Benoît Perthame 
email: benoit.perthame@sorbonne-universite.fr
  
Reaction-diffusion systems with initial data of low regularity El-Haj LAAMRI *

Keywords: 2010 Mathematics Subject Classification. 35K10, 35K40, 35K57 reaction-diffusion system, global existence, super-linear growth, L 2 estimate, semi-linear parabolic equations, nonlinear diffusion, quadratic systems, Lotka-Volterra, chemical kinetics

Models issued from ecology, chemical reactions and several other application fields lead to semilinear parabolic equations with super-linear growth. Even if, in general, blow-up can occur, these models share the property that mass control is essential. In many circumstances, it is known that this L 1 control is enough to prove the global existence of weak solutions. The theory is based on basic estimates initiated by M. Pierre and collaborators, who have introduced methods to prove L 2 a priori estimates for the solution.

Here, we establish such a key estimate with initial data in L 1 while the usual theory uses L 2 . This allows us to greatly simplify the proof of some results. We also establish new existence results of semilinearity which are super-quadratic as they occur in complex chemical reactions. Our method can be extended to semi-linear porous medium equations.

Introduction

Ecology with Lotka-Volterra systems, chemistry with reaction-rate equations, multi-species diffusion of molecules and many other scientific fields lead to reaction-diffusion systems characterized by different diffusion coefficients. We consider such systems, set in a smooth domain Ω of R N , under the form

   ∂ ∂t u i (t, x) -d i ∆u i = f i (u 1 , ...u m ),
x ∈ Ω, t ≥ 0, i = 1, ..., m, ∂ ∂ν u i = 0 on ∂Ω.

Even though they are standard, the mathematical understanding of these parabolic systems is still very limited. There are two major obstructions to the construction of weak solutions. Firstly, the right hand sides f i often has quadratic, and possibly faster, growth for large values of the u i 's. A typical example, for three species is for {i, j, k} = {1, 2, 3} (see section 1 for precisions)

f i = u α j u β k -u γ i
Secondly, when the diffusion coefficients d i are very different, there is no maximum principle, and thus a priori estimates are not available besides L 1 control. To circumvent these difficulties, a major L 1 theory has been elaborated, which can be roughly summarized as follows: if an L 1 bound can be proved for the f i 's, then the existence of a weak solution can be proved, see [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF][START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF][START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]. Such an L 1 bound can itself be derived thanks to general fundamental lemmas which were initiated by Pierre and Schmitt [START_REF] Pierre | Blow-up in Reaction-Diffusion Systems with Dissipation of Mass[END_REF][START_REF] Pierre | Blow-up in reaction-diffusion systems with dissipation of mass[END_REF]. The most elaborate version is the L 2 lemma of Pierre [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] which we recall below.

Our main contribution is to construct an existence theory based on the following L 1 ∩ H -1 lemma, which is typically applied to combinations of equations in the above system. Namely, consider a constant B ∈ [0, ∞), smooth functions U, F : [0, +∞) × Ω → R + and V : [0, +∞) × Ω → R + such that Ω ∆ x V (t, x)dx = 0, and satisfying the relations

         ∂ ∂t U (t, x) -∆ x V = B -F (t, x), t ≥ 0, x ∈ Ω ⊂ R N , ∂U ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, U (t = 0) = U 0 ≥ 0 in Ω. (R)
Then, we have Lemma 1 (First key estimate with L 1 data) With the notations above, assume F ≥ 0, U ≥ 0, U 0 ∈ L 1 (Ω) + ∩ H -1 (Ω) and Ω ∆ x V (t, x)dx = 0. Then, there exists a constant C > 0 depending only on Ω, such that

T 0 Ω U V ≤ K(T ) + 1 2 U 0 2 H -1 (Ω) where K = T 0 C F (t) + V (t) B|Ω|t + Ω U 0 dt. (1) 
The proof of this lemma, and of a more precise version, is given in Appendix A, and is reminiscent of the lifting method introduced in [START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis[END_REF] for the Cahn-Hilliard equation. Several variants can be derived, for instance in dimension N ≤ 3, a variant allows us to relax the assumption on the sign of F , see Appendix B. Also, Lemma 1 will be used for the porous media equation with a little more work. This result can be compared with the L 2 version of Pierre [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] (we indicate here a simple variant).

Lemma 2 (Pierre's L 2 lemma) Assume V = AU with A(t, x) ≥ 0 and bounded i.e (0 < a ≤ A(t, x) ≤ b < ∞), U ≥ 0, U 0 ∈ L 2 (Ω) and (R) holds, then

a T 0 Ω U 2 ≤ T 0 A(t, x)dt L ∞ (Ω) Ω (U 0 ) 2 . ( 2 
)
For the ease of the reader, we reproduce the proof in Appendix C. This a priori L 2 estimate (2) was stated in [START_REF] Pierre | Blow-up in Reaction-Diffusion Systems with Dissipation of Mass[END_REF][START_REF] Pierre | Blow-up in reaction-diffusion systems with dissipation of mass[END_REF] and then widely exploited, see for example [START_REF] Desvillettes | About Global Existence for Quadratic Systems of Reaction-Diffusion[END_REF][START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF][START_REF] Bendahmane | Conservative cross diffusions and pattern formation through relaxation[END_REF][START_REF] Canizo | Improved duality estimates and applications to reactiondiffusion equations[END_REF][START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] and the references therein. Moreover, this estimate has a natural extension to the case where the diffusion operators are degenerate of porous media type, i.e., ∆(u m i i ) where m i > 1, see [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]Theorem 2.7].

Unfortunately, Estimate (2) heavily depends on the L 2 (Ω)-norm of the initial data, and does not hold any longer when the initial data are merely in L 1 (Ω). However, the space L 1 (Ω) is a natural functional setting for the systems at hand, as shown by the a priori L 1 (Ω)-uniform estimates (3) and (5) (see section 1 below).

The paper is composed of four sections and four appendices. In section 1, we expose in detail the type of nonlinearities f i 's which have usually been treated so far in the literature, and we present the state of the art about existence theory. Section 2 is devoted to show how Lemma 1 can be used to prove new results, namely, to extend the range of possible nonlinearities f i , or to lower the required regularity on the initial data. Furthermore, our approach simplifies the existing proofs known for L 1 initial data. The case of porous media type systems is treated in section 3 thanks to an application of Lemma 1. Lemma 1 is proved in appendix A and it is complemented in appendix B with the case where the right hand side F belongs to L 1 with no sign condition. Lemma 2 is proved in appendix C while appendix D is devoted to the case of the porous media system.

We have tried to write the paper in an almost self-contained form, moreover we give precise references for all the points that are not detailed in the work.

Assumptions, overview and two motivating examples

Throughout this paper, Ω ⊂ R N is open bounded with "good enough" boundary, and we denote Q := (0, +∞) × Ω, Q T := (0, T ) × Ω, Σ := (0, +∞) × ∂Ω, Σ T := (0, T ) × ∂Ω and, for p ∈ [1, +∞)

u(t, .) L p (Ω) = Ω |u(t, x)| p dx 1/p , u L p (Q T ) = T 0 Ω |u(t, x)| p dtdx 1/p .

Assumptions

Let us consider a general m × m reaction-diffusion system

           ∀i = 1, ..., m ∂u i ∂t -d i ∆u i = f i (u 1 , u 2 , ..., u m ) in Q T , ∂u i ∂ν = 0 on Σ T , u i (0, •) = u 0 i (.) ≥ 0 in Ω (S)
where for all i = 1,

• • • , m, d i > 0 and f i : [0, +∞) m → R is locally Lipschitz continuous.
Moreover, we assume that the nonlinearities satisfy :

(P) : for all i = 1, • • • , m, f i is quasi-positive i.e ∀r = (r 1 , r 2 , • • • , r m ) ∈ [0, +∞) m , f i (r 1 •, r i-1 , 0, r i+1 , ..., r d ) ≥ 0. (M) : there exists (a 1 , • • • , a m ) ∈ (0, +∞) m such that ∀r ∈ [0, +∞) m , 1≤i≤m a i f i (r) ≤ 0.
Remark 3 Most of our results can be extended to:

(M') ∀r ∈ [0, +∞[ m , 1≤i≤m a i f i (r) ≤ C[1 + 1≤i≤m r i ],
or to the more general situation when the nonlinearities f i depend also on t and x:

(M") ∀(t, x) ∈ Q and ∀r ∈ [0, +∞[ m , 1≤i≤m a i f i (t, x, r) ≤ H(t, x) + C 1≤i≤m r i where H ∈ L 1 (Q).
Properties (P) and (M) (or (M')) appear naturally in applications. Indeed, evolution reactiondiffusion systems are mathematical models for evolution phenomena undergoing at the same time spatial diffusion and (bio-)chemical type of reactions. The unknown functions are generally densities, concentrations, temperatures so that their nonnegativity is required. Moreover, often a control of the total mass, sometimes even preservation of the total mass, is naturally guaranteed by the model. Interest has increased recently for these models in particular for applications in biology, ecology and population dynamics. We refer to [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF]Section 2] for examples of reaction-diffusion systems with properties (P) and (M) or (M').

Overview

Many mathematical results are known about the global weak solutions to System (S) and we recall some of them and refer to [START_REF] Quittner | Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States[END_REF] for classical solutions.

First of all, let us make precise what we mean by solution to (S) on Q T = (0, T ) × Ω.

By classical solution to (S), we mean that, at least

(i) u = (u 1 , • • • , u m ) ∈ C([0, T ); L 1 (Ω) m ) ∩ L ∞ ([0, τ ] × Ω) m , ∀τ ∈ (0, T ) ; (ii) ∀k, ℓ = 1 . . . N , ∀p ∈ (1, +∞) ∂ t u i , ∂ x k u i , ∂ x k x ℓ u i ∈ L p (Q T ) i = 1, • • • , m ;
(iii) equations in (S) are satisfied a.e (almost everywhere).

By weak solution to (S) on Q T , we essentially mean solution in the sense of distributions or, equivalently here, solution in the sense of Duhamel's formula with the corresponding semigroups. More precisely, for 1

≤ i ≤ m, f i (u) ∈ L 1 (Q T ) and u i (t, .) = S d i (t)u 0 i (.) + t 0 S d 1 (t -s)f i (u(s, .)) ds
where S d i (.) is the semigroup generated in L 1 (Ω) by -d i ∆ with homogeneous Neumann boundary condition.

For initial data u 0 ∈ (L ∞ (Ω)) m , the local Lipschitz continuity of the nonlinearities implies the existence of a local classical solution to (S) on a maximal interval [0, T max ). Moreover, the initial data are nonnegative, so the quasi-positivity (P) ensures that the solution stays nonnegative as long as it exists, see [START_REF] Quittner | Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States[END_REF]. The assumption (M) gives an upper bound on the total mass of the system i.e for all t ∈ (0, T max )

m i=1 Ω a i u i (t, x) dx ≤ m i=1 Ω a i u 0 i (x) dx. (3) 
In fact, multiplying each i-th equation by a i and adding the m equations to obtain

m i=1 a i ∂ t u i - m i=1 a i d i ∆u i = m i=1 a i f i ≤ 0. ( 4 
)
By integrating (4) on (0, t)×Ω and taking into account the boundary conditions

Ω ∆u i = ∂Ω ∂u i ∂ν = 0
and (M), we obtain [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II[END_REF]. In other words, the total mass of m components is preserved. Together with the nonnegativity of u i , estimate (3) implies that ∀t ∈ (0, T max ) , u i (t, .)

L 1 (Ω) ≤ 1 a i m j=1 a j u 0 j L 1 (Ω) . (5) 
So the u i (t, .) remain bounded in L 1 (Ω) uniformly in time as long as solution exists.

Let us emphasize that uniform L ∞ -bounds, rather than L 1 -bounds, would provide global existence in time of classical solutions, by the standard theory for reaction-diffusion systems. The point here is that bounds are a priori only in L 1 and one cannot apply the L ∞ -approach (see [START_REF] Quittner | Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States[END_REF]) even if the initial data are regular except in the restrictive case where

d 1 = • • • = d m .
However the situation is quite more complicated if the diffusion coefficients are different from each other. Some additional assumptions on the structure of the source terms are needed for global existence of classical solutions. This question has been widely studied. For some recent results, see e.g [START_REF] Laamri | Global existence of classical solutions for a class of reaction-diffusion systems[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF][START_REF] Goudon | Regularity Analysis for Systems of Reaction-Diffusion Equations[END_REF][START_REF] Pierre | Dissipative reaction diffusion systems with quadratic growth[END_REF][START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion: skewsymmetric case[END_REF][START_REF] Caputo | Solutions of the 4-species quadratic reaction-diffusion system are bounded and C ∞ -smooth, in any space dimension[END_REF][START_REF] Ph | Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth[END_REF][START_REF] Fellner | Global classical solutions to quadratic systems with mass control in arbitrary dimensions[END_REF]. Concerning the results established before 2010, we refer the intrested reader to the exhaustive survey [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] for a general presentation of the problem, further references, and many deep comments on the mathematical difficulties raised by such systems. In fact, the solutions may blow up in L ∞ (Ω) in finite time as proved in [START_REF] Pierre | Blow-up in Reaction-Diffusion Systems with Dissipation of Mass[END_REF][START_REF] Pierre | Blow-up in reaction-diffusion systems with dissipation of mass[END_REF] where explicit finite time T * blow up is given. More precisely, Pierre and Schmitt exhibited a system with two species fulfilling (P) and (M) with d 1 = d 2 and strictly superquadratic polynomial nonlinearities f i such that T * < +∞ and

lim tրT * u 1 (t, .) L ∞ (Ω) = lim tրT * u 2 (t, .) L ∞ (Ω) = +∞.
Thus, even in the semi-linear case it is necessary to deal with weak solutions if one expects global existence for more general nonlinearities and initial data of low regularity.

It is worth to pointing out that, while considerable effort has been devoted to the study of systems with initial data in L ∞ (Ω) or L 2 (Ω) and at most quadratic nonlinearities, relatively little is known in the case of systems with initial data in L 1 (Ω). We refer to [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF][START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] for linear diffusion, and [START_REF] Laamri | Existence globale pour des systèmes de réaction-diffusion dans L 1[END_REF][START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF][START_REF] Laamri | Stationary reaction-diffusion systems in L 1[END_REF][START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] for nonlinear diffusion.

Here, we just recall the following three theorems closely related to our present study.

• L 1 -Theorem: In order to give the precise statement, let us introduce the following approximation of System (S)

             i = 1, ..., m, ∂ t u n i -∆u n i = f n i (u n ) in Q = (0, +∞) × Ω, ∂u n i ∂ν (t, .) = 0 on Σ = (0, +∞) × ∂Ω, u n i (0, .) = u n i,0 ≥ 0 in Ω, (6) 
where u n i,0 := inf{u i,0 , n} and f n i :=

f i 1 + 1 n 1≤j≤m |f j | . For i = 1, • • • , m, u n i,0 ∈ L ∞ (Ω)
and converges to u i,0 in L 1 (Ω), f n i is locally Lipschitz continuous and satisfy (P) and (M). Moreover f n i L ∞ (Ω) ≤ n. Therefore, the approximate system (6) has a nonnegative classical global solution [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]).

u n = (u n 1 , • • • , u n m ) (see e.g
Theorem 4 (Pierre, [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF]) Besides (P)+(M), assume that the following a priori L 1 -estimate holds: there exists C(T ) independent of n such that ∀i = 1, ..., m, ∀T > 0,

Q T |f n i (u n 1 , • • • , u n m )| ≤ C(T ). (7) 
Then, as n → ∞, up to a subsequence, u n converges in L 1 (Q T ) for all T > 0 to some global weak solution u of (S) for all

(u 0,1 , • • • , u 0,m ) ∈ (L 1 (Ω) + ) m .
For a proof, see [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF]Theorem 5.9].

The two following theorems are more adequate for cases where the nonlinearities are at most quadratic or super-quadratic respectively.

• L 2 -Theorem with linear diffusion: Theorem 5 (Pierre, [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF]) Besides (P) and (M), assume that the f i are at most quadratic i.e theres exists C > 0 such that for all i = 1, • • • , m:

(QG) |f i (r)| ≤ C 1 + m j=1 r 2 j .
Then, there exists a global weak solution to (S) for all

u 0 = (u 0,1 , • • • , u 0,m ) ∈ (L 2 (Ω) + ) m .
For a proof, see [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF]Theorem 5.11].

• L 2 -Theorem with nonlinear diffusion: Consider the following m × m reaction-diffusion system

(N LDS)            ∀i = 1, ..., m ∂u i ∂t -d i ∆(u m i i ) = f i (u 1 , u 2 , ..., u m ) in Q T , ∂u i ∂ν = 0 on Σ T , u i (0, •) = u 0 i (.) ≥ 0 in Ω where for all i = 1, • • • , m, d i > 0, m i > 1 and f i : [0, +∞) m → R is locally Lipschitz continuous.
Theorem 6 (Laamri-Pierre, [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]) Besides (P) and (M), assume that the f i 's are at most superquadratic i.e theres exists C > 0 such that for all i = 1, • • • , m:

(SQG) |f i (r)| ≤ C 1 + m j=1 r m i +1-ε j .
Then, there exists a global weak solution to (N LDS) for all

u 0 = (u 0,1 , • • • , u 0,m ) ∈ (L 2 (Ω) + ) m .
For a proof, see [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]Theorem 2.7].

Motivating examples

Now, let us introduce two systems we are considering in this paper. In fact, these systems contain the major difficulties encountered in a large class of similar problems as regards global existence in time of solutions.

• First system: Let (α, β, γ) ∈ [1, +∞) 3 and the following reaction-diffusion system

(S αβγ )                              ∂u 1 ∂t (t, x) -d 1 ∆u 1 = α u γ 3 -u α 1 u β 2 in Q T , ∂u 2 ∂t (t, x) -d 2 ∆u 2 = β u γ 3 -u α 1 u β 2 in Q T , ∂u 3 ∂t (t, x) -d 3 ∆u 3 = γ -u γ 3 + u α 1 u β 2 in Q T , ∂u i ∂ν (t, x) = 0 on Σ T , u i (t = 0) = u 0 i ≥ 0 in Ω, i = 1, 2, 3.
If α, β and γ are positive integers, system (S αβγ ) is intended to describe for example the evolution of a reversible chemical reaction of type

αU 1 + βU 2 ⇋ γU 3
where u 1 , u 2 , u 3 stand for the density of U 1 , U 2 and U 3 respectively. Let us recall the known results about the global existence of solutions to system (S αβγ ) ; for more details see [START_REF] Laamri | Global existence of classical solutions for a class of reaction-diffusion systems[END_REF] and the references therein. In the case where the diffusion coefficients are different from each other, global existence is more complicated (it obviously holds if d 1 = d 2 = d 3 ). It has been studied by several authors in the following cases. First case α = β = γ = 1. In this case, global existence of classical solutions has been obtained by Rothe [START_REF] Rothe | Global Solutions of Reaction-Diffusion Systems[END_REF] for dimension N ≤ 5. Later, it has first been proved by Martin-Pierre [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] for all dimensions N and then by Morgan [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF]. Global existence of weak solutions has been proved by Laamri [START_REF] Laamri | Existence globale pour des systèmes de réaction-diffusion dans L 1[END_REF] for initial data only in L 1 (Ω). Second case γ = 1 regardless of α and β. In this case, global existence of classical solutions has been obtained by Feng [START_REF] Feng | Coupled system of reaction-diffusion equations and Applications in carrier facilitated diffusion[END_REF] in all dimensions N and more general boundary conditions.

Third case α+ β < γ, or when 1 < γ < N + 6 N + 2 regardless of α and β. In these cases, global existence of classical solutions was established by the first author in [START_REF] Laamri | Global existence of classical solutions for a class of reaction-diffusion systems[END_REF]. Up to our knowledge, in the case α + β ≥ γ > 1, global existence of classical solutions remain an open question when the diffusivities d i are away from each other. Exponential decay towards equilibrium has been studied by Fellner-Laamri [START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF].

Fourth case α = β = 1 or γ ≤ 2. In this case, Pierre [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] has proved global existence of weak solutions for initial data in L 2 (Ω).

• Second system: Let us consider the following system naturally arising in chemical kinetics when modeling the following reversible reaction

αU 1 + βU 3 ⇋ γU 2 + δU 4 (S αβγδ )                                  ∂u 1 ∂t (t, x) -d 1 ∆u 1 = α u γ 2 u δ 4 -u α 1 u β 3 in Q T , ∂u 2 ∂t (t, x) -d 2 ∆u 2 = β u α 1 u β 3 -u γ 2 u δ 4 in Q T , ∂u 3 ∂t (t, x) -d 3 ∆u 3 = γ u γ 2 u δ 4 -u α 1 u β 3 in Q T , ∂u 4 ∂t (t, x) -d 4 ∆u 4 = δ u α 1 u β 3 -u γ 2 u δ 4 in Q T , ∂u i ∂ν (t, x) = 0 on Σ T , u i (t = 0) = u 0 i ≥ 0 in Ω, i = 1, 2, 3, 4.
Up to our best knowledge, global existence in the more restrictive case α = β = γ = δ = 1 has been studied by many authors. Concerning global existence of weak solution in all dimensions N , it has been first obtained in [START_REF] Desvillettes | About Global Existence for Quadratic Systems of Reaction-Diffusion[END_REF] for initial data u 0 i such u 0 i log u 0 i ∈ L 2 (Ω), then in [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey[END_REF] for initial data in L 2 (Ω) and later in [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] for initial data in L 1 (Ω); see also [START_REF] Pierre | Dissipative reaction diffusion systems with quadratic growth[END_REF][START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion: skewsymmetric case[END_REF] and the references therein. In small dimensions N ≤ 2, global existence of classical solutions is established in [START_REF] Goudon | Regularity Analysis for Systems of Reaction-Diffusion Equations[END_REF][START_REF] Canizo | Improved duality estimates and applications to reactiondiffusion equations[END_REF][START_REF] Pierre | Dissipative reaction diffusion systems with quadratic growth[END_REF]. Recent results in [START_REF] Caputo | Solutions of the 4-species quadratic reaction-diffusion system are bounded and C ∞ -smooth, in any space dimension[END_REF][START_REF] Ph | Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth[END_REF][START_REF] Fellner | Global classical solutions to quadratic systems with mass control in arbitrary dimensions[END_REF] have proved that global classical solutions exist in all dimensions.

Brief Summary

In this work, we exploit the "good" L 1 -framework provided by the two conditions (P) and (M) on the one hand and our key estimate with L 1 data (1) on the other hand. This allows us to extend known global existence results for initial data in L 2 (Ω) to cases where the initial data only belong to L 1 (Ω) ∩ H -1 (Ω). More precisely, the main results of this paper can be summarized in the following points. 1) We are able to prove global existence of weak solutions

• to system (S αβγ ) in the following cases (γ ≤ 2 and whatever are α, β) and (α = β = 1 and whatever is γ). See subsection 2.2 ;

• to system (S αβγδ ) in the following cases (γ = δ = 1 and whatever are α, β) and (α = β = 1 and whatever are γ, δ). See subsection 2.3.

2) We are also able to establish that Theorem 5 and Theorem 6 hold for initial data only in L 1 (Ω) ∩ H -1 (Ω). See subsection 2.1 and section refsec:porous respectively.

As we will see in more detail in the next sections, our demonstrations are based on two ingredients : our key estimate with L 1 data (1) and L 1 -Pierre's theorem, Theorem 4.

Before ending this section, note that we state our theorems for Neumann boundary conditions, but they can easily be adapted to Dirichlet boundary conditions. One must however be careful when choosing two different boundary conditions for u i and u j for i = j, see [START_REF] Bebernes | Finite-time blow up for semilinear reactive-diffusive systems[END_REF][START_REF] Martin | Influence of mixed boundary conditions in some reaction-diffusion systems[END_REF].

Applications of the key L 1 estimates

Our first estimate (1) can be exploited for establishing global existence -in-time of weak solutions to a large class of reaction-diffusion systems with initial data of low regularity.

A classical quadratic model with mass dissipation

As a first use of our estimate [START_REF] Abdellaoui | Some existence and regularity results for porous medium and fast equations with a gradient term[END_REF], see also Appendix A, we show here how one may prove global existence of weak solutions for quadratic nonlinearities and initial data of low regularity. In fact, this case is of interest due to its relevance in many applications such as chemical reactions or parabolic Lotka-Volterra type systems, see [START_REF] Perthame | Parabolic equations in biology: growth, reaction, movement and diffusion[END_REF]. We consider the following general system:

for t ≥ 0, x ∈ Ω ⊂ R N , 1 ≤ i ≤ m,          ∂ ∂t u i (t, x) -d i ∆u i = f i (u 1 , • • • , u m ), ∂u i ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, u i (t = 0) = u 0 i ≥ 0, (8) 
where d i > 0 and f i : R m → R is locally Lipschitz continuous. Besides (P) and (M), assume that the f i are at most quadratic i.e there exists C > 0 such that for all 1 ≤ i ≤ m

Theorem 7 Besides (P) and (M), assume that the f i are at most quadratic i.e there exists C > 0 such that for all

1 ≤ i ≤ m (QG) |f i (r)| ≤ C 1 + m j=1 r 2 j .
Then, for all

u 0 = (u 0 1 , • • • , u 0 m ) ∈ (L 1 (Ω) + ∩ H -1 (Ω)) m , System (8) 
has a non-negative weak solution which satisfies for all T > 0

u i ∈ L 2 (Q T ), u i ∈ L ∞ (0, T ); H -1 (Ω) .
Proof. We approximate the initial data and right hand side of System (8) with u n i,0 := inf{u i,0 , n} and f n i :=

f i 1 + 1 n 1≤j≤m |f j | and set            i = 1, ..., m, ∂ ∂t u n i -∆u n i = f n i (u n ) in Q = (0, +∞) × Ω, ∂u n i ∂ν (t, .) = 0 on Σ = (0, +∞) × ∂Ω, u n i (0, .) = u n i,0 ≥ 0 in Ω. ( 9 
) For i = 1, • • • , m, u n i,0 ∈ L ∞ (Ω)
and converges to u i,0 in L 1 (Ω), f n i is locally Lipschitz continuous and satisfies (P ) and (M ). Moreover f n i L ∞ (Ω) ≤ n. Therefore, the approximate system (9) has a nonnegative classical global solution (see e.g [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]).

Thanks to Theorem 4, it is sufficient to establish the following a priori L 1 -estimate ∀i = 1, ..., m, ∀T > 0,

Q T |f n i (u n 1 , • • • , u n m )| ≤ C(T ) (10) 
where C(T ) is independent of n.

Multiplying each i-th equation of System (9) by a i and adding the m equations to obtain

∂ ∂t [ m i=1 a i u n i ] - m i=1 a i d i ∆u n i = m i=1 a i f n i ≤ 0 (11) Applying Lemma 1 with U = m i=1 a i u n i , V = m i=1 d i a i u n i , B = 0 and F = - m i=1 a i f n i .
Then, there exists

C(T ) independent of n such that T 0 Ω [ m i=1 a i u n i ] [ m i=1 d i a i u n i ]dtdx ≤ C(T ).
Thanks to their non-negativity, the u n i 's are bounded in L 2 (Q T ) and then the

f n i (u n )'s are bounded in L 1 (Q T ) independently of n.

Remark 8

The above proof seems very simple. But it rests on the very powerful Theorem 4, whose proof is delicate. Moreover, Lemma 1 directly provides the L 1 -bound of the nonlinearities f i .

Remark 9 With a very fine analysis, Theorem 7 was proved by Pierre and Rolland in [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] under an extra assumption on the growth of the negative part of the reaction terms, namely:

(H) ∃ϕ ∈ C([0, +∞), [0, +∞)) such that for all r = (r 1 , • • • , r m ) ∈ [0, +∞) m and for all 1 ≤ i ≤ m [f i (r) -f i (π i (r))] -≤ ϕ(r i ) 1 + m i=1 r i where π i (r) := (r 1 , • • • , r i-1 , 0, r i+1 , • • • , r m ).
Also, it was noticed in [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] that the nonlinearities

f 2 (r 1 , r 2 ) = -f 1 (r 1 , r 2 ) = (r 2 1 + r 2 
2 ) sin(r 1 r 2 ) do not satisfy (H): for this example, global existence with general L 1 (Ω) initial data had remained so far an open question. But our theorem does apply to this example.

Example: Let us mention that our theorem 7 applies to the famous Lotka-Volterra's system where

f i (u) =   e i + m j=1 a ij u j   u i , 1 ≤ i ≤ m (12) 
in (S) and satisfying, with

A := (a ij ) ∈ M m (R), (e 1 , • • • , e m ) ∈] -∞, 0] m and Au, u ≤ 0 ∀(u 1 , • • • , u m ) ∈ [0, +∞) m .
Let us recall that this result was obtained in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion: skewsymmetric case[END_REF] under the strong condition

t A = -A and initial data in (L 2 (Ω) + ) m .

A 3 × 3 system with nonlinearities of general growth

To show how far our approach may be carried out, we now consider systems with nonlinearities of higher degree of the following form:

for t ≥ 0, x ∈ Ω ⊂ R N , (S αβγ )                          ∂ ∂t u 1 (t, x) -d 1 ∆u 1 = α(u γ 3 -u α 1 u β 2 ), ∂ ∂t u 2 (t, x) -d 2 ∆u 2 = β(u γ 3 -u α 1 u β 2 ), ∂ ∂t u 3 (t, x) -d 3 ∆u 3 = γ(u α 1 u β 2 -u γ 3 ), ∂u i ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, u i (t = 0) = u 0 i ≥ 0, 1 ≤ i ≤ 3 (13) For t ≥ 0, x ∈ Ω ⊂ R N , (S αβγδ )                                ∂ ∂t u 1 (t, x) -d 1 ∆u 1 = α(u γ 3 u δ 4 -u α 1 u β 2 ), ∂ ∂t u 2 (t, x) -d 2 ∆u 2 = β(u γ 3 u δ 4 -u α 1 u β 2 ), ∂ ∂t u 3 (t, x) -d 3 ∆u 3 = γ(u α 1 u β 2 -u γ 3 u δ 4 ), ∂ ∂t u 4 (t, x) -d 4 ∆u 4 = δ(u α 1 u β 2 -u γ 3 u δ 4 ), ∂u i ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, u i (t = 0) = u 0 i ≥ 0, 1 ≤ i ≤ 4. ( 14 
)
Theorem 12 Assume u 0 i ∈ L 1 (Ω) + ∩ H -1 (Ω), i = 1, 2, 3, 4. 1)
For γ = δ = 1 and whatever are α, β, System ( 14) has a non-negative weak solution which satisfies for all T > 0

u i ∈ L 2 (Q T ), u i ∈ L ∞ (0, T ); H -1 (Ω) , T 0 Ω u α 1 u β 2 dxdt ≤ C(T ).
2) For α = β = 1 and whatever are γ, δ, System ( 14) has a non-negative weak solution which satisfies for all T > 0

u i ∈ L 2 (Q T ), u i ∈ L ∞ (0, T ); H -1 (Ω) , T 0 Ω u γ 3 u δ 4 dxdt ≤ C(T ).
Proof. We proceed in the same way as the previous theorem. Using the conservation laws for γu 1 +αu 3 and δu 2 + βu 4 and Lemma 1, we obtain u i is bounded in L 2 (Q T ) independently of n.

Remark 13 As in Remark 11, we observe that • when γ = δ = 1, the specific form u α 1 u β 2 does not play any role, and any function f (u 1 , u 2 ) ≥ 0 satisfying f (0, u 2 ) = f (u 1 , 0) = 0 will work ;

• when α = β = 1, the specific form u γ 3 u δ 4 does not play any role, and any function g(u 3 , u 4 ) ≥ 0 satisfying g(0, u 4 ) = g(u 3 , 0) = 0 will work Remark 14 As we see, the hypothesis (QG) is not used in the proofs of these last two theorems. The a priori controls given by the conservation laws allow us to conclude without the assumption of quadratic growth.

A classical quadratic model with mass control

Next, we establish global existence in time to another class of reaction-diffusion systems, which includes, among others, Lotka-Volterra systems. Namely, we consider the following system: for

t ≥ 0, x ∈ Ω ⊂ R N , 1 ≤ i ≤ m,          ∂ ∂t u i (t, x) -d i ∆u i = f i (u 1 , • • • , u m ), ∂u i ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, u i (t = 0) = u 0 i ≥ 0, ( 15 
)
where for all 1 ≤ i ≤ m, d i > 0 and f i : R m → R is locally Lipschitz.

Theorem 15 (Quadratic growth) Assume the nonlinearities f i satisfy (P), (M') and (QG).

Then, for all 15) has a non-negative weak solution which satisfies for all T > 0

u 0 = (u 0 1 , • • • , u 0 m ) ∈ (L 1 (Ω) + ∩ H -1 (Ω)) m , System (
u i ∈ L 2 (Q T ), u i ∈ L ∞ (0, T ); H -1 (Ω) .
Comment: As we shall see, the crux is that mass control prevents the blow-up which may otherwise occur, for example, when the right-hand side has quadratic growth.

Proof. For the simplicity of the presentation, we consider the truncated system as before, but we drop the indexation by n.

We first prove the mass control. Again multiplying each i-th equation by a i and adding the m equations gives, by using (M'):

∂ ∂t m i=1 a i u i -∆ m i=1 a i d i u i ≤ C 0 m i=1 a i + m i=1 a i u i . ( 16 
)
Integrating ( 16) on Ω to obtain, with

B = C 0 m i=1 a i , d dt Ω m i=1 a i u i (t) ≤ B|Ω| + C 0 Ω m i=1 a i u i (t) (17) 
Let T > 0. By integrating the previous Gronwall inequality [START_REF] Laamri | Global existence of classical solutions for a class of reaction-diffusion systems[END_REF], we obtain, thanks to non-negativity, for all t ∈ [0, T ]

1≤i≤m a i u n i (t) L 1 (Ω) ≤ e C 0 T   1≤i≤m a i u 0 i L 1 (Ω) + B|Ω|T   .
The next step is to prove the quadratic estimate. We define

U = e -C 0 t m i=1 a i u i , V = e -C 0 t m i=1 a i d i u i .
From equation ( 16), we compute

∂ ∂t U -∆V = B -F, with F ≥ 0.
Therefore, we can apply Lemma 1 and conclude a quadratic estimate (notice that T 0 F dt is controlled thanks to the mass control above)

T 0 Ω U V ≤ K(T ) + U 0 H -1
from which we immediately deduce that the u i 's are bounded in L 2 (Q T ). Thus, the f i (u)'s are bounded in L 1 (Q T ) according the assumption (QG). Therefore, we can apply Theorem 4.

System with Porous Media diffusion

We continue our gallery of applications of Lemma 1 with an example based on the porous medium equation. Because most of the literature about porous media uses Dirichlet boundary condition, we also do so. Consider the following system: for t ≥ 0,

x ∈ Ω ⊂ R N , 1 ≤ i ≤ m,            ∂ ∂t u i (t, x) -d i ∆u m i i = f i (u 1 , • • • , u m ), u i (t, x) = 0 on (0, +∞) × ∂Ω, u i (t = 0) = u 0 i ≥ 0, (18) 
where

d i > 0, m i > 1 and f i : R m → R is locally Lipschitz-continuous.
Moreover, we assume that the nonlinearities f i satisfy: (SQG): there exists C > 0 and ε > 0 such that

∀1 ≤ i ≤ m ∀r = (r 1 , • • • , r m ) ∈ [0, +∞) m , |f i (r)| ≤ C 1 + m j=1 r m j +1-ε j .
Remark 16 As is mentioned in [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF], the main point of the "-ε" in the above assumption is that it makes the nonlinearities f n i (u n ) not only bounded in L 1 (Q T ), but uniformly integrable. This is the main tool to pass to limit in the reactive terms.

We now define what we mean by solution to our system [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF].

Definition 17 Given u i,0 ∈ L 1 (Ω) + for i = 1, • • • , m. We say that u = (u 1 , • • • , u m ) : (0, +∞) × Ω → (0, +∞) m is a global weak solution to system (18) if for all i = 1, • • • , m        for all T > 0, u i ∈ C([0, T ); L 1 (Ω)), u m i i ∈ L 1 (0, T ; W 1,1 0 (Ω)), f i (u) ∈ L 1 (Q T ) and ∀ψ ∈ C T , - Ω ψ(0)u 0 i - Q T u i ∂ t ψ + u m i i ∆ψ = Q T ψ f i , (19) 
where

C T := {ψ : [0, T ] × Ω → R ; ψ, ∂ t ψ, ∂ 2 x i x j ψ are continuous, ψ = 0 on Σ T and ψ(T ) = 0}. ( 20 
)
The definition 17 corresponds to the notion of very weak solution in Definition 6.2 of [START_REF] Vazquez | The porous medium equation Mathematical Theory[END_REF].

Theorem 18 Assume that the nonlinearities f i satisfy (P), (M) and (SQG). Then, for all

u 0 = (u 0 1 , • • • , u 0 m ) ∈ (L 1 (Ω) + ∩ H -1 (Ω)) m , System (18) 
has a non-negative weak solution which satisfies for all T > 0

u i ∈ L m i +1 (Q T ), u i ∈ L ∞ (0, T ); H -1 0 (Ω) .
Preliminary remark about Theorem 18 and its proof: Let us emphasize that, under the assumptions (P), (M) and (SQG), the existence of global weak solutions to System (18) subject to homogeneous Dirichlet boundary conditions with initial data in L 2 (Ω) was recently established by the first author and Pierre, see [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]Corollary 2.8]). The proof is based on a dimension-independent L m i +1 (Q T )-estimate which heavily depends on the L 2 -norm of the initial data (see [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]Theorem 2.7]), and then it is not valid for initial data in L 1 (Ω). But, we are able to establish the same uniform bound in L m i +1 (Q T ) (see [START_REF] Pierre | Blow-up in Reaction-Diffusion Systems with Dissipation of Mass[END_REF]) with initial data only in L 1 (Ω) + ∩ H -1 (Ω) thanks to the estimate (1) of Lemma 1. This is a new result in this nonlinear degenerate setting and interesting for itself. Nevertheless, the hypothesis (SQG) is crucial to pass to the limit. Once the uniform estimate is established, the demonstration by Laamri-Pierre in [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF] applies per se. But, for the sake of completeness and for the reader's convenience, we will give below the main steps of the proof.

Proof. We divide the proof in three steps.

• First step: Let us consider the following approximation of System ( 18)

             i = 1, ..., m, ∂u n i ∂t -d i ∆((u n i ) m i ) = f n i (u n ) in Q = (0, +∞) × Ω, u n i = 0 on Σ = (0, +∞) × ∂Ω, u n i (0, .) = u n i,0 ≥ 0 in Ω, (21) 
where u n i,0 := inf{u i,0 , n} and f n i :=

f i 1 + 1 n 1≤j≤m |f j | . For i = 1, • • • , m, u n i,0 ∈ L ∞ (Ω)
and converges to u i,0 in L 1 (Ω), f n i is locally Lipchitz continuous and satisfies (P), (M) and (SQG). Moreover f n i L ∞ (Ω) ≤ n. Therefore, the approximate system (21) has a non-negative bounded global solution (see e.g [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF]Lemma 2.3]). Moreover, this solution is regular in the sense that for all T > 0,

u n i ∈ L ∞ (Q T ) ∩ C([0, T ]; L 1 (Ω)), (u n i ) m i ∈ L 2 (0, T ; H 1 (Ω))
and the equations in ( 21) are satified a.e. Consequently, we have for i

= 1, • • • , m ∀ψ ∈ C T , - Ω ψ(0)u n i,0 - Q T u n i ∂ t ψ + (u n i ) m i ∆ψ = Q T ψ f n i . ( 22 
)
Our goal is to pass to the limit as n → +∞ in [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF].

• Second step : First we will establish a priori estimates and then we prove that the f n i (u n ) are uniformly bounded in L 1 (Q T ). For this, we multiply each i-th equation by a i and adding the m equations to obtain ∂ ∂t

m i=1 a i u n i -∆ m i=1 d i a i (u n i ) m i = m i=1 a i f n i (u n ). ( 23 
)
Thanks to assumption (M) and the definition of f n i , we obtain

∂ ∂t U n -∆V n ≤ 0 in Q T , V n = 0 on Σ T . ( 24 
)
where we set

U n := m i=1 a i u n i and V n := m i=1 d i a i (u n i ) m i .
In order to apply Lemma 1, we first prove that < V n (t) > is bounded.

To this end, introduce θ solution of

-∆θ = 1 in Ω, θ = 0 in ∂Ω. (25) 
Now, integrating [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF] in time leads to

U n (t, x) -∆ t 0 V n (s, x)ds ≤ U n (0, x) ≤ U (0, x). (26) 
Multilpying ( 26) by θ and integrating over Ω, to obtain

Ω θU n (t, x)dx + Ω θ -∆[ t 0 V n (s, x)ds] ≤ Ω θU (0, x)dx ≤ θ L ∞ (Ω) U 0 L 1 (Ω) (27) 
After integration by parts, we obtain

Ω t 0 V n (s, x)dsdx = Ω t 0 V n (s, x)(-∆θ)dsdx ≤ θ L ∞ (Ω) U 0 L 1 (Ω) (28) 
which gives the desired estimate. Thus, according to Lemma 1, there exists C(T ) > 0 independent of n such that

T 0 Ω m i=1 a i u n i m i=1 a i d i (u n i ) m i dtdx ≤ C(T ).
Thanks to the non-negativity, there exists C > 0 independent of n such that for all i = 1,

• • • m, u n i L m i +1 (Q T ) ≤ C. (29) 
Together with the assumption (SQG), the f n i (u n ) are uniformly bounded in L 1 (Q T ), more precisely, there exists a constant C > 0 independent of n such that

f n i (u n ) L 1 (Q T ) ≤ C. (30) 
In fact, {f n i (u n )} is not only bounded in L 1 (Q T ) but is also uniformly integrable on Q T . Indeed, for all measurable set E ⊂ Q T with Lebesgue measure denoted by |E|, we have (recall that

|f n i | ≤ |f i |) E |f n i (u n )| ≤ C |E| + E (u n i ) m i +1-ε ≤ C   |E| + Q T (u n i ) m i +1 m i +1-ε m i +1 |E| ε m i +1   .
Thanks to ( 29), E i |f n i (u n )| may be made uniformly small by taking |E| small enough. This is exactly the uniform integrability of the f n i (u n ).

• Third step: Passage to the limit as n → +∞ in [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] First, we apply the following compactness lemma wich allows us to extract a converging subsequence from the u n i .

Lemma 19 (Baras,[START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire du dt + Au ∋ f[END_REF]) Let (w 0 , H) ∈ L 1 (Ω) × L 1 (Q T ) and let w be the solution of w t -d∆(w q ) = H in Q T , w = 0 in Σ T , w(0, .) = w 0 .

The mapping (w 0 , H) → w is compact from

L 1 (Ω) × L 1 (Q T ) to L 1 (Q T ) for all q > (N -2) + N .
Since the f n i (u n ) is uniformly bounded in L 1 (Q T ), according to Lemma 19, {u n i } is relatively compact in L 1 (Q T ). Therefore, up to a subsequence, {u n i } converges in L 1 (Q T ) and a.e to some limit

u i ∈ L 1 (Q T ). Moreover, f n i (u n
) is uniformly integrable and converges a.e f i (u). Then, Vitali's theorem implies that

f i (u) ∈ L 1 (Q T ) and f n i (u n ) converges in L 1 (Q T ) to f i (u)
. Second, thanks to the L m i +1 -estimate ( 29), there exists a subsequence which converges to u i in L p (Q T ) for all p < m i + 1. Now we can pass to the limit as n → +∞ in the weak formulation [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF] to obtain

- Ω ψ(0)u 0 i - Q T u i ∂ t ψ + u m i i ∆ψ = Q T ψ f i , (31) 
for all ψ ∈ C T , recall that [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF] in the sense of definition 17, it remains to establish that for all T > 0,

C T := {ψ : [0, T ] × Ω → R ; ψ, ∂ t ψ, ∂ 2 x i x j ψ are continuous, ψ = 0 on Σ T and ψ(T ) = 0}. To prove that u = (u 1 , • • • , u n ) is solution to System (
u i ∈ C([0, T ); L 1 (Ω)) and u m i i ∈ L 1 (0, T ; W 1,1 (Ω)) ; in fact, we will prove that u m i i ∈ L β (0, T ; W 1,β 0 (Ω)) for all β ∈ [1, 1 + 1 1 + m i N
).

Lemma 20 (Lukkari,[START_REF] Lukkari | The porous medium equation with measure data[END_REF]) Let (w 0 , H) ∈ L 1 (Ω) × L 1 (Q T ) and let w be the solution of

w t -d∆(w q ) = H in Q T , w = 0 in Σ T , w(0, .) = w 0 . (32) 
Then, there exists C > 0

Q T |w| qα ≤ C for 0 < α < 1 + 2 qN , (33) 
Q T |∇w q | β ≤ C for 1 ≤ β < 1 + 1 1 + qN , (34) 
∂w ∂t L 1 (0,T ;W -1,1 (Ω) ≤ C. ( 35 
)
where

C = C T, α, β, q, w 0 L 1 (Ω) , H L 1 (Q T ) .
For a proof, see Lukkari [START_REF] Lukkari | The porous medium equation with measure data[END_REF]Lemma 4.7]. However, in this reference, the proof is given with zero initial data, but with right-hand side a bounded measure. We may use the measure δ t=0 ⊗ w 0 dx to include the case of initial data w 0 . We may also use the results in [1, Theorem 2.9]). Now let's come back to the proof of theorem. Let i ∈ {1, • • • , m}. According to the estimate (30), we apply the estimate (34) to i-th equation of [START_REF] Laamri | Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass[END_REF] 

to obtain ∇(u n i ) m i is bounded in the space L β (0, T ; W 1,β 0 (Ω)) for all β ∈ [1, 1 + 1 1 + m i N
). These spaces being reflexive (for β > 1), it follows that ∇(u i ) m i also belongs to these same spaces.

According again [START_REF] Pierre | Blow-up in reaction-diffusion systems with dissipation of mass[END_REF], we deduce from the estimate (34) that

∂u i ∂t ∈ L 1 (0, T ; W -1,1 (Ω)) which implies in particular that u i ∈ C([0, T ]; L 1 (Ω)).
Remark 21 The paper by Gess, Sauer and Tadmor, [START_REF] Gess | Optimal regularity in time and space for the porous medium equation[END_REF], provides another route for the compactness argument which can be applied directly to the u m i . It states, among other results, that solution of equation [START_REF] Rothe | Global Solutions of Reaction-Diffusion Systems[END_REF] in the full space, with data in L 1 as in Lemma 20, satisfy w ∈ L q (0; T ); W s,q (R N ) , s = 2 q .

and a similar space-time regularity result in fractional Sobolev spaces.

A First key estimate with L 1 initial data

We prove the key Lemma 1 and, for the sake of completeness, we recall the statement. We define

F = 1 |Ω| Ω F (x)dx and, the H -1 (Ω) norm of F as F H -1 = ∇W L 2 , where W solves    ∆W = F -F , x ∈ Ω, ∂W ∂ν = 0 on ∂Ω.
Lemma 22 (First key estimate with L 1 data) Consider smooth functions F, U : [0, +∞) × Ω → R + and V : (0, +∞) × Ω → R such that Ω ∆ x V (t, x)dx = 0 and B a non-negative constant. Assume that U 0 = U (t = 0) ∈ L 1 (Ω) ∩ H -1 (Ω) and that the differential relation holds

   ∂ ∂t U (t, x) -∆ x V = B -F (t, x) ≤ 0, t ≥ 0, x ∈ Ω ⊂ R N , ∂U ∂ν (t, x) = 0 on (0, +∞) × ∂Ω. (36) 
Then, for some constant C depending on Ω, the inequality holds

1 2 U (T ) 2 H -1 + T 0 Ω U V ≤ K(T )+ 1 2 U 0 2 H -1 where K = T 0 C F (t) + V (t) B|Ω|t+ Ω U 0 dt. (37) 
Notice that, with our assumptions, F is controlled in L

1 (Q T ) because 0 ≤ U (T ) = U 0 + BT - T 0 F (s) ds.
Proof. The proof is reminiscent from the lifting method introduced in [START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis[END_REF]. We write, substracting its average to equation (R), ∂ t (U -U ) -∆V = F -F.

Then, we solve with Neumann Boundary Condition

-∆W = U -U , W = 0.
Therefore, we find

-∆ ∂ t W + V ≤ F (a constant),
and from elliptic theory, see [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I[END_REF][START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II[END_REF], we conclude that

∂ t W + V ≤ C F + V . (38) 
Finally, multiplying by U ,

Ω -∆W + U =U ∂ t W + Ω U V ≤ C F + V Ω U
and, because Ω ∂ t W = 0, this gives 1 2

d dt Ω |∇W (t)| 2 + Ω U V (t) ≤ C F + V B|Ω|t + Ω U 0 .
The result follows after time integration.

Comment : An immediate variant of Lemma 22 holds true with the Dirichlet boundary condition and its proof is even simpler because subtracting the averages is useless and the upper bound (38) can be found thanks to explicit super-solutions.

B A key estimate with L 1 source, no sign condition Lemma 22 can be adapted to the case when the right-hand side F does not have a sign. However, this loss of non-positivity is a major difficulty and this leads to the technical restriction N ≤ 3. Because elliptic regularity is involved, the situation is more complicated and it is not clear whether the restriction N ≤ 3 is only technical or due to deeper phenomena. As we will see, it naturally appears in the proof.

Again, for functions V, U, F : (0, +∞) × Ω → R such that (39)

Lemma 23 Assume N ≤ 3, V ≥ a U ≥ 0 for some a > 0, U 0 ∈ L 1 (Ω) + ∩ H -1 (Ω), and

Ω ∆ x V = 0.
Then, it holds

a T 0 Ω U 2 ≤ C T 0 [ F (t) 1 + V (t) ]dt 2 + U 0 2 H -1 (Ω) . (40) 
Proof. As in Appendix A, we first substract its average to equation (39) and find

∂ t (U -U ) -∆V = F -F .
Next, we solve with Neumann Boundary Condition

-∆W = U -U , W = 0.
Then, as in Appendix A, we find

-∆ ∂ t W + V = F -F ,
and from elliptic theory, [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I[END_REF][START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II[END_REF], since 1 - .

As a consequence, we arrive at the conclusion that

T 0 Ω AU 2 (t, x) ≤ T 0 A ∞ Ω (U 0 ) 2 1/2 T 0 Ω AU 2 1/2
.

Comment: In this proof, the L 2 bound arises the time derivative, while in Lemma 22 it stems from the Laplacian.

D A priori bound for the porous medium equation

For the semi-linear porous medium equation, we need a consequence of Lemma 22 that we establish here. With the notations of section 3 and for sake of simplicity, we assume a 1 = • • • = a m = 1 and

d 1 = • • • = d m = 1.
By summing the m equations, we obtain the problem

∂ ∂t i u i -∆ i u m i i = -F ∈ L 1 (Q T ),
where F := -

  t, x) -∆V = F ∈ L 1 , t ≥ 0, x ∈ Ω ⊂ R N , ∂U ∂ν (t, x) = 0 on (0, +∞) × ∂Ω, U (t = 0) = U 0 ≥ 0.

  2 N < 1 2 when N ≤ 3, Φ := ∂ t W + V, satisfies Φ 2 ≤ C F 1 + V . ∆W (t, x) ≤ U 0 ,

	Therefore, multiplying again by U ,								
	Because	∂ t W = 0, this gives									
	1 2 |∇W | We multiply by AU = ∂W d dt ∂t and find successively				
						AU 2 (t, x) -	∂W ∂t	∆W (t, x) ≤ AU U 0 ,
					Ω	AU 2 (t, x) +	1 2	d dt Ω	|∇W (t, x)| 2 ≤	Ω	AU U 0 ,
		0	T	Ω	AU 2 (t, x) +	1 2 Ω	|∇W (T, x)| 2 ≤	0	T	Ω	A(U 0 ) 2	0	T	Ω	AU 2	1/2

Ω [-∆W + U ] =U ∂ t W + U V = ΦU ≤ Φ(t) 2 U (t) 2 . 2 + a U 2 ≤ Φ(t) 2 U (t) 2 .

Therefore, we conclude after time integration.

C Proof of Pierre's L 2 Lemma

Integrating in time the equation (R) with V = AU ≥ 0, one finds, setting

W (t, x) = t 0 AU (s, x)ds, U (t, x) -Ω AU 2 (t, x) + Ω ∂∇W ∂t ∇W (t, x) ≤ Ω AU U 0 ,
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where (α, β, γ) ∈ [1, +∞[ 3 . Theorem 10 Assume u 0 i ∈ L 1 (Ω) + ∩ H -1 (Ω), i = 1, 2, 3. 1) For γ ≤ 2 and any α, β, System (13) has a non-negative weak solution which satisfies, for all T > 0,

2) For α = β = 1 and any γ, System (13) has a non-negative weak solution which satisfies, for all T > 0,

Proof. For the simplicity of the presentation, we consider the truncated system as before, but we drop the indexation by n. Let T > 0. Using the conservation laws for γu 1 + αu 3 and γu 2 + βu 3 and Lemma 1, we conclude that

First case γ ≤ 2. We integrate the first (or the second) equation to obtain

All the terms on the right-hand side are bounded, we conclude the L 1 -bound on u α 1 u β 2 . Second case α = β = 1. We integrate the third equation to obtain

All the terms on the right hand side being bounded, we conclude the L 1 -bound on u γ 3 .

In the two cases,

. Therefore, we conclude thanks to Theorem 4.

Remark 11 When γ ≤ 2, the specific form u α 1 u β 2 does not play any role, and any function f (u 1 , u 2 ) ≥ 0 satisfying f (0, u 2 ) = f (u 1 , 0) = 0 will work. In the same way, when α = β = 1, the specific form u γ 3 does not play any role, and any function g(u 3 ) ≥ 0 satisfying g(0) = 0 will work.

2.3

A 4 × 4 system with nonlinearities of general growth

In this subsection, let us consider the following system naturally arising in chemical kinetics when modeling the following reversible reaction αU 1 + βU 2 ⇋ γU 3 + δU 4 .