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Abstract 

 

    An experimental and theoretical study of the dehydration of natural gas using microporous 

silica beds for motor fuel technology in extreme winter climates is described. Analytical solutions 

to the problem of non-isothermal adsorption and desorption are based on Heaviside’s operational 

method and Laplace integral transform, but the development of calculations is quite original. 

Experimental and modeling distributions of moisture and temperatures of gas at the inlet and outlet 

of the silica beds for each adsorption - desorption phase at different times are presented. The 

distribution of moisture within the beds for the full dehydration - regeneration cycle is determined.  

 

Keywords 

    Natural gas dehydration, diffusion of adsorbed gas; adsorption and desorption of gases; 

modelling; Heaviside’s operational method; Laplace integral transform.  

 

1. Introduction 

    The main anthropogenic sources of atmospheric pollutants are the processes by which energy is 

generated for transport and industry. It has been demonstrated that the transport sector is the 

emission source that contributes the most to global warming at present, and it will probably remain 

so in the immediate future [1]. 

    Natural gas is an important source of primary energy. Its use as a motor fuel for transport and 

other sectors of industry saves liquid petroleum products, significantly improves the atmosphere of 

cities and slows the process of global warming. However, the reliability of the exploitation of 

process equipments, including motors of vehicles that run on natural gas, is largely dependent on 

the quality of gas used as fuel. This must be in accordance with European Union specifications 

governing the security and safety of such technical equipment’s [2]. 

    Under normal production conditions, natural gas contains water vapor. Therefore, for the reliable 

exploitation of vehicles in winter at temperatures down to -30 
o
C it is accepted that the humidity 

content of the gas must not exceed 0.009 g/m
3
, corresponding to a dew point of -60 

o
C under normal 

conditions [3]. 

 Extensive literature is available on common gas dehydration systems including solid and liquid 

desiccant and refrigeration-based systems [4,5,6,7]. Netusil and Pavel [8] have compared the 

different  methods for natural gas dehydration that are widely applied in industry, according to their 

energy requirements and suitability for use. They concluded that adsorption is preferred when a 

very low Tdew of natural gas is required. Currently, adsorption-based processes rely on a technology 

which uses high temperatures for the regeneration of the adsorbent [3,9,10]. For example, molecular  

mailto:Mykhaylo_Petryk@tu.edu.te.ua
mailto:mashapetryk@gmail.com
mailto:khimich505@gmail.com
mailto:jacques.fraissard@upmc.fr


 

 

sieves require large amounts of energy to heat them to the regeneration temperature (over 350 °C), 

and then to cool them to the adsorption temperature ( 25 °C), increasing the cost of gas used as 

motor fuel. Lower operating costs for drying gas are possible with short adsorption-desorption 

cycles and low-temperature regeneration of the adsorbent. In our plant, a microporous silica gel is 

used because of its ability to provide extremely low dew points.  But the main purpose of this study 

is not to confirm the effectiveness of the adsorption-desorption technology for the dehydration of 

natural gas and to show that our installation is very efficient.  For the first time, it has been possible 

to specify all the processes along the columns during non-isothermal adsorption and desorption. For 

the modeling we have used the Heaviside operational method and the Laplace transform, but the 

development of calculations is quite original. 

 

2. Experimental system for gas dehydration and adsorbent regeneration  

 

      The scheme of the plant is presented in Figure 1. The two columns have the dimensions: height: 

1.65 m, diameter: 0.8 m. They are filled with microporous silica gel KSMH (Ukraine) with the 

following characteristics: - density: 720 g/dm
3
; - specific surface area: 450-600 m

2
/g; pore diameter: 

5*10
-9 

- 8*10
-9

 m; pore volume: 0.6-0.8 ml/g; radius of solid particles: 1.4-3 mm.   

     The natural gas to be dehydrated is at a temperature of 10-12 ° C and a pressure of 25 MPa; it 

cools the column (for example A1 in the figure) at the same time as water is adsorbed. On leaving 

A1 the water concentration of the gas should not be greater than 0.009 g/m
3
. 

           
 Figure 1.  Schema of experimental plant with water adsorption in A1 and regeneration in A2.  

 

      Part of the dehydrated gas is heated in the counter-flow heat exchanger and sent to regenerate 

the adsorbent (A2 in the figure) at a pressure of 1.0-1.2 MPa and temperature of 125-130 °C. It thus 

warms the second column and eliminates the desorbed water. The two columns of silica (A1, A2) 

are alternately in the "dehydration" or "regeneration" mode. The experimental conditions of the 

system are summarized in Table 1. The study was carried out during four-hour cycles of 

dehydration and regeneration.  



 

 

 

Table 1 : Experimental conditions 

 

Environment temperature, °С -5  to   +3 

Gas entering for dehydration: 

- Consumption, m
3
/h 

- Pressure, MPa 

- Temperature, °C 

- Moisture content, g/m
3 

 

1600 

25.0 

10-12 

0.16-0.18 
 

Regeneration of the adsorbent: 

- Consumption (10-11% of gas consumption for drying), m
3
/h 

- Pressure, MPa 

- Temperature, °C 

- Moisture content, g/m
3
 

 

155-160 

1.0-1.2 

125-130 

0.00035-0.0017 

 

         

3. Mathematical model of non-isothermic adsorption and desorption in microporous solids  

 

     The modeling of the kinetics of gas dehydration processes on a microporous adsorbent and the 

corresponding regeneration is based on our approach [11] using a mathematical model that includes 

mass balance and heat in ref. 12 and 13. The meaning of the terms is given in the Nomenclature. 
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     During adsorption Cin is roughly constant for z = 0 (top of the columns). We use the same 

symbol C0 for adsorption and desorption because the calculation methodology is the same for both. 



 

 

For the model we choose columns of unlimited height, since it is not known in advance what the 

concentration of moisture in the gas at the exit of the column of regeneration will be. However, if an 

infinite length is assumed, the concentration will decrease from the beginning to the end, where it 

will be equal to 0. If we apply this condition for a limited height of the columns at the end of which 

the gas leaves, the calculation will not be completely correct.   

     The solution of the system (1)-(7) was obtained using Heaviside's operational method and is 

presented in the Appendix [13, 14, 15]. 

    Let us point out that for a first approach to this problem, given the complexity of the calculations, 

the authors have used some simplifications; for example, the co-adsorption of methane is neglected; 

the Henry's law constant (K) was calculated for the temperature T =40 C according to the reference 

[16] and supposed to be constant K = 300; the isosteric heat of adsorption  for the water isotherm 

was also assumed to be constant Qads=2200 kJ/kg [ 16, 17]. The total mass transfer coefficient β = 

0.85-0.95 s-1. was calculated as the inverse of the total resistance in the system, which includes 

mainly the external and internal mass transfer resistance  [18]:  
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4. Analysis of experiment and simulation   

 

     Moisture concentrations of the gas that enters the drying adsorbent column (adsorption phase) 

during a dehydration cycle are presented in Figure 2. These variations are due to the minor 

fluctuations of the gas pressure in the network. The corresponding average moisture at the inlet, 

0.175 g/m
3
, is used for the simulations. 

 
                    

          
                         Figure 2. Experimental concentration of gas moisture at the inlet  

                                            of the adsorbent column during the adsorption phase 

            

 
 

        Figure 3 displays the moisture variations against time of dehydrated gas at the outlet of the 

adsorbent column. The average concentration (used for simulation) does not exceed 0.003 g/m
3
, 

which correspond to the technical requirements of the quality of gas for its further use as a motor 

fuel [10]. 

        Adsorbent regeneration (desorption phase) is carried out with a small fraction of the  

dehydrated gas (10% in our experiments) heated at 125-130 °С. Figure 4 shows the variation of the 

temperature near the inlet Tin (T1,T2) and outlet Tout (T3,T4) of the column during the desorption 

phase.      
 
 
 



 
Figure 3. Moisture content of dehydrated gas at the outlet of the adsorbent column.   

               ( blue square points – experiment; dotted red line - model).  

  

            

    
       Figure 4. The temperature of gas near the inlet T in (T1,T2)  and at the outlet Tout ( T3,T4)    

          of the column of regeneration (squares - experiment, dotted line -  model)  . 

                            

  

                                 
              Figure 5. Moisture of the gas at the outlet of the column during the regeneration of the adsorbent  

               during 240 minutes (square red points - experiment, dotted blue line - model)  

 



    

 

  The variation of the moisture of the gas at the outlet of the column of regeneration (Fig. 5) shows 

the kinetics of the internal desorption of the moisture during 240 minutes.  

       Figure 4 and 5 show that the regeneration process is characterized by two specific periods: the 

heating of the adsorbent, corresponding roughly to the first 90 minutes (Fig. 4, curves T1 and T3, 

Fig. 5, curve w1) and the regeneration period (Fig. 4, curves T2 and T4, Fig. 5, curve w2). At the 

beginning of the regeneration, during bed heating, desorption of water is low (moisture content of 

the regenerated gas is 0.5-0.9 g/m
3
), and the average temperature of the gas at the outlet of the  

column reaches 30-50 °C. Further there is a higher and stable temperature Tin   120-125 °C and  

Tout increases continuously. After about 90 minutes there is a sharp increase in the desorption with a 

maximum around 120 minutes (Fig. 5, point A = 3.75 g/m
3
) due to the elimination of the water very 

slightly physisorbed on the adsorbent. Then the average moisture concentration of the gas decreases 

sharply and is 0.50-0.2 g/m
3 

after about 200 minutes. At the end of the regeneration cycle (240 

minutes) this concentration is negligible (less than 0.005 g/m
3
). 

            

 
 

           Figure 6. Variation of the amount of adsorbed and desorbed water during the four-hour cycle  

                                         (red diagram - regeneration, blue - drying) 

 

        Figure 6 shows the amount of adsorbed and desorbed water during the four-hour “drying-

regeneration” cycle. During this time, 1089 g  of water are adsorbed and 1067 g  are eliminated, so 

22 g of moisture are still left in the adsorbent, i.e. about 2% of adsorbed moisture. This very small 

difference could correspond either to experimental errors or to the formation of few stable OH 

groups at the highest temperature.   

       Figure 7 shows the adsorption isotherms for the entire water concentration range in the column 

calculated using the Langmuir equation of the adsorption equilibrium [16, 19]: 
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Here  /ads adsH Q    - energy of activation, kJ/mole; R -  gas constant, kJ/(mole.K);,  
fulla - the 

concentration (amount) of adsorbate at saturation of the micropores and intercrystallite space  of the 

adsorbent, kg/kg; p - pressure; 
'

0k  - the equilibrium constant. 
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 Figure 7. The isotherms for the entire range of moisture concentration in the column. 

 

Remarks on the approximations: 

   - The Henry law constant  K is assumed independent of T and p. In a more precise study we will 

try to take into account the variarion of K with the pressure using for example the data of Do [16] 

and Karger et al [20] for the adsorption of water on silica, in a form of the type 0K k p   which 

will take into account the influence of pressure differently for adsorption (p = 25 MPa) and 

desorption (p = 1.2 MPa), where 
'

0 0

/1
exp

1

fullads

full

a aH
k k

RT p a
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    -In this model, the pressure drop in the column is not taken into account. The next model will be 

improved  by the pressure change equation. 

     -The isosteric heat of adsorption  for the water isotherm is assumed constant.  In the proposed 

new nonlinear model, the temperature dependence will be implemented directly in the Langmuir 

nonlinear adsorption equilibrium, which should improve the simulation results. 

    -The influence of the adsorption of methane is not taken into account. It is certain that there must 

be some amount of methane adsorbed at this high pressure. The literature data, mainly on the 

adsorption of CH4 on activated carbon (energy storage problem), all show that the presence of water 

partially inhibits the adsorption of methane, even at high CH4 pressures; only in the case of very 

humid systems can there be formation of methane hydrates at very high pressure [21, 22]. This is 



why the lack of experimental data on our installation made any simulation impossible. The problem 

is all the more complex as the adsorption of the methane should be dependent on the corresponding  

concentration of adsorbed water at each point of the column and at each instant. 

        The small difference between the theoretical and experimental results could be due to the fact 

that the experimental data take into account the whole environment, and therefore the presence of 

adsorbed methane, which is not the case of simulation. This could mean that the concentration of 

adsorbed methane is low.        

 

5. Conclusion 

 

       Our experimental and theoretical studies have confirmed the effectiveness of the "adsorption-

desorption" technology for the dehydration of natural gas used as fuel in extreme winter climates. 

After each drying cycle, the residual moisture content of the gas is lower than the maximum 

allowable value of 0.009 g / m3. But this was not the main purpose of our study.  The solution of 

the proposed mathematical model for the gas drying process using the adsorption of water on 

porous solid and its regeneration is based on an original algorithm using the Heaviside operational 

method and the Laplace transform. The development of calculations is quite original. The result 

allows instantaneous knowledge along the columns, during the non-isothermal adsorption and 

desorption, of: - the moisture of the gas phase; -the water concentration of the adsorbed phase; - the 

temperature of the gas stream. This original mathematical   treatment can serve as a model for many 

applications relating to this type of process, such as for example the purification of confined 

atmospheres. 

 

Nomenclature   

 

 c - concentration of moisture of the gas phase in the column;  

a - concentration of moisture adsorbed in the solid phase;  

T - temperature of gas phase flow, °C; 

u - velocity of gas phase flow, m/s
2
; 

int erD - effective longitudinal diffusion coefficient; 

  - coefficient of thermal diffusion along the columns;  

gh  - gas heat capacity;  

adsQ - heat  of adsorption, kJ/kg;   

μ – molecular mass of adsorbat, kg/mole; 

H - total heat capacity of the adsorbent and gas;  

( , )t z - function of adsorption equilibrium ( ( , ) ( , )t z a t z  );  
2 2 /n R  - coefficient of heat loss through the wall of the adsorbent;   

R - radius of solid particles of the adsorbent, m ;   

h - heat transfer coefficient; 

K - Henry’s constant; 

 - total mass transfert coefficient, s
-1

; 

βinter – coefficient of inter mass transfer, s
-1

; 

βintra -  coefficient of intra mass transfer, s
-1

; 

z - distance from the top of the bed for mathematical simulation, m; 

Z - dimensionless coordinate = abscissa z/height of the column.    

in - index of parameter names (concentration, temperature) in the inlet of the column. 
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                                                             Appendix  

 

           Methodology of analytical solutions of the  adsorption-desorption model 

 

The mathematical model of adsorption and desorption cycle of drying gas process and adsorbent 

regeneration, including mass balance and temperature [11, 13] is given by:  
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     We use the same symbol c0 for the adsorption and desorption because the methodology of 

calculation is the same for both. 

 

       First of all we obtain the analytical solution of the eq. (A.1)-(A.6), assuming conditions 

0( , ) |
inzc t z c const    (adsorption). At the end we generalize this solution to the conditions 

0( , ) | ( )
inzc t z c t   (desorption).  

      To find the analytical solution of the problem (A.1)-(A.6) where the functions c and T depend 

on the concentration, the time and coordinate z, we use Heaviside's operational method [14,15]. 

Solutions c and T are obtained according to the following procedure: 

a) first the Laplace transforms of the functions c and T are determined: 
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where p is a complex-value parameter of the Laplace transformation.  

b) then the solutions, c and T, are obtained by using the Laplace inverse transform of the functions  

c  and T  with respect to the variable p.     

Applying the Laplace transformation to eq. (A.1)-(A.6) one obtains: 
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Boundary conditions: 

         a) adsorption:                                            b) desorption: 
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Then eq. (A.8)-(A.9)  are:   
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The solution of eq. (A.13) with conditions (A.10), (A.11) is [11, 14, 23]:                                      
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After integration, A.15 becomes: 
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Calculating the Laplace originals in eq. (A.17), we obtain: 
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Substituting eq. (A.19) in eq. (A.18) we obtain the analytical solution of eq. (A.1)-(A.6) 

which describe the concentration of moisture in the gas phase and adsorbed on the solid:   
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Using the conditions 
0( , ) | ( )

inzc t z c t  for the desorption phase, eq. (A.20) will be: 
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Similarly, the analytical solution of (A.1)-(A.6) which describes the temperature distribution 

in the adsorbent is [13, 15]:    
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