N. Bellomo, A. Bellouquid, and M. Winkler, Toward a mathematical theory of keller?segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, vol.25, issue.9, pp.1663-1763, 2015.

A. Blanchet, J. A. Carrillo, and P. Laurencot, Critical mass for a patlak?keller?segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, vol.35, pp.133-168, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00626990

V. Calvez, B. Perthame, and S. Yasuda, Traveling wave and aggregation in a flux-limited Keller-Segel model, Kinet. Relat. Models, vol.11, issue.4, p.3810850, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01591490

A. Chertock, A. Kurganov, X. Wang, and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic and Related Models, vol.5, pp.51-95, 2012.

T. Cie?lak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, vol.21, issue.5, p.2412327, 2008.

K. J. Duffy and R. M. Ford, Turn angle and run time distribution characterize swimming behavior for pseudomonas putida, J. Bacteriol, vol.179, issue.4, pp.1428-1430, 1997.

R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis, SIAM J. Appl. Math, vol.65, issue.2, pp.361-391, 2004.

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology, Multiscale Model. Simul, vol.3, pp.362-394, 2005.

T. Hillen and K. J. Painter, A user's guide to pde models for chemotaxis, J. Math. Biol, vol.58, pp.183-217, 2009.

L. Jiang, Q. Ouyang, and Y. Tu, Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time, PLoS Comput. Biol, vol.6, p.1000735, 2010.

Y. V. Kalinin, L. Jiang, Y. Tu, and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis, Biophys J, vol.96, issue.6, pp.2439-2448, 2009.

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol, vol.30, pp.225-234, 1971.

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol, vol.26, pp.399-415, 1970.

G. L. Hazelbauer, Bacterial chemotaxis: the early years of molecular studies, Annu. Rev. Microbiol, vol.66, pp.285-303, 2012.

N. Bellomo and M. Winkler, A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Commun. Part. Diff. Eq, vol.42, pp.436-473, 2017.

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys, vol.15, pp.311-338, 1953.

B. Perthame, M. Tang, and N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biological pathway, J. Math. Biol, vol.73, pp.1161-1178, 2016.

B. Perthame, N. Vauchelet, and Z. A. Wang, The flux-limited keller-segel system; properties and derivation from kinetic equations, Revista Mathematica Iberoamericana
URL : https://hal.archives-ouvertes.fr/hal-01689571

B. Perthame and S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited KellerSegel equation, Nonlinearity, vol.31, issue.9, pp.4065-4089, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01494963

G. Si, T. Wu, Q. Ouyang, and Y. Tu, pathway-based mean-field model for Escherichia coli chemotaxis, Phys. Rev. Lett, vol.109, p.48101, 2012.

G. Si, M. Tang, and X. Yang, A pathway-based mean-field model for e. coli chemotaxis: mathematical derivation and its hyperbolic and parabolic limits, Multiscale Model. Simul, vol.12, issue.2, pp.907-926, 2014.

W. Sun and M. Tang, Macroscopic limits of pathway-based kinetic models for E. coli chemotaxis in large gradient environments, Multiscale Model. Simul, vol.15, issue.2, pp.797-826, 2017.

C. Xue, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math, vol.70, pp.133-167, 2009.

C. Xue, Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling, J. Math. Biol, vol.70, pp.1-44, 2015.

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math, vol.70, issue.1, pp.133-167, 2009.