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The buttressed-ring hypothesis, supported by recent cryo-electron tomography

analysis of docked synaptic-like vesicles in neuroendocrine cells, postulates

that prefusion SNAREpins are stabilized and organized by Synaptotagmin

(Syt) ring-like oligomers. Here, we use a reconstituted single-vesicle fusion

analysis to test the prediction that destabilizing the Syt1 oligomers destabi-

lizes the clamp and results in spontaneous fusion in the absence of Ca2+.

Vesicles in which Syt oligomerization is compromised by a ring-destabilizing

mutation dock and diffuse freely on the bilayer until they fuse spontaneously,

similar to vesicles containing only v-SNAREs. In contrast, vesicles containing

wild-type Syt are immobile as soon as they attach to the bilayer and remain

frozen in place, up to at least 1 h until fusion is triggered by Ca2+.

Keywords: calcium; fusion clamp; single-vesicle analysis; SNARE

proteins; Synaptotagmin

In the accompanying paper [1], we report that exactly

six SNAREpins, symmetrically positioned in a circular

array, underlie each synaptic vesicle that is docked to

the plasma membrane as it remains clamped and

awaiting a Ca2+ ion signal to trigger its fusion. We

further find that the precise positioning of these half-

zippered SNARE complexes is determined by an

underlying ring of the calcium-sensor protein Synapto-

tagmin1 (Syt1), analogous to the in vitro ring-like oli-

gomers observed with purified Syt1 protein in the

presence of PIP2 or analogous compounds [2–4]. This
follows from the finding that the symmetrical organi-

zation of the fusion machinery under synaptic vesicles

is lost or prevented by an engineered point mutation

(F349A) in the polymerizing Syt1 C2B domain that

destabilizes the oligomers without affecting any other

known molecular properties [5].

As the Syt1 rings assembled on phospholipid sur-

faces are disassembled by Ca2+ [2,4], we hypothesized

that the assembly of a Syt ring provides the core

mechanism of this fusion clamp, and its disassembly

by Ca2+ enables synchronous vesicle release [2,4,6].

Indeed, expressing the ring-destabilizing F349A mutant

in neuroendocrine (PC12) cells dominantly and dra-

matically increases spontaneous release [5], suggesting

that Syt1 oligomers play a necessary role in providing

a reversible fusion clamp.

In this paper we provide complementary evidence,

using a biochemically-defined system involving only

SNAREs and Syt1. In doing so, we utilize a novel

Abbreviations
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diazol-4-yl); OG, Octylglucoside; PSM, pore-spanning bilayer membrane; SUV, small unilamellar vesicle; Syt, Synaptotagmin; TCEP, Tris(2-car-
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suspended bilayer design [7] in which bilayers span an

array of micro-fabricated pores (5 lm diameter) with

aqueous exposure on both sides, enabling them to be

observed in a parallel fashion [7,8]. We employ small

unilamellar vesicles (SUVs) to mimic synaptic vesicles.

These are added from one side of the suspended bilay-

ers (which serve to mimic the plasma membrane). We

then monitor the fate of the docked vesicles in real-

time, yielding statistically meaningful results with auto-

mated analysis [7,8].

We find that Syt1 alone provides a stable fusion

clamp that is efficiently reversed by Ca2+, and that

this clamp is prevented by a ring-destabilizing muta-

tion. This suggests that ring-like oligomers of Syt1 are

both necessary and in some cases may even be suffi-

cient for clamping and release.

Materials and methods

Materials

The following cDNA constructs, which have been previously

described [9–11], were used in this study: full-length VAMP2

(VAMP2-His6, residues: 1–116); full-length t-SNARE com-

plex (mouse His6-SNAP25B, residues: 1–206 and rat Syntax-

in1A, residues: 1–288), and Syt (rat Syt1-His6, residues:

57–421). The F349A mutant was created in the Syt1

background using the QuickChange mutagenesis kit (Agilent

Technologies, Santa Clara, CA, USA). Lipids, 1,2-dioleoyl-

snglycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3- (pho

spho-L-serine) (DOPS), 1,2-dipalmitoyl-sn-glycero-3-phos-

phoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NB

D-DOPE), phosphatidylinositol 4, 5-bisphosphate (PIP2)

were purchased from Avanti Polar Lipids (Alabaster, AL,

USA). ATTO647N-DOPE was purchased from ATTO-

TEC, GmbH (Siegen, Germany).

Protein purification

The SNARE and Syt1 proteins were expressed and purified

as described previously [9–11]. Briefly, the proteins were

expressed in Escherichia coli strain Rosetta2(DE3) (Nova-

gen, Darmstadt, Germany) and cells were lysed with a cell

disruptor (Avestin, Ottawa, CA, USA) in HEPES buffer

containing 25 mM HEPES, pH 7.4, 400 mM KCl, 4% Tri-

tionX-100, 10% glycerol, 0.5 mM Tris(2-carboxyethyl)phos-

phine hydrochloride (TCEP) and 1 mM phenylmethylsul

fonyl fluoride. Samples were clarified using a 45Ti rotor

(Beckman Coulter, Brea, CA, USA) at 140 000 g for

30 min and incubated with Ni-NTA agarose (Qiagen,

Valencia, CA, USA) for 4–16 h at 4 °C. The resin was sub-

sequently washed in the same buffer, except that Triton

X-100 was replaced with 1% Octylglucoside (OG) and

50 mM Imidazole was also added. For Syt1 protein, the

resin was resuspended in HEPES buffer containing 1% OG

supplemented with 10 lg�mL�1 DNaseI, 10 lg�mL�1 RNa-

seA, and 10 lL of benzonase (2000 units) and incubated at

room temperature for 1 h, followed by a quick rinse with

10 mL of high salt buffer (25 mM HEPES, 1 M KCl,

0.5 mM TCEP) to remove the nucleotide contamination.

After washing (three column volumes) the bound protein

was eluted in the same HEPES buffer containing 1% OG

and 300 mM Imidazole. The Syt1 protein was additionally

cleaned using Mono-S cation exchange chromatography.

The protein concentration was determined using a Bradford

Assay (BioRad, Hercules, CA, USA) with BSA as a stan-

dard and protein purity was verified using SDS/PAGE

analysis with Coomaisse stain.

Liposome reconstitution

Proteoliposomes containing t-SNAREs (preformed Syn-

taxin/SNAP25 complexes) or VAMP2 (� Syt1) were pre-

pared using rapid detergent (1% OG) dilution and

dialysis, followed by a discontinuous Nycodenz gradient

as previously described [9,10]. The lipid composition was

80 (mole)% POPC, 15% DOPS, 3% PIP2 and 2% NBD-

PE for t-SNARE liposome and 88% POPC, 10% PS and

2% ATTO647-PE for Syt1/VAMP2 liposomes. To achieve

the desired final protein density in the proteoliposomes,

we used an input protein: lipid ratio of 1 : 400 for t-

SNARE, 1 : 500 for VAMP2 and 1 : 250 for Syt1. This

was based on well-established parameters [12], namely that

the reconstitution efficiency for SNAREs and Syt1 is 50–
60% (densitometry analysis of the proteoliposomes) and

only 50–55% of the proteins are externally oriented (chy-

motrypsin protection analysis). Based on the densitometry

analysis of Coomaisse-stained SDS gels (Fig. S1), we esti-

mated that the outward-facing VAMP2 and Syt1 protein

densities were 13 � 2 and 28 � 4 copies per vesicle,

respectively (Fig. S1).

Single-vesicle fusion analysis

Single-vesicle fusion measurements were performed with

suspended lipid bilayers as described previously [7,8].

Briefly, a pore-spanning lipid bilayer was formed by burst-

ing t-SNARE-containing giant unilamellar vesicles (pre-

pared using the osmotic shock protocol described recently

[13]) onto plasma cleaned Si/SiO2 chips containing 5 lm
diameter holes spaced 5 lm apart in presence of 5 mM

MgCl2. Before each vesicle fusion assay, the homogeneity

and fluidity of the t-SNARE containing bilayers was con-

firmed using fluorescence recovery after photo-bleaching.

Consistent with a fluid bilayer, the average diffusion coeffi-

cient of the lipid was calculated to be 2.2 � 0.8 lm2�s�1

(Fig. S1). In some experiments, we also instead labeled the

t-SNAREs with Alexa-488 and confirmed protein mobility

as described previously [7].
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Typically, ~ 100 nM (final lipid concentration) v-SUVs

diluted in running buffer (25 mM HEPES, 140 mM KCl,

1 mM DTT) were introduced into the chamber and allowed

to interact with the t-SNARE bilayer for ~ 10 min. A laser

scanning confocal microscopy equipped with 647-nm diode

laser was used to track the docking, diffusion and fusion of

individual vesicles (Fig. 1). All experiments were performed

at 37 °C and images were acquired at 147 milliseconds

between frames. The images were then analyzed using a

custom-made FUSION ANALYZER Software [7] to automati-

cally detect and estimate the diffusional mobility of individ-

ual docked vesicles, to count the number of docked vesicles

that remained attached but unfused and the number that

had undergone fusion. The results are presented as a ‘sur-

vival curve’ which plots the fraction of vesicles that docked

on to the planar bilayer and remained unfused as a func-

tion of the time elapsed after docking (Fig. 1). Fusion was

attested by a burst and then a rapid decrease in fluores-

cence intensity as the fluorescent PE from the vesicle dif-

fuses away. After the initial 10 min interaction phase, the

chamber was washed (three-times) with running buffer to

remove free vesicles and then CaCl2 (1 mM final concentra-

tion) was added to enable Ca2+-triggered fusion of the

remaining docked vesicles. The number of fused (and the

remaining un-fused) vesicles was estimated after ~ 5 min.

Note: We observed some t-SNAREs aggregation at the

edge of the holes indicating interaction with the neighbor-

ing substrate. Similarly, some vesicles bind at the edge of

the holes and remain immobile. These are probably not

representative of vesicles bound to the free-floating mem-

brane. Hence, we excluded these vesicles and picked only

the centrally docked ones for analysis.

Single-vesicle docking analysis

For the docking analysis, ~ 100 nM (total lipid concentra-

tion) of SUVs diluted in running buffer (25 mM HEPES,

140 mM KCl, 1 mM DTT) were introduced into the cham-

ber and allowed to interact with the t-SNARE bilayer.

After a 10-min incubation, the bilayer was thoroughly

washed with running buffer (39 minimum) and the num-

ber of docked vesicles were counted. For an unbiased

particle count, we employed a custom-written algorithm

to count particles from top-left to bottom-right that

ensures every spot is counted only once [7,8]. To get an

accurate count of the docked vesicles, we used VAMP2

protein with mutations in the C-terminal half (L70D,

A74R, A81D and L84D; termed VAMP2-4X) that elimi-

nates fusion without impeding the docking process

[14,15].

Fig. 1. Overview of the single-vesicle docking and fusion analysis with a pore-spanning bilayer (A) VAMP2 (� Syt1)-containing SUVs are

added to the t-PSM from the top and monitored, using a confocal microscope from the bottom. (B) The docking, mobility and the fusion of

the SUVs with the t-PSM is tracked, using the fluorescence marker (ATTO647N-PE) included in the SUVs. A representative fluorescence

trace showing a behavior of a typical vesicle is shown. The time between docking and fusion (s) is measured for each docked vesicle and

the results for the whole population are presented as a survival curve (C). (D) To monitor the fate of substantial numbers of individual

vesicles from each experimental trial, the SUVs were allowed to interact with t-PSM for 10 min and critical parameters, including vesicle

docking, mobility of the docked vesicles and Ca2+-independent spontaneous fusion were acquired. The chamber was subsequently washed

with buffer and then Ca2+ (1 mM) was added from the top to record (~ 5 min) Ca2+-dependent fusion events.
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Results

The outline of the experimental approach is shown

in Fig. 1. SUVs are prepared with fluorescently

labeled lipid (2% ATTO647-PE) and typically con-

tain the v-SNARE VAMP2 with or without Syt1

(Fig. S1). The SUVs are added from the top of the

chamber and observed from below (Fig. 1B). When a

vesicle docks, it appears as a discrete puncta (taken

as time zero for each such vesicle). When it fuses,

the puncta is replaced by locally dispersed fluores-

cence that rapidly diffuses away (Fig. 1C). The vesi-

cle may or may not be mobile on the surface

between docking and fusion. We monitor large

ensembles of vesicles (~ 500 vesicles per condition) to

determine the percent remaining unfused (‘survival

analysis’) as a function of time elapsed after docking

and present the results as a survival curve (Fig. 1D)

which provides a measure of the kinetics of fusion

following docking.

To simplify the experimental approach and bypass

the requirement of SNARE-assembling chaperones

(Munc18 and Munc13 [16–18]), we employed pre-

formed t-SNAREs (1 : 1 complexes of Syntaxin1 and

SNAP-25) in the planar bilayers (Fig. S1). Triton

extracts from native synaptic vesicles, contain synap-

tophysin hexamer in a stable complex with 12 copies

of VAMP2 [19], which presumably enter the fusion

process together. To mimic this (in the absence of

Synaptophysin), we chose reconstitution conditions

resulting in an average of ~ 12 copies of outward-

facing VAMP2 per SUV. We reconstituted ~ 28

copies of outward-facing Syt1 in the SUVs, a value

chosen for two reasons. First, synaptic vesicles con-

tain 15–22 copies of Syt1 [20,21] and second, in vitro

Syt1 rings typically contain 15–25 copies of Syt1 [2].

When SUVs contained only VAMP2, > 95% of

these vesicles (termed ‘vSUV’) that had docked to a t-

SNARE containing pore-spanning bilayer membrane

(t-PSM) rapidly and spontaneously fused after a per-

iod of diffusion on the PSM surface (Fig. 2A). The

half-time for survival was ~ 1 s (Fig. 3A). Virtually

every docked v-SUV was diffusively mobile (Fig. 2A).

Each such vSUV continued to diffuse until, within one

video frame (each frame was about 150 ms), diffusion

ceased and fusion occurred. Most likely, fusion results

immediately when a handful of SNAREpins are

formed.

Adding Syt1 wild-type (Syt1WT) to these vesicles

resulted in a completely different behavior. Inclusion

of Syt1 increased the number of docked vesi-

cles (Table 1) but now, these vesicles (termed

‘Syt1WT-vSUV’) were immobile following docking to

the bilayer surface (Figs 2A and 3A).The vesicles

rarely fused over the initial 10 min observation period

until Ca2+ (1 mM) was added after which the vast

majority fused within the 5-min time allowed

(Fig. 3B). This behavior is referred to as ‘clamped’.

In fact, these vesicles remain stably clamped and

Ca2+-sensitive for hours (Figs 3B and S2). Note: we

monitored these docked vesicles up to 3 h (currently

limited by the stability of the suspended bilayer and

photo-bleaching; Fig. S2). In the present studies,

Ca2+ was simply added from the top (Fig. 1) and

required 5–10 s to diffuse to the bilayer, so informa-

tion on the precise kinetics of Ca2+-triggered fusion

is presently lacking.

Syt1 is known to attach to the bilayer by binding

PIP2 [22–24]. As expected, when PIP2 was omitted

from the tPSM bilayers, the number of docked vesi-

cles was greatly reduced compared to bilayers con-

taining PIP2 (Table 1). Notably, the remaining

docked Syt1WT-SUVs were no longer clamped

(Fig. S3), but rather fused spontaneously, similar to

vSUVs. This shows that clamping in this reduced

system requires PIP2, which is in fact physiologically

required for assembly of the readily releasable pool

[25,26]. PIP2 binds to the polybasic surface of Syt1,

capturing the synaptic vesicle [22,24]. This same

interaction also triggers Syt1 to polymerize into ring-

like oligomers in vitro [2,4], which we have hypothe-

sized is the central structure responsible clamping

in vivo.

To examine if the ‘clamping’ behavior observed in

the present simplified system is linked to the forma-

tion of Syt1 oligomers, we replaced the wild-type

Syt1 with a well-characterized ring-destabilizing point

mutant, F349A (referred to as ‘Syt1349-vSUVs’).

Now, the vast majority of the vesicles (~ 85%) dif-

fuse freely and fused spontaneously, in the absence

of Ca2+ (Fig. 2A), suggesting that oligomerization of

Syt1 is indeed required for clamping in this system.

A minority (~ 15%) of the docked Syt1349-vSUVs

were indistinguishable in their behavior from Syt1WT

containing vesicles. These vesicles were immobile and

remained unfused in Mg2+, but then efficiently fuse

upon Ca2+ addition (Figs 2 and 3).

The ability of Syt1 to bind PIP2 is unaffected by the

F349A mutation [5] and correspondingly, we observed

robust docking of the Syt1349-vSUVs (Table 1). Inter-

estingly, these vesicles diffused freely until they fused

(Fig. 2A), similar to the vSUVs. This is in stark con-

trast to the lack of diffusion of the clamped Syt1WT-

vSUVs (Fig. 2), implying that the assembly of Syt1 oli-

gomers is the main factor causing immobilization (as it

also seems to be for clamping). This immobilization is
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to be expected, since each subunit of a 15–25 member

Syt1 oligomer [2] should be able to simultaneously

attach to the PSM via PIP2.

Finally, as a control, vesicles containing only

Syt1WT and no VAMP2 were found to dock, but

never fuse, even after Ca2+ was added (Fig. S4).

They remained immobile for the entire observation

period (Fig. S4). This finding rules out the possible

caveat that Ca2+-triggered fusion results not from

SNAREpins, but instead an artifact of PS in the

opposing lipid bilayers interacting directly with cal-

cium ions. This possibility is also ruled out by the

identical behavior (Fig. S4) of v-SUVs containing the

VAMP4X mutant [14,15] which can form SNARE-

pins but is prevented from terminal zippering, and

thus, fusion.

Discussion

A principal finding is that Syt alone can stably and

reversibly clamp vesicles in this reduced and fully-

defined system for at least 1 h. While physiological

analyses have clearly identified a role for Syt1 as

part of the fusion clamp [27–29], previous in vitro

analysis in which membrane-anchored Syt1 and

SNAREs were mixed in the absence of Complexin

have failed to establish a stable clamp of the kind

that is readily demonstrated in the presence of Com-

plexin [30–33]. The main difference between our

study and all the others is that we limit the number

of v-SNAREs per vesicle (to ~ 12 copies) whereas

the others seek to mimic the VAMP2 content of

native synaptic vesicles (~ 70 copies). As one

Fig. 2. The mobility of docked vesicles containing VAMP2 with or without Syt. (A) Representative time-lapse fluorescence (ATTO647N)

images of a single docked SUVs show that all vSUVs are diffusively mobile upon docking and fuse spontaneous with a half-time of ~ 1 s

(Fig. 3). In contrast, the vSUVs with Syt1WT (Syt1WT-vSUV) are stably docked in-place and largely immobile and do not fuse, until triggered

by Ca2+. When Syt1 oligomerization is compromised with a targeted mutation (F349A), a large majority (85%) of these SUVs (Syt1349-vSUV)

are mobile and spontaneous fuse similar to vSUVs, while a minority (15%) are immobile upon docking and never fuse. Representative video

files corresponding to these images are included as Videos S1–S4. (B) The immobile fractions of Syt1WT-vSUV (100%) and Syt1349-vSUV

(~ 15%) remain stably clamped and Ca2+-sensitive for at least 1 h, the observation period limited by photo-bleaching and bilayer stability. In

such experiments, designed to test the stability of docked vesicles, it was necessary to minimize fluorescence bleaching by only imaging

every 10 min prior to Ca2+-addition, and every 1 min post-Ca2+-addition. The NBD-fluorescence included on the pore-spanning bilayer was

recorded at each time point to verify the continued integrity of the pore-spanning suspended bilayer.
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possibility, we suggest that Syt is sufficient to pro-

duce a stable clamp for a limited number of SNAR-

Epins and that Complexin may be uniquely required

(among its other roles) for the excess SNAREpins.

We note that a previous study suggested that Syt

alone can produce a stable clamp [34]; however, this

utilized the soluble cytoplasmic domain of Syt1

which in excess can effectively cover liposomal sur-

faces, rendering them non-fusogenic.

The other principal finding of our study is that in

our reduced system, the fusion clamp is largely ablated

when Syt1 oligomerization is compromised by the

F349A mutation. The majority of vesicles containing

the mutant Syt1 (and v-SNAREs) diffuse freely on the

bilayer until they fuse spontaneously, similar to vesi-

cles containing only the v-SNAREs. This dramatically

contrasts with the behavior of wild-type Syt1, where

the vesicles are immobile as soon as they attach to the

bilayer and remain frozen in place until they bind cal-

cium and then fuse, all without ever moving. The sim-

plest explanation is that a ring-like oligomer of Syt1WT

forms under the vesicle, immobilizing it via numerous

contacts with the bilayer; but the mutant Syt1 fails to

form these oligomers in most cases and the SNARE-

pins are therefore not stably clamped. As with vesicles

lacking Syt1, the vesicles now diffuse until multiple

SNAREpins have formed, pinning them down and fus-

ing them. How Syt1 oligomers produce a stable clamp

in our system is still unclear. One possibility is that

Syt1 oligomers act as a ‘washer’ (or spacer) to steri-

cally block fusion [2]. Additionally but perhaps alter-

natively, Syt1 oligomers could bind and organize the

SNAREs in a stable, partially assembled state as

Fig. 3. Syt1 oligomers form a Ca2+-sensitive fusion clamp. (A) The cumulative docking-to-fusion delays represented as the survival

percentage shows that vSUVs spontaneous fuse with a half-time of ~ 1 s, but Syt1WT-vSUV remain stably docked. Destabilizing the Syt1

oligomers (Syt1349) destabilizes the fusion ‘clamp’ with the majority of vesicles proceeding to fuse spontaneously. (B) Clamped SUVs

containing Syt1WT or Syt1349 are triggered to fuse by Ca2+ (1 mM). End-point analysis at 5 min post-Ca2+-addition shows that > 90% of all

clamped vesicles fuse following Ca2+ addition. Representative video file corresponding to fluorescence change associated with Ca2+-

triggered exocytosis is shown in Videos S5 and S6. The average values and standard deviations at each time point from three independent

experiments are shown for each condition. In total, > 500 vesicles were analyzed for each condition.

Table 1. Quantification of docking of vSUVs (� Syt1) in the

presence or absence of PIP2 in the suspended bilayer. Inclusion of

Syt1 (both WT and F349A) increased the docking of vSUVs to the

t-PSM. The vesicle attachment is likely mediated by the interaction

of the polybasic motif of the C2B domain with the negatively

charged lipids, namely PIP2 (3%) and DOPS (15%) [22–24]. In

support of this premise, exclusion of PIP2 significantly lowered the

number of docked vesicles. In all cases, a mutant form of VAMP2

(VAMP2-4X) which eliminated fusion was used to unambiguously

estimate the number of docked vesicles after the 10 min

interaction phase. The average and standard deviation from three

independent experiments are shown.

Vesicle type

Number of docked vesicles per

100 lm2

+ PIP2 � PIP2

vSUV 1.4 � 0.2 N.D.

Syt1WT-vSUV 16 � 2.0 8.0 � 2.0

Syt1349-vSUV 28 � 5.0 12 � 3.0
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outlined in the buttressed ring model [6]. Further

experiments, including detailed mutational analysis, is

required to dissect the precise molecular mechanism of

the fusion clamp observed in this system.

It should be pointed out that the stable clamp by

Syt1 could well be produced by oligomers (partial

rings) as distinct from complete rings, and the dra-

matic loss of clamping with the mutant Syt1 could be

due to its compromised ability to form oligomers of

sufficient size, as distinct from completed rings. Fur-

ther studies in which completed rings could be visual-

ized by electron microscope methods, both in cell-free

systems and in cells in situ, will be needed to rigor-

ously make this distinction. However, in light of the

circularly symmetrical arrangement under synaptic-like

vesicles reported in neuroendocrine cells in the accom-

panying paper [1], it seems very likely that completely

formed Syt1 rings are the basis of the stable clamp in

the readily releasable pool of synaptic vesicles that

enables synchronous synaptic transmission to keep

pace with the action potential.
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Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. (A) The proteoliposomes were prepared using

a detergent dilution-dialysis method, followed by a

Nycodenz float-up. The proteoliposomes were ana-

lyzed using SDS/PAGE analysis and visualized using

Coomaisse stain. The protein density of the liposomes

(with the loading amounts as control) was used to esti-

mate the copy number of each protein per vesicle. (B)

The fluorescence recovery after photo-bleaching

(FRAP) of the included NBD-fluorophore was used to

check the quality of the t-SNARE containing the

pore-spanning suspended bilayer.

Fig. S2. Syt1WT produced a stable fusion clamp.

Fig. S3. PIP2 is critical to both docking and the

clamping of fusion by Syt1WT.

Fig. S4. Control experiments using Syt1WT only or a

nonfusogenic VAMP2 mutant (VAMP2-4X) show that

fusion under our experimental conditions strictly

requires the SNARE proteins and a productive assem-

bly of the SNARE complex.

Video S1. Video file corresponding to vSUV fusion

shown in Figure 2A.

Video S2. Video file corresponding to Syt1WT-vSUV

clamp shown in Figure 2A.

Video S3. Video file corresponding to immobile/

clamped fraction of Syt1349-vSUV shown in Figure

2A.
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Video S4. Video file corresponding to mobile/fusogenic

fraction of Syt1349-vSUV shown in Figure 2A.

Video S5. Video file corresponding to Ca2+-associated

fluorescence signal change of Syt1WT-vSUV shown in

Figure 3B.

Video S6. Video file corresponding to Ca2+-associated

fluorescence signal change of Syt1349-vSUV shown in

Figure 3B.
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