4.8), i.e.,

Qn+1
2I−1,j −Qn2I−1,j

∆t
= −

WI,jQ
n+1
2I,j −W2I−1,jQ

n+1
2I−1,j

∆y
+ Λ2I−1

0

(
< Q >n2I−1 −Qn+1

2I−1,j

)
, (4.14a)

Qn+1
i,j −Qni,j

∆t
= −
−3Wi,jQ

n+1
i,j + 4Wi+1,jQ

n+1
i+1,j −Wi+2,jQ

n+1
i+2,j

2∆y
+ Λi0

(
< Q >ni −Qn+1

i,j

)
, (4.14b)

which solves Qn+1
i,j by using the upper diagonal matrix.

At each time step, we calculate Q
n

by equation (4.12) and normalize the solution of the time-evolution

scheme (4.13) and (4.14), say Q̃ni,j , by

Qni,j = Q̃ni,j/Q
n
, (4.15)

in order to satisfy the normalized condition
∫ G
−G
∫ 1

−1
Q(y, v)dydv = 1.

We repeat the above process until the Qni,j satisfy the following convergence condition∑
i,j

|Qni,j −Qn−100
i,j |∆v∆y < 10−10. (4.16)

After we obtain the numerical solution Qi,j , we solve equation (4.1) by using the same time-evolution

scheme as (4.13) and (4.14) with the inhomogeneous term Λi1(< Q >i −Qi,j). In order to satisfy the

condition (4.2), we correct the solution of the time-evolution scheme at each time step, say h̃ni,j , by

hni,j = h̃ni,j − rQi,j , (4.17)

where r is calculated as r =
∫ G
−G
∫ 1

−1
h̃n(y, v)dydv.

4.2. Numerical Result. We carry out the numerical computation of (4.13)–(4.17) when the tumbling

functions are written as,

Λ0(y) = Λ0(1− χ tanh(y)), (4.18)

and

Λ1(y) = − tanh(y). (4.19)

Here, Λ0 is the mean tumbling rate and χ is the modulation amplitude of Λ0(y).

In the numerical computation, we set the time-step size as ∆t = ∆y/2G and the numbers of mesh interval

∆y and ∆v as I = J . Table 1 shows the accuracy of the numerical results for various mesh systems in the

case when Λ0 is constant, i.e., Λ0 = Λ0 and χ = 0. It is seen that the flux c0,2 and the moment < Q0 >

converge against the mesh interval for both Λ0=2.0 and 0.5. The accuracy of c0,2 is approximately second

order for Λ0=2.0 while it is approximately first order for Λ0=0.5. We also compare the results of c0,2 obtained
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Λ0=2.0 Λ0=0.5

I
|cI0,2−c

∗
0,2|

c∗0,2
max
i
| < Q >Ii − < Q >∗i |

|cI0,2−c
∗
0,2|

c∗0,2
max
i
| < Q >Ii − < Q >∗i |

200 9.1×10−5 1.2×10−4 8.1×10−4 4.2×10−2

400 2.2×10−5 2.9×10−5 5.8×10−4 2.5×10−2

800 5.4×10−6 6.9×10−6 3.4×10−4 1.3×10−2

1600 1.1×10−6 1.4×10−6 1.5×10−4 5.5×10−3

Table 1. The numerical accuracy for c0,2 calculated by equation (4.4) and < Q >i for

different values of Λ0 = 2.0 and 0.5, where the tumbling rate Λ0 is considered, i.e., χ = 0

in equation (4.18). The number of mesh intervals ∆v and the time step size ∆t are set as

J = I and ∆t = ∆y/2G, respectively. The parameter of the external chemical gradient

G = 1.0 is fixed. The reference quantities c∗0,2 and < Q >∗i are the results obtained with

I = 3200.

(a) (b) (c)

Figure 1. Distribution of Q0(y, v) for various values of Λ0, i.e., Λ0 = 0.5 in (a), Λ0 = 1.0

in (b), and Λ0 = 2.0 in (c). The modulation amplitude χ=0 and chemical gradient G = 1

are fixed.

by (4.3) and by (4.4). The relative differences of the two values are 1.5×10−6 for Λ0 = 2 and 2.2×10−2 for

Λ0 = 0.5 in the fine mesh system with I = 3200. In the following of this section, we show the numerical

results obtained in the mesh system with I = 1600.

Figures 1 shows the numerical results of Q0 for different values of Λ0 when the tumbling rate Λ0(y) is

constant, i.e, χ = 0. It is seen that the distributions are origin symmetry, i.e., Q(y, v) = Q(−y,−v) because

the tumbling rate Λ0 is independent of the internal state y. As the tumbling rate Λ0 decreases, Q0 becomes

more and more concentrated at the diagonal y = vG.

Figure 2 shows the one-dimensional distribution of Q0(y, v) against (vG− y)−1 in the domain vG− y > 0

when the velocity v is fixed. It is clearly seen that Q0(y, v) blows up at the diagonal for Λ0 ≤ 1; the rates of

the blowup are (vG− y)Λ0−1 for Λ0 = 0.5 and logarithmic for Λ0 = 1.0 as is established in Theorem 3.1. On

the other hand, for Lambda0=2.0, Q0 is continuous at the diagonal y = vG. This is seen because the curves

for v=0.75 and 0.5 (dashed lines) correspond to those for v = −0.75 and −0.5 in vG − y < 0, respectively,

due to the symmetry and the curves with the same values of |v| converge to the same values at the diagonal

y = vG.

Figure 3 shows the decay behavior of Q0(y, v) near y = −G for a fixed velocity v. These plots illustrate

the behavior Q0(y, v) = (|G| − |y|)α near y = −G with α > 1. The power α is measured as α = 1.6 for
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Figure 2. The blow-up behaviors near the diagonal for vG − y > 0. The distributions

of Q0(y, v) against (vG − y)−1 when the velocity v is fixed are plotted for Λ0=0.5 in (a),

Λ0=1.0 in (b), and Λ0=2.0 in (c). The modulation amplitude chi=0 and chemical gradient

G=1 are fixed. Figure (a) is shown in the double logarithmic while Figures (b) and (c) are

shown in the single logarithmic. Note that the distributions for v=0.5 and 0.75 (dashed

lines) correspond to those for v = −0.5 and −0.75 in the domain vG− y < 0, respectively,

due to the symmetry Q0(y, v) = Q0(−y,−v).

10-3 10-2 10-1

10-4

10-2

G− |y|
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10-3 10-2 10-1
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10-4

10-2

Q0

G− |y|
(c)

Figure 3. The decay behavior of Q0 near y = −G. The distributions of Q0(y, v) against

G−|y| when the velocity v is fixed are plotted for Λ0=0.5 in (a), Λ0=1.0 in (b), and Λ0=2.0

in (c). The modulation amplitude chi=0 and chemical gradient G=1 are fixed. These plots

illustrate the behavior Q0(y, v) = (|G| − |y|)α with α > 1 and α increases with Λ0.

Λ0 = 0.5, α = 1.8 for Λ0 = 1.0, and α = 2.6 for Λ0 = 2.0. Thus, the power increases with Λ0. All these

numerical results illustrate the properties of Q0(y, v) established in Theorem 3.1.

Figure 4 shows the distributions of Q0(y, v) and h(y, v) when the tumbling rate Λ0 depends on the internal

state y. It is clearly seen that the distributions are not anymore symmetric but rather concentrated along

the diagonal y = vG in y > 0.

Finally, we show the drift velocity c0,2 against the chemical gradient G in Figure 5. Figure 5(a) shows

the results for various values of Λ0 when the tumbling rate is constant, i.e., χ=0, while figure 5(b) shows

the results for various values of modulation χ, where the tumbling rate Λ0 is not constant. In both cases,

when the gradient is small, say G . 1, the fluxes c0,2 are almost linearly proportional to the gradient,

c0 ∝ G. However, they saturate for G & 10 and approach to the constant values. These results illustrate

the boundedness of the drift velocity c0,2 when the tumbling rate Λ0 is constant. Unexpectedly, we can also
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Q0

(a)

h

(b)

Figure 4. Distributions of Q0(y, v) in (a) and h(y, v) in (b) when Λ0 depends on y. The

mean tumbling rate Λ0=1 and chemical gradient G=1 are fixed.
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Figure 5. The drift velocity c0,2 vs. the chemical gradient G. The left figure (a) shows

the results for various values of Λ0 when χ=0 is fixed, where the tumbling rate Λ0(y) is

constant. The right figure (b) shows the results for various values of χ when Λ0=1 is fixed,

where the tumbling rate Λ0(y) depends on the internal state y.

observe non-monotonic profiles of c0,2 against the chemical gradient G when the modulation is large, i.e.,

χ=0.5 and 0.8.

5. Conclusion

We have systematically studied scaling limits of kinetic equations which describe run-and-tumble move-

ment of bacteria with internal chemical pathways. The complexity of the phenomena stems form the different

scales between space, time and velocity as well as the stiffness of the tumbling response and methylation

adaptation. The question in these different asymptotic limits is to distinguish between the standard Keller-

Segel equation and the flux-limitied Keller-Segel.

It appears that stiff-response, a physically appropriate regime, always leads to the FLKS equation. In

particular this conclusion applies to fast adaptation and stiff response which corresponds to the measured

paprameters for E. coli.
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The dominating profile, given by the function Q0(y, v), is also remarkable with a possible blow-up along

the diagonal y = v|G|. However, the physically relevant regime is when Λ0 > 1 and then Q0(y, v) is smooth.

Several other possible scalings are still possible. Also we have ignored noise in the internal state, which

can be a route to mathematically interesting analysis.

Appendix A. Well-posedness of the corrector equation (2.14)

We show that the equation (2.14) for the corrector has a solution using the Fredholm theory. More

generally, we consider the equation with a source term R1 such that

∂y ((v ·G− y)h) = Λ(y)(〈h〉 − h) +R1(y, v) , h(±|G|, v) = 0 . (A.1)

The well-posedness theorem states

Theorem A.1. Let Q0 be the unique non-negative solution given in Theorem 3.1. Suppose the function R1

satisfied that R1 ∈ L1((−|G|, |G|)× V) and∫
V

∫ |G|
−|G|

R1(y, v) dy dv = 0 , (A.2)

and there exist constants µ0 > −1 and c0 > 0 such that

|R1| ≤ c0 (|v ·G− y|µ0 + 1) , (y, v) ∈ (−|G|, |G|)× V . (A.3)

Then equation (A.1) has a unique solution h ∈ L1((−|G|, |G|)× V) such that∫
V

∫ |G|
−|G|

h(y, v) dy dv = 0 . (A.4)

Proof. Re-write (A.1) as

(v ·G− y)∂yh+ (Λ(y)− 1)h = Λ(y) 〈h〉+R1 .

Then for v ·G− y > 0, we have

∂y

(
e
∫ y
−|G|

Λ(z)−1
v·G−z dz

h
)

= e
∫ y
−|G|

Λ(z)−1
v·G−z dz Λ(y)

v ·G− y
〈h〉+ e

∫ y
−|G|

Λ(z)−1
v·G−z dz 1

v ·G− y
R1 ,

which gives

h(y, v) =

∫ y

−|G|
e−

∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
(Λ(z) 〈h〉 (z) +R1(z, v)) dz v ·G− y > 0 . (A.5)

Similarly, if v ·G− y < 0, then

∂y

(
e
∫ |G|
y

Λ(z)−1
z−v·G dzh

)
= −e

∫ |G|
y

Λ(z)−1
z−v·G dz Λ(y)

y − v ·G
〈h〉 − e

∫ |G|
y

Λ(z)−1
z−v·G dz 1

y − v ·G
R1 ,

which gives

h(y, v) =

∫ |G|
y

e−
∫ z
y

Λ(w)−1
w−v·G dw 1

z − v ·G
(Λ(z) 〈h〉 (z) +R1(z, v)) dz v ·G− y < 0 . (A.6)

Using (A.5) and (A.6), we obtain the integral equation for 〈h〉 as

〈h〉 (y) =
1

2

∫
V

∫ y

−G
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
(Λ(z) 〈h〉 (z) +R1(z, v)) dz

+
1

2

∫
V

∫ |G|
y

1v·G<ye
−

∫ z
y

Λ(w)−1
w−v·G dw 1

z − v ·G
(Λ(z) 〈h〉 (z) +R1(z, v)) dz .
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Denote K as the linear operator such that

K 〈h〉 =
1

2

∫
V

∫ y

−G
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw Λ(z)

v ·G− z
〈h〉 (z) dz dv

+
1

2

∫
V

∫ |G|
y

1v·G<ye
−

∫ z
y

Λ(w)−1
w−v·G dw Λ(z)

z − v ·G
〈h〉 (z) dz dv .

Denote the source term as

R(y) =
1

2

∫
V

∫ y

−|G|
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
R1(z, v) dz dv

+
1

2

∫
V

∫ |G|
y

1v·G<ye
−

∫ z
y

Λ(w)−1
w−v·G dw 1

z − v ·G
R1(z, v) dz dv . (A.7)

Using the bound of R1 in (A.3) and the estimate, for v ·G− y > 0,

e
∫ z
y

Λ(w)−1
v·G−w dw 1

v ·G− z
≤ 1

v ·G− y
e−λ1

∫ y
z

1
v·G−w dw =

(v ·G− y)λ1−1

(v ·G− z)λ1
, (A.8)

we bound the first term in R as∣∣∣∣∣12
∫
V

∫ y

−|G|
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
R1(z, v) dz dv

∣∣∣∣∣
≤ cd

∫
V

∫ y

−|G|
1v·G>y

(v ·G− y)λ1−1

(v ·G− z)λ1
((v ·G− z)µ0 + 1) dz dv

≤ cd
∫
V

∫ y

−|G|
1v·G>y

(v ·G− y)λ1−1

(v ·G− z)λ1−µ0
dz dv + cd by (3.10)

Similar as the estimates in (3.10), we have∫
V

1z<y1v·G>y
(v ·G− y)λ1−1

(v ·G− z)λ1−µ0
dv = cd1z<y

∫ 1

y/|G|

(w|G| − y)λ1−1

(w|G| − z)λ1−µ0
dw

≤ cd
λ1|G|

1z<y

(
(w|G| − y)λ1

(w|G| − z)λ1−µ0

∣∣∣1
y/|G|

+ |λ1 − µ0| |G|
∫ 1

y/|G|

(w|G| − y)λ1

(w|G| − z)λ1−µ0+1
dw

)

≤ cd

(
(|G| − z)µ0 + |λ1 − µ0| |G|

∫ 1

y/|G|

1

(w|G| − z)−µ0+1
dw

)
≤ cd(|G| − z)µ0 ,

where again the constant cd may change from line to line. Since µ0 > −1, the first term in R is bounded as∣∣∣∣∣12
∫
V

∫ y

−|G|
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
R1(z, v) dz dv

∣∣∣∣∣ ≤ cd
∫ |G|
−|G|

(|G| − z)µ0 dz <∞ .

Similar estimates hold for the second term in R. Overall we have

R ∈ L∞(−|G|, |G|) ⊆ L2(−|G|, |G|) .

Moreover, 〈h〉 satisfies

〈h〉 = K 〈h〉+R . (A.9)

We will show that the operator Id −K is Fredholm and R ∈ (Null (Id −K∗))⊥ where the orthogonality is

taken in L2(−|G|, |G|). To this end, we first find the kernel of K as

k(y, z) =
1

2
1z<y

∫
V

1v·G>ye
−

∫ y
z

Λ(w)−1
v·G−w dw Λ(z)

v ·G− z
dv +

1

2
1z>y

∫
V

1v·G<ye
−

∫ z
y

Λ(w)−1
w−v·G dw Λ(z)

z − v ·G
dv ,
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and the kernel of the adjoint operator K∗ is

k∗(y, z) =
1

2
1y<z

∫
V

1v·G>ze
−

∫ z
y

Λ(w)−1
v·G−w dw Λ(y)

v ·G− y
dv +

1

2
1y>z

∫
V

1v·G<ze
−

∫ y
z

Λ(w)−1
w−v·G dw Λ(y)

y − v ·G
dv .

In order to show that K is compact on L2(−|G|, |G|) we prove that k ∈ L2( dy dz) so that K is a Hilbert-

Schmidt operator. We only present the details for the L2-bound of the first term in k(y, v), for the bound

of the second term follows in a similar way. Hence, by (A.8) and the upper/lower bounds of Λ, we have

1

2
1z<y

∫
V

1v·G>ye
−

∫ y
z

Λ(w)−1
v·G−w dw Λ(z)

v ·G− z
dv ≤ 1

2
1z<yλ2

∫
V

1v·G>y

(
v ·G− y
v ·G− z

)λ1 1

v ·G− y
dv

≤ λ2cd1z<y

∫ 1

y/|G|

(w|G| − y)
λ1−1

(w|G| − z)λ1
dw .

≤ λ2cd1z<y

(
1

λ1|G|
+

1

|G|
ln
|G| − z
y − z

)
∈ L2( dy dz) ,

where the last step follows from (3.10). Hence K is compact on L2(−|G|, |G|).
Next, we show that R ∈ (Null (Id−K∗))⊥. The exponential term in k∗ can be simplified as

e−
∫ z
y

Λ(w)−1
v·G−w dw = e−

∫ z
y

Λ(w)
v·G−w dwe

∫ z
y

1
v·G−w dw = e−

∫ z
y

Λ(w)
v·G−w dw v ·G− y

v ·G− z
and similarly,

e−
∫ y
z

Λ(w)−1
w−v·G dw = e−

∫ y
z

Λ(w)
w−v·G dw y − v ·G

z − v ·G
.

Hence, k∗ becomes

k∗(y, z) =
1

2
1y<z

∫
V

1v·G>ze
−

∫ z
y

Λ(w)
v·G−w dw Λ(y)

v ·G− z
dv +

1

2
1y>z

∫
V

1v·G<ze
−

∫ y
z

Λ(w)
w−v·G dw Λ(y)

z − v ·G
dv .

The structure of the null space of Id−K∗ can be seen by working with a modified kernel

k̃∗(y, z) =
1

Λ(y)
k∗(y, z)Λ(z) . (A.10)

We claim that for any y ∈ (−|G|, |G|), k̃∗ satisfies the normalization such that∫ |G|
−|G|

k̃∗(y, z) dz = 1 .

Indeed, by using the spherical coordinates, the first term in
∫ |G|
−|G| k̃

∗(y, z) dz satisfies

1

2

∫ |G|
−|G|

1y<z

∫
V

1v·G>ze
−

∫ z
y

Λ(w)
v·G−w dw Λ(z)

v ·G− z
dv dz

=
1

2

∫ |G|
y

∫
Sd−1

∫ 1

z/|G|
e−

∫ z
y

Λ(w)
µ|G|−w dw Λ(z)

µ|G| − z
J(µ, z) dµdv̂ dz

=
1

2

∫
Sd−1

∫ |G|
y

∫ 1

z/|G|
e−

∫ z
y

Λ(w)
µ|G|−w dw Λ(z)

µ|G| − z
J(µ, z) dµdzdv̂

=
1

2

∫
Sd−1

∫ 1

y/|G|

∫ µ|G|

y

e−
∫ z
y

Λ(w)
µ|G|−w dw Λ(z)

µ|G| − z
J(µ, z) dz dµdv̂ ,

where J is the Jacobian in the spherical coordinates. The last inner integral is evaluated as∫ µ|G|

y

e−
∫ z
y

Λ(w)
µ|G|−w dw Λ(z)

µ|G| − z
dz = lim

A→µ|G|

∫ A

y

e−
∫ z
y

Λ(w)
µ|G|−w dw Λ(z)

µ|G| − z
dz

= 1− lim
A→µ|G|

e−
∫A
y

Λ(w)
µ|G|−w dw = 1 .



24 BENOIT PERTHAME, WEIRAN SUN, MIN TANG, AND SHUGO YASUDA

Hence, the first term in
∫ |G|
−|G| k̃

∗(y, z) dz is reduced to

1

2

∫ |G|
−|G|

1y<z

∫
V

1v·G>ze
−

∫ z
y

Λ(w)
v·G−w dw Λ(z)

v ·G− z
dv dz =

1

2

∫
Sd−1

∫ 1

y/|G|
J(µ, z) dµdv̂ .

Similarly, the second integral in
∫ |G|
−|G| k̃

∗(y, z) dz can be simplified as

1

2

∫ |G|
−|G|

1y>z

∫
V

1v·G<ze
−

∫ y
z

Λ(w)
w−v·G dw Λ(y)

z − v ·G
dv dz =

1

2

∫
Sd−1

∫ y/|G|

−1

J(µ, z) dµdv̂ .

Summing up gives the normalization condition (A.10) for k̃∗. Therefore, if we denote K̃∗ as the operator

with kernel k̃∗, then the normalization condition guarantees that the only elements in Null (Id − K̃∗) are

constants, which further implies that

Null (Id−K∗) = Span {Λ(y)} .

Hence, we have the equivalence such that

R ∈ (Null (Id−K∗))⊥ ⇐⇒
∫ |G|
−|G|

R(y)Λ(y) dy = 0 . (A.11)

Now we check such orthogonality condition indeed holds. This can be done through a direct computation

using the definition of R given in (A.7). We can also show it by observing that R = 〈w〉 where w is the

solution to

∂y ((v ·G− y)w) = −Λ(y)w +R1 , w(±|G|, v) = 0 . (A.12)

Then (A.11) holds by integrating (A.12) in y and using condition (A.2) for R1.

Combining the orthogonality and the Fredholm property of Id−K, we deduce that (A.9) has a solution

in L2(−|G|, |G|) ∩ (Null (I −K))
⊥

. Denote this solution as H1 and define

h1(y, v) =


∫ y
−|G| e

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v·G−z (Λ(z)H1(z) +R1(z, v)) dz v ·G− y > 0 ,∫ |G|
y

e−
∫ z
y

Λ(w)−1
w−v·G dw 1

z−v·G (Λ(z)H1(z) +R1(z, v)) dz v ·G− y < 0 .

Then

〈h1〉 =
1

2

∫
V

∫ y

−G
1v·G>ye

−
∫ y
z

Λ(w)−1
v·G−w dw 1

v ·G− z
(Λ(z)H1(z) +R1(z, v)) dz

+
1

2

∫
V

∫ |G|
y

1v·G<ye
−

∫ z
y

Λ(w)−1
w−v·G dw 1

z − v ·G
(Λ(z)H1(z) +R1(z, v)) dz

= H1 ,

which shows h1 is the unique solution to (A.1) satisfying (A.4) with 〈h1〉 ∈ L2(−|G|, |G|). �
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