Formation of stable strontium-rich amorphous calcium phosphate: Possible effects on bone mineral
Camila Bussola Tovani, Alexandre Gloter, Thierry Azaïs, Mohamed Selmane, Ana Ramos, Nadine Nassif

To cite this version:

HAL Id: hal-02264838
https://hal.sorbonne-universite.fr/hal-02264838
Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Formation of stable strontium-rich amorphous calcium phosphate: Possible effects on bone mineral
Camila Bussola Tovani, Alexandre Gloter, Thierry Azaïs, Mohamed Selmane, Ana Ramos, Nadine Nassif

To cite this version:

HAL Id: hal-02264838
https://hal.sorbonne-universite.fr/hal-02264838
Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Formation of stable strontium-rich amorphous calcium phosphate: Possible effects on bone mineral

Camila Bussola Tovani a,d,*, Alexandre Gloter b, Thierry Azaïs a, Mohamed Selmane c, Ana P. Ramos d, Nadine Nassif a,⇑

a Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France
b Université Paris Sud, Laboratoire de Physique des Solides, CNRS UMR 8502, F-91405 Orsay, France
c Institut des Matériaux de Paris Centre, IMPC, Univ Paris 06, Collège de France, 11 place Marcelin Berthelot, F-75231 Paris, France
d Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil

Article info
Article history:
Received 27 February 2019
Received in revised form 21 April 2019
Accepted 13 May 2019
Available online 22 May 2019

Abstract
Bone, tooth enamel, and dentin accumulate Sr2+, a natural trace element in the human body. Sr2+ comes from dietary and environmental sources and is thought to play a key role in osteoporosis treatments. However, the underlying impacts of Sr2+ on bone mineralization remain unclear and the use of synthetic apatites (which are structurally different from bone mineral) and non-physiological conditions have led to contradictory results. Here, we report on the formation of a new Sr2+-rich and stable amorphous calcium phosphate phase, Sr(ACP). Relying on a bioinspired pathway, a series of Sr2+ substituted hydroxyapatite (HA) that combines the major bone mineral features is depicted as model to investigate how this phase forms and Sr2+ affects bone. In addition, by means of a comprehensive investigation the biomineralization pathway of Sr2+ bearing HA is described showing that not more than 10 at% of Sr2+, i.e., a physiological limit incorporated in bone, can be incorporated into HA without phase segregation. A combination of 31P and 1H solid state NMR, energy electron loss spectromicroscopy, transmission electron microscopy, electron diffraction, and Raman spectroscopy shows that Sr2+ introduces disorder in the HA culminating with the unexpected Sr(ACP), which co-exists with the HA under physiological conditions. These results suggest that heterogeneous Sr2+ distribution in bone is associated with regions of low structural organization. Going further, such observations give clues from the physicochemical standpoint to understand the defects in bone formation induced by high Sr2+ doses.

Statement of Significance
Understanding the role played by Sr2+ has a relevant impact in physiological biomineralization and provides insights for its use as osteoporosis treatments. Previous studies inspired by the bone remodelling pathway led to the formation of biomimetic HA in terms of composition, structures and properties in water. Herein, by investigating different atomic percentage of Sr2+ related to Ca2+ in the synthesis, we demonstrate that 10% of Sr2+ is the critical loads into the biomimetic HA phase; similarly to bone. Unexpectedly, using higher amount leads to the formation of a stable Sr2+-rich amorphous calcium phosphate phase that may high-dose related pathologies. Our results provide further understanding of the different ways Sr2+ impacts bone.

1. Introduction
Bone is a complex tissue that undergoes continuous remodeling through action of osteoblasts and osteoclasts [1]. The remodeling cycle regulates the bone architecture and mechanical properties by repairing small damages and removing old tissue [2]. Cells produce growth factors, cytokines, and non-collagenous proteins, which regulate the remodeling cycle [3]. Trace elements also play a role in bone mineral phase remodeling [4]. Among such
elements, strontium has been shown to exert a dual effect on the bone regeneration dynamics: it reduces bone resorption and increases bone formation [5]. Sr\(^{2+}\) preferentially accumulates in the bone tissue (99% of the total Sr\(^{2+}\) amount in the body); Sr\(^{2+}\) and Ca\(^{2+}\) have similar charge-to-size ratio, so the former ion replaces the latter ion in apatite [6]. A maximum of 10–12% of Sr\(^{2+}\) is found in biological apatite after its administration [7,8].

Sr\(^{2+}\) can also substitute Ca\(^{2+}\) in the crystalline structure of other biominerals such as carbonates [9,10].

Although Sr\(^{2+}\) is a non-essential trace element found in the human body and behaves similarly to Ca\(^{2+}\) and Mg\(^{2+}\) in physiological environment [11], Sr\(^{2+}\) administration in the form of strontium chloride may promote kinetic and thermodynamic controls over the reaction and select different phases and polymorphs [30]. Indeed, Sr\(^{2+}\) incorporation into bone is heterogeneous. Higher Sr\(^{2+}\) concentrations occur in newly formed bone and are related to locally higher metabolism [14]. For example, Sr\(^{2+}\) is exclusively incorporated into new bone of patients treated with strontium ranelate [22]. Besides its impact at the cellular level, one question remains: how does Sr\(^{2+}\) affect the mineralized bone matrix? In an attempt to understand how Sr\(^{2+}\) influences bone apatite at the crystalline structure level, several syntheses of Sr\(^{2+}\)-substituted HA have been described [23–26]. Nevertheless, bone mineral and synthetic HA have distinct features, which limit the correlation between in vitro and in vivo results.

Bone apatite, formed under physiological conditions, bears a hydrated amorphous shell and a core consisting of nanometric crystals with plate-like morphology [27] and preferential crystallographic orientation along the c axis [28]. Furthermore, bone apatite is nonstoichiometric and can host different ions in its crystalline lattice and/or outer layer [29]. The bone apatite structural features are strongly related to ion substitutions, especially PO\(_4\)^{3-} and OH\(^-\) replacement with CO\(_3\)^{2-}, and the presence of water [30–32].

Reproducing such bone mineral features in vitro remains a challenge and is vitally important for better comprehension of in vivo phenomena. Different attempts have been made to obtain biomimetic apatite. However, the non-physiological conditions used during the synthesis include high temperature [33], microwave radiation [34], high pressure [35], solid-state diffusion [36], organic solvents [37], and stabilizing agents [38], which may give products with distinct crystallinity, surface area, crystal size, and composition as compared to bioapatite. Moreover, the experimental conditions may promote kinetic and thermodynamic controls over the reaction and select different phases and polymorphs [30]. Indeed, isostructural Ca\(^{2+}\) substitution for Sr\(^{2+}\) in the apatite crystalline structure has been reported up to 100% of substitution [23,39], but the formation of such strontium apatite has not been described in biological systems.

Heterogeneous Sr\(^{2+}\) distribution at atomic scale is another factor that prevents Sr\(^{2+}\) impact on bone apatite from being evaluated. In this sense, controlled in vitro bone-like systems are necessary to mimic this event and to provide insights in this regard.

To address these shortcomings, a simple and versatile procedure to study Sr\(^{2+}\) incorporation into bone mineral is described. The strategy consists in using bioinspired conditions described in bone remodeling process [40], i.e., water at room pressure and temperature and initial low pH, to mimic the environment at the mineralizing front. The influence of Sr\(^{2+}\) on the formation of biomimetic apatite was investigated by substituting Ca\(^{2+}\) ranging from 0 up to 100 at%. Using a combination of energy electron loss spectroscopy (EELS), \(^{31}\)P solid state nuclear magnetic resonance spectroscopy (NMR), Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), the resulting phosphate phases were characterized providing clues to understand the presence of bone defects upon high Sr\(^{2+}\) doses.

2. Experimental

2.1. Synthesis of biomimetic apatite containing different amount of Sr\(^{2+}\)

Biomimetic apatite was synthesized on the basis of an approach developed by Nassif et al. [31]; NH\(_3\)(g) diffusion was used at ambient temperature. Briefly, stock CaCl\(_2\) (110 mM), SrCl\(_2\) (110 mM), NaH\(_2\)PO\(_4\) (33 mM), and NaHCO\(_3\) (33 mM) solutions were prepared by dissolving CaCl\(_2\)-2H\(_2\)O (Sigma), SrCl\(_2\)-6H\(_2\)O (Sigma), NaHCO\(_3\) (Sigma), and Na\(_2\)H\(_2\)PO\(_4\) (Sigma) in aqueous acetic acid (500 mM) solution. Mixtures containing different Sr\(^{2+}\) molar percentages (namely 0, 5, 10, 25, 50, 75, and 100%) in relation to the total number of mols of divalent cations (Ca\(^{2+}\) + Sr\(^{2+}\)) were prepared. The (Ca + Sr)/(P + C) ratio was kept constant and equal to 1.67 and pH ~3.5. Two flasks (35 mL, h = 50 mm) containing these solutions (20 mL) and covered with perforated (four holes) parafilm were placed in a closed desiccator. A third flask containing fresh aqueous ammonia solution (30 wt%, 8 mL) was placed in the desiccator. NH\(_3\)(g) diffusion into the flasks slowly increases the solution pH and triggered Sr-Ca phosphate precipitation. After reaction for one or six days (pH ~11), the solids were washed with distilled water and then ethanol, to remove soluble salts, and centrifuged (6000 rpm, 10 min). The recovered powders were dried at 37 °C for three days before characterization.

2.2. Samples characterization

X-ray diffraction analysis was carried out on a Bruker D8 X-ray diffractometer operating in the reflection mode with CuK\(_\alpha\) radiation, beam voltage of 40 kV, and beam current of 40 mA. The data were collected in the 2θ range of 5–80°, with steps of 0.01° and a counting time of 9 s. The interplanar distances (d values) were estimated in the direction of the plane (002) in the 2θ range of 25.7–25.9°. The coherent domain length was estimated in the direction of the planes (111) and (021) in the 2θ range of 25–27°, according to the Scherrer equation. This length was also estimated by HRTEM. The crystal lattice parameters were calculated in the software check-cell by using the shift of the diffraction peaks. Fourier-transform infrared spectra with attenuated total reflectance (ATR-FTIR) were obtained on a Perkin Elmer Spectrum One spectrophotometer in the range of 4100–550 cm\(^{-1}\) with a resolution of 1 cm\(^{-1}\). Raman spectra were recorded in the range of 1200–300 cm\(^{-1}\) on a spectrophotometer Kaiser Optical Systems with a diode laser operating at \(\lambda = 785\) nm as excitation source. Thermogravimetric analysis (TGA) experiments were performed on a thermo-microbalance instrument (NETZSCH STA409PC). The measurements were performed from room temperature to 100 °C in air atmosphere with a heating rate of 5 °C/min. Scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) were conducted on a microscope Hitachi S-3400N under accelerating voltage of 10 kV. To this end, samples were covered with a 10 nm gold layer. EDS was performed using an Oxford instruments X-MAX detector (20 mm\(^2\)). To this end the samples were coated with a 10-nm carbon layer. A transmission electron microsc
microscope (TEM JEOL 2011) operating at 100 keV was used to obtain the TEM and high-resolution (HRTEM) images and the selected area electron diffraction patterns (SAED). EDS mapping of the elements Ca, Sr, O and P was performed on a single particle by using a TEM microscope FEI Tecnai G2 F20 HRTEM operating at 200 kV. To this end, the samples were dispersed in ethanol and some drops were deposited on a lacey carbon film on copper grid. EELS spectra were acquired in a Nion STEM microscope at 200 kV. 1H and 31P solid-state NMR experiments were conducted on an Avance 300Bruker spectrometer operating at ν(1H) = 300.13 MHz and ν(31P) = 121.5 MHz. The powders were packed in 4 mm zirconia rotors and spun at 14 kHz. 31P direct acquisition spectra were recorded in quantitative conditions used a recycle delay (RD) of 60 s and a 30° pulse, the number of scans (NS) were set to 80. The 2D 1H–31P HetCor spectra were recorded using the following parameters RD = 2 s; contact time tCP1 = 1 ms, NS = 32–80 for each 40–120 t 1 increments depending on the sample. The Double CP 1H–31P→31P→1H MAS NMR experiment is described elsewhere in the literature [41] and the following parameters were used: RD = 2, tCP1 = tCP2 = 1 ms, NS = 2000–3000 depending on the sample. The chemical shifts were referenced to H3PO4 85% wt for 31P (0 ppm) and adamantane for 1H (0 ppm).

3. Results and discussion

3.1. Ca2+ substitution for Sr2+ in biomimetic HA leads to Sr(ACP) formation

Our study started with bioinspired HA synthesis, during which we employed simple chemical conditions that also occur in vivo. The vapor diffusion approach allowed us to control pH increase through NH4HCO3 dissolution in the precursor acidic solution containing the PO4 3–, CO3 2–, Sr2+, and Ca2+ ions, thereby producing nanocrystalline and carbonated apatite that resembled apatite found in bone and teeth [31]. Moreover, the initial low pH enabled us to study Sr2+ incorporation into HA in conditions that mimicked the conditions found in the acidic extracellular environment where osteoclasts act during bone remodeling [42]. Table S1 summarizes the %Sr2+ incorporated into the final solids as determined by SEM-EDS. Sr2+ incorporation was proportional to the Sr2+ amount in the starting solutions. XRD, ATR-FTIR, SEM, TEM and Raman spectroscopy were combined to follow the Sr2+ impact on the HA structure. The diffraction peaks (Fig. 1) reveal that the series of samples 0–25%Sr2+ correspond to hexagonal HA (space group P63/m). The XRD patterns of the samples exhibit broad peaks, related to small crystallite size and to the presence of CO3 2– ions, which are a source of structural disorder in bone [28] (see next sections). Moreover, the higher intensity of the 002 peak in relation to the pattern suggests preferential orientation and larger coherent domain along the c axis. Such features confirm structural similarity between the bone mineral and the HA model adopted in this study, which is crucial to understand the in vitro results and in vivo events and to corroborate them. Furthermore, the (0 0 2) Bragg reflections in the XRD patterns (Fig. S1) of the samples 0–25%Sr2+ shifted linearly to lower 2θ values with increasing Sr2+ percentage, indicating that the interplanar distances and hence the lattice parameters augmented. Indeed, estimation of the interplanar distance (Table 1) along the 002 plane and the lattice constants demonstrate that Ca2+ replacement with Sr2+ in apatite expands the unit cell, which is in agreement with the larger Sr2+ ionic radius. Even though Ca2+ replacement with Sr2+ provokes crystal strain, the hexagonal symmetry is maintained up to the 25%Sr2+ sample. Surprisingly, the 50%Sr2+ and 75%Sr2+ samples do not display Bragg reflections, indicating the precipitation of an amorphous phase and inhibition of HA formation. In the case of the 100%Sr2+ sample, a well crystallized phase indexed as Collin’s salt (Sr6H3(PO4)5.2H2O) arises instead of the fully Sr2+-substituted HA.

The Raman spectra of the apatitic samples, 5%Sr2+, 10%Sr2+ and 25%Sr2+, (Fig. S2) evidence a linear wavenumber downshift of the PO4 3– band (Fig. S2c) as compared to the spectrum of pure HA (0% Sr2+). Although total Sr2+ incorporation into the HA hydrated surface layer could have occurred, these results corroborate heteroionic Ca2+ substitution for Sr2+. With respect to structural changes, PO4 3– band broadening with Sr2+ addition suggests that the presence of Sr2+ in the HA lattice causes progressive crystalline disorder, which agrees with XRD observations. This trend is characterized by linear correlation between the full width half maximum (FWHM) values and the Sr2+ content in the samples (Fig. S2d). Such effects have been described in synthetic systems [23,39], as well as in minerals arising in cell culture during Sr2+ treatments [43]. In fact, Sr2+ uptake by minerals synthesized by osteoblasts has been shown to occur in a dose-dependent manner and to be accompanied by a linear increase in cell parameters [44]. Up to 25% Ca2+ substitution for Sr2+ in the lattice of synthetic HA has been reported to cause structural disorder, whereas higher Sr2+ concentrations have been shown to increase HA crystallinity [23,24]. As revealed by in vivo studies, small changes in the structural properties of the 5%Sr2+ sample can be related to no marked effects in the bone mineral density of rats treated with low Sr2+ dosages [45]. According to previous reports showing that the bone mineral strength is inversely related to its crystallinity [46,47], the crystallinity reduction observed for Sr2+ concentrations of up to 25% may be related to increased bone rigidity in osteoporotic patients. In accordance with the XRD results, the ATR-FTIR spectra of the 0–25%Sr2+ samples display sharper bands ascribed to the PO4 3– vibration modes, whilst the 50%Sr2+ and 75%Sr2+ samples exhibit a marked broad line in agreement with their amorphous nature (Fig. 2a). The band observed near 3330 cm−1 is related to OH stretch vibration of hydroxide groups and adsorbed water. This band and the one at 1600 cm−1, which is related to the bending mode of water molecule, are relatively more intense for the 50% Sr2+ and 75%Sr2+ samples. This is in agreement with the higher degree of hydration in amorphous phosphate phases [28]. Indeed, TGA (Fig. S3) revealed a higher content of water in the 50%Sr2+...
of the CO$_3^{2-}$ bands reveals less intense ν_3 bands, related to B-type substitution, and a more intense ν_3 band, related to A-type substitution, as indicated by the dashed lines (Fig. 2b). Deconvolution of the CO$_3^{2-}$ ν_2 band reveals an increase of ~22% of type A substitution in the Sr$^{2+}$ containing samples in relation to the 0% Sr$^{2+}$ sample [50]. A-type substitution is a mechanism that facilitates CO$_3^{2-}$ charge balance and spatial accommodation [51]. In this sense, the present data indicate that Ca$^{2+}$ substitution for Sr$^{2+}$ may influence charge distribution in HA, which in turn affects the CO$_3^{2-}$ substitution site. Furthermore, in biological apatite, such substitution influences the local disorder and promotes formation of an amorphous layer in the bone mineral [28]. Although bone aging and biological activity are known to affect the CO$_3^{2-}$ amount [52], this relationship is not yet completely understood. In this context, besides the impact on crystalline properties, the influence on CO$_3^{2-}$ substitution suggests further effects of Sr$^{2+}$ in bone mineral.

Typical spherulitic aggregates are observed in the SEM images of the series of samples withapatite structure (Fig. 3a–d). The samples with less than 50% of Sr$^{2+}$ do not differ significantly in terms of morphology. The 50%Sr$^{2+}$ and 75%Sr$^{2+}$ samples (characterized as amorphous in the discussion above) display regular and spherical morphology (Fig. 3e, f). As for the sample identified as Collin’s salt, it has plate-like morphology (Fig. 3g). In agreement with the wavy background present in diffractogram of the latter sample (Fig. 1), amorphous particles are also observed in its SEM images (Fig. 3h). The morphological differences evidenced by SEM attest to the structural/compositional changes described previously herein. TEM performed on the series of samples 0–25%Sr$^{2+}$ reveals that the spherulites observed by SEM are formed by the aggregation of nanometric crystals with plate-like morphology with thickness of 3–6 nm (Fig. S4a-d), similar to that one found in bone [31,53]. Notably, SAEDs (Fig. S4e, f) confirm the presence of preferential radial orientation in the spherulitic HA particles. Although XRD identifies HA as the major phase in the 25%Sr$^{2+}$ sample, TEM reveals the presence of a low amount of smaller spherical particles characterized as amorphous with SAED pattern (Fig. S5).

Elementary TEM mapping results (Fig. S6) show that the elements Ca, Sr, P, and O are homogeneously distributed in the HA and amorphous particles, confirming that Sr$^{2+}$ and Ca$^{2+}$ are incorporated into both types of particles. Such result contrasts with findings reported for synthetic HA, for which isomorphic Ca$^{2+}$ substitution for Sr$^{2+}$ is described up to 100% of Sr$^{2+}$ [23,25,26,39]. Regardless of the Sr$^{2+}$ dose observed, bone mineral has been shown to incorporate a maximum of 12.3% Sr$^{2+}$ in the lattice; any excess Sr$^{2+}$ is loaded on the bone surface by adsorption and ion exchange [54,22].

The presence of such amorphous phase can be seen as evidence of Sr$^{2+}$ physicochemical interference on apatite formation and could account for the adverse effects of the administration of high Sr$^{2+}$ doses observed in vivo [55] and in cell cultures in vitro [19]. In fact, high Sr$^{2+}$ doses have been reported to induce mineralization defect in rats with normal renal functions [55] and osteomalacia (a bone disease caused by defective mineralization) in rats with chronic renal failures [56]. Collin’s salt formation is in line with the presence of insoluble salts and rickets in animals with high dietary Sr$^{2+}$ [57]. Still in this regard, rather than Sr$^{2+}$–HA, a mixture of minerals containing SrHPO$_4$ has been reported to arise in the

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>d (nm)</th>
<th>d-spacing (Å)</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>V (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% Sr$^{2+}$</td>
<td>32.31 ± 0.27</td>
<td>3.437 ± 0.003</td>
<td>9.432 ± 0.005</td>
<td>6.874 ± 0.005</td>
<td>529.60</td>
</tr>
<tr>
<td>5% Sr$^{2+}$</td>
<td>31.43 ± 0.29</td>
<td>3.439 ± 0.002</td>
<td>9.432 ± 0.005</td>
<td>6.877 ± 0.005</td>
<td>529.83</td>
</tr>
<tr>
<td>10% Sr$^{2+}$</td>
<td>30.54 ± 0.24</td>
<td>3.444 ± 0.002</td>
<td>9.434 ± 0.005</td>
<td>6.888 ± 0.003</td>
<td>530.89</td>
</tr>
<tr>
<td>25% Sr$^{2+}$</td>
<td>27.61 ± 0.21</td>
<td>3.458 ± 0.003</td>
<td>9.466 ± 0.005</td>
<td>6.917 ± 0.003</td>
<td>536.73</td>
</tr>
</tbody>
</table>
presence of high Sr2+ concentrations in the mineralization medium containing matrix vesicles [58]. Similarly, different Sr2+-phosphate phases together with amorphous precipitate have been found in mineralized cell cultures exposed to high Sr2+ doses [44]. Interestingly, these outcomes highlight the different impact Sr2+ has on biological apatite and synthetic HA. Such differences may be due to the use of non-physiological conditions that often favor formation of products with high degree of crystallinity [35]. This is further supported by the fact that Sr2+ bearing HA is much more soluble than pure HA, so its precipitation is not thermodynamically favored [59].

3.2 Understanding Sr2+ incorporation and its impact on biomimetic HA local order

To gain further insight into Sr2+ incorporation into HA in terms of Ca2+ substitution versus surface adsorption, 1H and 31P solid state NMR were performed to probe the local environment of phosphates. Sharp resonance peaks centered around 3 ppm, which are characteristic of PO43− ions in crystalline HA, are found in the quantitative 31P MAS NMR spectra for the series of samples 0–25% Sr2+ (Fig. 4a). Increasing Sr2+ content broadens the resonance signal and shifts it toward downfield (Table S2). This experiment allows the correlation of phosphate and proton chemical environments leading to the identification of possible local structural differences in the samples. The 0%Sr2+ and 25%Sr2+ samples exhibit two cross peaks (Δ(31P) ~ 3 ppm) revealing two distinct chemical environments: one related to the apatitic PO43− (correlation with OH− ions (Δ(1H) = 0 ppm), and another correlated with water (Δ(1H) = 5 ppm) and HPO42− (Δ(1H) = 12.5 ppm) on the HA surface (Fig. 4b,c). The low content of strontium in samples 0–25Sr2+ precipitate under the form of spherulites, which consist of core-layer nanoplatelets. Such core-layer organization (crystalline vs amorphous) is characteristic of biomimetic apatite [28]. In the 25%Sr2+ sample, micrometric amorphous material is revealed by TEM but its NMR signal cannot be distinguished from the one of the HA particles (i.e. amorphous layer).

The 31P slices extracted from each correlation peak revealed a sharper resonance typical of crystalline apatite (Δ(31P) ~ 3.0 ppm and LW ~ 150 Hz) and a broad resonance characteristic of amorphous phosphate (Δ(31P) ~ 3.2 ppm and LW ~ 500 Hz). These features characteristic of biomimetic apatite, thereby highlight the great potential of this model to investigate Sr2+ incorporation in bone. Indeed, the proposed mechanism for Sr2+ incorporation in bone involves two steps: first, the Sr2+ ions are weakly and reversibly adsorbed on the apatite hydrated amorphous layer. Then, they are subsequently incorporated into the crystalline lattice by substituting Ca2+ positions typically at a maximum of 10%, whereas excess Sr2+ accumulates on the bone surface [62,8]. The 31P projections of the crystalline core and hydrated disordered layer reveal that the LW values increase progressively with Sr2+ concentration in the crystalline core and in the hydrated layer (Table 2), thereby confirming Sr2+ incorporation in both HA sites.

In order to gain insight into the protons chemical environments, double CP 1H → 31P → 31H MAS NMR spectra were recorded for the series of samples 0–25%Sr2+ (Fig. S9). The spectra exhibit a narrow and intense peak around 0 ppm, which is characteristic of OH− ions in the crystalline apatitic environment, and two peaks, at 5.5 and 15 ppm, corresponding to adsorbed water and HPO42−, respectively. The position of the OH− peak does not change with Ca2+ substitution for Sr2+ in HA. Nevertheless, such peak broadened slightly with Sr2+ addition suggesting that the distribution of chemical environments around the hydroxyl groups increased. Interestingly, compared to OH−, the relative intensity of the H2O and HPO42− resonance peaks increase upon Sr2+ addition, suggesting the augment in the ratio of HA hydrated layer and crystalline core.

The 2D 1H 31P HetCor MAS NMR spectrum of the 75%Sr2+ sample (Fig. 4d) shows typical signatures of amorphous phosphate: a broad signal in the Δ(1H) range of ~5–15 ppm, corresponding to water and HPO42−. The absence of cross peak related to OH− ions
confirms that this amorphous phase is homogeneous. These results support the currently accepted mechanism for Sr\(^{2+}\) incorporation into bone in terms of localization in different regions (surface and crystalline lattice)\cite{63, 64} and limited ratio of Ca\(^{2+}\) replacement with Sr\(^{2+}\) in biological apatite \cite{6, 14}.

3.3. Understanding Sr\(^{2+}\) distribution between crystalline and amorphous phases

Shorter experiments (one day) were conducted to investigate the Sr\(^{2+}\) effects on amorphous particle formation. Spheres with rough surfaces and diameters of several micrometers are observed in the SEM images for the 50%Sr\(^{2+}\) and 75%Sr\(^{2+}\) samples (Fig. 5a, e). Remarkably, the 50%Sr\(^{2+}\) sample has rougher spheres as compared to the 75%Sr\(^{2+}\) sample. Further TEM investigation was performed revealing the presence of two dominant structures in both systems: <100 nm homogeneous spheres with smooth surface (Fig. 5c, g) and dense, bigger particles with needles emanating from the surface (Fig. 5b, f), which are less frequent in the 75%Sr\(^{2+}\) sample and agreed with the SEM observations.

Although XRD confirms the formation of an amorphous phase, SAED patterns taken from the surface of the 50%Sr\(^{2+}\) sample exhibit narrow rings (Fig. 5d, inset) revealing the presence of crystalline domains. In contrast, the inner part of the sphere displays broad diffraction rings (Fig. 5b, inset) confirming its amorphous nature. Similar investigations were performed on the 75%Sr\(^{2+}\) sample and found that both the core and surface are characterized by diffraction patterns with broad rings (Fig. 5f, h, inset), confirming the absence of crystalline domains in contrast to the 50%Sr\(^{2+}\) sample. The smaller smooth spheres present in both systems display SAED patterns with broad rings. Diffraction fringes are absent in the HRTEM images, which is typical of amorphous materials (Fig. 5g, inset). The presence of crystalline domains on the surface of the 50%Sr\(^{2+}\) amorphous particles suggests that the Sr\(^{2+}\) content in the starting solutions plays a role in the dynamics of ion exchange between the particle surface and the reaction medium. At 50% Sr\(^{2+}\), more Ca\(^{2+}\) ions can accumulate on the particle surface as compared to the 75%Sr\(^{2+}\) sample, thus favoring local HA precipitation.

To gain further insights into Sr\(^{2+}\) distribution in HA and Sr(ACP) and into their mechanism of formation, the 25%Sr\(^{2+}\) system (characterized as a mixture of both structures) was studied by STEM-EELS. Such technique allows the acquisition of spatially resolved mappings that show the elemental distribution. This is an important starting point to obtain a link between the different structures found in this system and Sr\(^{2+}\) incorporation. EELS spectra were obtained for HA and Sr(ACP) particles (Fig. 6). The spectra were collected for an energy range spanning from 300 to 2500 eV, enabling a simultaneous measurement of Ca-L (346 eV), O-K (530 eV), Sr-L (1940 eV), and P-K (2146 eV). Comparison between the spectra of both particles shows that the main difference is the weaker Ca peak for the amorphous phase. On the other hand, both phases exhibit Sr-L and P-K edges with similar intensities (Fig. 6, inset). Quantifications based on calculated EELS X-section result in approximate Sr/Ca ratios of ca. 0.16 for the Sr\(^{2+}\) substituted HA and of ca. 0.27 for the Sr(ACP). These results confirm that the amorphous phase has a much higher %Sr\(^{2+}\) than the apatitic phase.

STEM-EELS with nanometric resolution was performed on the amorphous particles containing crystalline needles (Fig. 7). The EELS spectra recorded from 100 to 700 eV and comprising the P-L (132 eV), Sr-M (133 eV), C-K (285 eV), Ca-L (346 eV), and O-K (530 eV) edges can be seen for the inner part of the amorphous particle and the outer layer. EELS mapping also evidences that the outer needles and amorphous core have different calcium compositions. On the basis of EELS and SAED, the needles correspond to Sr\(^{2+}\)-substituted HA precipitated at the surface of the amorphous phase. This confirms our hypothesis that Ca\(^{2+}\) accumulates on the surface of the amorphous phase by ion exchange with the reaction medium.
3.4. The impact of Sr$^{2+}$ on the pathway of HA mineralization

Herein, the approach adopted to synthesize HA avoided precipitation of other phases like octacalcium phosphate, brushite and amorphous calcium phosphate by using acidic pH (3.5) at the start of the reaction and slow crystallization rate through NH$_3$(g) diffusion. As shown by XRD, solid state NMR and TEM, HA and Sr$^{2+}$-only substituted HA was found in the series of samples 0–10%Sr$^{2+}$, whereas a small amount of amorphous particles start to precipitate in the 25%Sr$^{2+}$ sample as evidenced by TEM. These findings indicate an amorphous phase-mediated pathway in HA precipitation. Sr$^{2+}$ progressively stabilizes this amorphous precursor and, at higher Sr$^{2+}$ incorporation (50%Sr$^{2+}$ and 75%Sr$^{2+}$), its conversion into HA did not occur even after six days of reaction. As shown before, incorporation of Sr$^{2+}$ elicits structural strains in HA thereby limiting its amount into the HA hexagonal structure. On the other hand, amorphous structures have high ability to accommodate ions and molecules. Indeed, enhanced Sr$^{2+}$ uptake in calcite via an amorphous precursor pathway has been demonstrated [65]. Recently, the synergic effect of Sr$^{2+}$ and Mg$^{2+}$ on amorphous calcium phosphate stabilization [66] has been reported and shown to retard its conversion into HA. In the present study, Sr(ACP) particles originated in the absence of additives. This was different from the amorphous particles currently described as transient phases, which are rapidly converted into HA [67]. Here, the Sr (ACP) persisted in the reaction medium suggesting its high stability. Amorphous phases are ubiquitous in nature. They occur in carbonate silicates and phosphate biominerals and play a pivotal role in biomineralization [68]. Even though the Ostwald rule of stages predicts that metastable amorphous phases are typically converted into the most thermodynamically stable polymorphs [69], amorphous precursors can be kinetically or thermodynamically stabilized by using organic additives, confined volumes [70], and trace elements [71] such as Mg$^{2+}$ [72] and also Sr$^{2+}$, as shown here. Recently, it was shown that Mg$^{2+}$ is heterogeneously distributed in the bone tissue; it accumulates in the boundary regions of human enamel in the form of Mg$^{2+}$-bearing amorphous calcium phosphate [73]. The formation of highly stable Sr(ACP) under physiological conditions suggests that Sr$^{2+}$ may also be heterogeneously distributed in bone within regions of low structural order. In addition to the structural incompatibility between HA and high Sr$^{2+}$ concentrations, the surface energy effect must be considered [74].

Particle size and hydration are key parameters to understand the thermodynamic stability of polymorphs and their occurrence in natural systems [75,76]. An increase in surface area can lead to enhanced Sr$^{2+}$ uptake.
to kinetically stabilized polymorphs instead of the thermodynamic products usually obtained at ambient conditions. As a result, complex crossovers of polymorphs are observed at the nanoscale [77]. In fact, by means of calorimetric experiments it was demonstrated that particles with larger surface area allow hydrated phases to exist as a consequence of the decrease in surface energy due to water adsorption [78]. In this sense, the presence of totally amorphous nanometric particles (as shown by TEM, SAED, and HRTEM) strongly suggests additional stabilization of the Sr(ACP) particles by surface energy and formation of bigger particles most probably by coalescence and attachment of smaller particle.

4. Conclusions

Overall, the co-existence of Sr$^{2+}$ substituted HA and Sr(ACP) is described which questions the limit of Sr$^{2+}$ solubility into HA under biomimetic conditions. Moreover, at specific concentration, Sr$^{2+}$ can effectively stabilize ACP, similarly to another important stabilizing agent of amorphous precursors such as Mg$^{2+}$. These intriguing results suggest that heterogeneous Sr$^{2+}$ distribution in bone may be associated with regions of low structural order.

In general terms, by setting biomimetic conditions, this study provides physicochemical understanding of the Sr$^{2+}$ effect on HA mineralization and substantial insights into its impact on the bone tissue. Additionally, the presented model is comprehensive and can be adopted to describe the effect of other ions and molecules of biological interest in the bone mineralization pathway. Further investigations dedicated to the Sr$^{2+}$ impact on 3D collagen matrices should provide new input to understand the stability of amorphous Sr-Ca phosphate phase in bone environment.

Acknowledgments

Camila B. Tovani thanks Sào Paulo Research Foundation (FAPESP- grants 2014/24249-0 and 2017/24827-2) for the scholarships. Ana P. Ramos thanks FAPESP (grant 2017/08892-9) for financial support. Nadine Nassif thanks Fondation College de France and Fondation EDF for financial support. The authors also acknowledge Dr. Jean-Marc Krafft from LRS (SU) for assistance with Raman experiments, Laurence Bonnet-Lericque for insightful discussions about Sr-based medicine and Dr. Cynthia Maria de Campos Prado Manso for reviewing the text.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jactbio.2019.05.036.

References

Fig. 7. EELS spectra (100–700 eV) extracted at the surface and an inner part of an amorphous particle with crystalline apatitic domains found in the 25Sr$^{2+}$ sample after one day of reaction. The image is composed by the intensity of the P-L (red), the C-K (blue), and the Ca-L (green) edges.

