Olivier Pironneau
email: olivier.pironneau@gmail.com

Calibration of Heston Model with Keras

Keywords: Heston model, Calibration, Option pricing, Neural Networks, Partial differential equations

published or not. The documents may come

Calibration of Heston Model with Keras

Introduction

Applications of Artificial Intelligence methods -neural networks of all kinds -are blossoming everywhere in at least 3 areas of quantitative finance: Market prediction [3] [START_REF] Borovykh | Conditional time series forecasting with convolutional neural networks[END_REF], portfolio optimization [16], high dimensional futures [START_REF] Beck | Solving stochastic differential equations and Kolmogorov equations by means of deep learning[END_REF] and calibration [START_REF] Liu | A neural network-based framework for financial model calibration[END_REF]. This paper's aim is the calibration of Heston's model for put and call European options making no use of implied volatility, i.e. the non-constant volatility which makes the option a solution of the Black & Scholes model. The Black & Scholes model [START_REF] Black | The pricing of options and corporate liabilities[END_REF] proposed in 1973 for the pricing of financial options may be written as :

P T = e -rT E[(K -X T) +], C T = e -rT E[(X T -K) +] (1)
where P T and C T are respectively put and call options on the financial asset {X t } t∈(0,T) with maturity T and strike (price at transaction time T) K; E denotes the conditional expectation when X 0 is known, and X t is the solution of the stochastic differential equation, dX t = rX t dt + X t σdW t , X t=0 = X 0 .

(

) 2
Here r is the interest rate of the money and σ is the volatility of the asset; W t is a Weiner process, or -for practical purpose -dW t is a zero-mean Gaussian variable with variance √ dt. The correct analytical setting of the problem is well established and can be found in many books, including [START_REF] Achdou | Computational methods for option pricing[END_REF]. Heston's model [START_REF] Heston | A closed-form solutions for options with stochastic volatility[END_REF] is a a popular extension of the Black & Scholes model. It uses a stochastic volatility , σ = √ V t , dX t = rX t dt + X t (V t)dW t

modelled by a mean reverting process correlated to X t ,

dV t = κ(θ -V t)dt + λ (V t)d Wt , V t=0 = V 0 , ρdt = E[dW t • d Wt]. (4)
where W and. W are correlated Weiner processes. The meaning of the parameters of the model are

• κ is the mean reversion rate,

• θ is the long run variance,

• λ is the volatility of the volatility,

• V 0 is the square of the initial volatility

• ρ is the correlation coefficient.

The question that calibration attempts to answer is : can these parameters be adjusted to market data so as to predict more futures with the same model. Calibration for Heston model has a long story; one very interesting early paper is by Mikhailov & Nogel [START_REF] Mikhailov | Heston's Stochastic Volatility Model Implementation, Calibration and Some Extensions[END_REF] where sub-percent precision on market data (SP500 of 23 rd July 2002) could be reached in very fast CPU time. The problem is classic enough that python codes are publicly available on the internet [2], Quantlib [17] etc. A well tested method is to interpolate the data on an implied volatility surface and then use a least-square fit with the Levenberg -Marquardt quasi-Newton Method [START_REF] Marquardt | An Algorithm for Least-Squares Estimation of Nonlinear Parameters[END_REF]. Calibration by Neural Network has been tested by many authors, such as [START_REF] Hernandez | Model Calibration with Neural Networks[END_REF], [START_REF] Spiegeler | Machine learning for quantitative finance: fast derivative pricing, hedging and fitting[END_REF], [START_REF] Liu | A neural network-based framework for financial model calibration[END_REF] to cite a few. Although it works in general it has not been adopted yet by practitioners, probably because precision is an issue: a large amount of data is needed to reach subpercent precision.

So the purpose of this study is not to propose yet a new competitive method but to investigate the feasibility of Artificial Neural Network for the calibration, with one specific application in mind: the portability of the neural network on smaller computers like phones and tablets, even for the calibration of large baskets options. But even if the feasibility is asserted, calibration on market data will still be needed to check the precision and the stability. The results are outlined in the conclusion of this article.

Before we proceed we make one important remark: Here, unlike [START_REF] Liu | A neural network-based framework for financial model calibration[END_REF], we do not calibrate the parameters using implied volatilities; we use directly the option prices. Then the market data are a set of put and/or call prices for a set of maturities and strikes on the same asset or set of assets in case of a basket. Due to the nature of the problem it is equivalent to assume that we have a set of prices for different initial asset prices and different maturities or times. Indeed in the model above what counts is not X 0 and K but X 0 /K, because

P T = Ke -rT E[(K -X T /K) +].
So we can keep K fixed and give P for a set of X 0 as data for the calibration. In the same vein, the maturity is simply the final time of the simulation. So we can compute P t = Ke -rt E[(K -X t /K) +] and use these as data, equivalent to a set of maturities.

Numerical Solutions

Solution with a Complex Integral

The semi-analytical formula for a Heston call [START_REF] Cox | A theory of the term structure of interest rates[END_REF] involves a complex integral :

C = 1 2 (X 0 -Ke -rT) + 1 π ∞ 0 (e rT φ(u -i) iuK iu -K φ(u) iuK iu)du with φ(u) = e rT X iu 0 1 -ge -dT 1 -g -2 θκ λ 2 exp θκT λ 2 (κ -ρλiu -d) + V 0 λ 2 (κ -ρλiu + d) 1 -e dT 1 -ge dT d = (ρλui -κ) 2 + λ 2 (iu + u 2), g = κ -ρλiu -d κ -ρλiu + d . (5
)
The complex integral requires a careful discretization as explained in [START_REF] Mikhailov | Heston's Stochastic Volatility Model Implementation, Calibration and Some Extensions[END_REF]; A python implementation is given in Appendix 6.1

Solution of the Feynman-Kac PDE by the Finite Element Method

Ito Calculus leads to the following equivalent problem : P T = u(X 0 , V 0 , 0) is solution of

∂ t u + rx∂ x u + x 2 y 2 ∂ xx u + κ(θ -y)∂ y u + λ 2 y 2 ∂ yy u + ρλxy∂ xy u -ru = 0
with u(x, y, T) = (K -x) + . A change of notation has been made: X → x, V → y, For numerical computations the domain needs to be localised to a rectangle (X min , X max) × (V min , V max) with sides labeled Γ 1 (bottom, y = V min), Γ 2 (right, x = X max), Γ 3 (top y = V max), Γ 4 (left, x = X min) and boundary conditions need to be applied. The method is easy to extend to options with barriers; then boundary conditions imposed on Γ 2 and/or Γ 4 : u(•, •, t) = 0 are the barriers at x = X min and x = X max .

It is known that a weak solution exists if the Feller condition [START_REF] Feller | Two singular diffusion problems[END_REF] is satisfied: λ 2 < 2κθ; if it is not satisfied the solution may not be unique and will exist only under certain compatibility conditions on the data (Fredholm's alternative).

Remark 1.

• The market price of volatility risk has been taken to be zero.

• If X max is large then the boundary condition on Γ 2 is a localization for the put. If it is not large then it corresponds to a put option with a barrier at X max .

• If X min = 0 then the boundary condition is irrelevant, otherwise it is a lower barrier on the option.

After discretization in time, u m = u(•, •, t) solves the following variational problem

Ω u m w(r + 1 dt) + x 2 y 2 ∂ x u m ∂ x w + λ 2 2 y∂ y u m ∂ y w + ρλxy∂ y u m ∂ x w + (κ + ρλ)y + (λ 2 2 -κθ) w∂ y u m + x(y -r)w∂ x u m + λ 3 λ 2 r 2(κ + ρλ) u m w = Ω u m-1 w dt ; (6)
with u m = 0 on Γ 2 and Γ 4 .

Finally the Finite Element Method of degree 1 or 2 on triangles can be used for spatial discretization, resulting in a time independent linear system for each m. A numerical solution can be obtained in less than a second on an Intel Core i7 and the reader is invited to test the freefem script of Appendix 6.2.

Monte-Carlo Solutions

For basket options the put is a function of several assets:

P (X 0 , V 0) = e -rT E[φ(X T)| X 0 , V 0],
for some pay-off φ, and each asset is modelled by a Heston set of stochastic differential equations:

dX i t = X i t (rdt + σ i V i t dW i t), dV i t = κ i (θ i -V i t)dt + λ i (V i t)d W i t (7)
with

E[dW i t dW j t] = ρ ij dt, E[dW i t d W j t] = ρij dt and E[d W i t d W j t] = ρij dt.
The simplest method is to apply an Euler discretization in time to Y t = log X t with a round-off at << 1 against negative volatilities:

Y n+1 = Y n + rδt + σ √ V n B 0,1 √ δt, V n+1 = max{ , V n + κ(θ -V n)δt + λ √ V n B0,1 √ δt} (8)
where B [0,1] and B[0,1] are Gaussian correlated unit random variables. For vectorial system the scheme is not very different and the complexity is only in the generation of the correlated vector valued B and B at each time step (t = nδt). Algorithm (8) must be run a large number of times (Monte-Carlo paths) and P is taken to be the mean of the expression on all paths. The method is slow but advantageous when d is larger than 2.

Calibration

Calibration of the parameters κ, θ, λ, ρ, V 0 , ... is an important long standing problem in quantitative finance. Not only a solution must be found which reproduces the data but it must be stable in the sense that adding new data should not change the parameters drastically. The data can be a mix of calls and puts for different strikes or maturity.

Often it is thought that a more stable solution is found if the calibration is done against implied volatilities rather than prices, but shall not follow that path.

Solution with Heston's formula

On the basis of having as many equations as unknowns, it is theoretically not excluded to compute parameters like κ, θ, λ from the knowledge of 3 option prices only, {Π K k T k } 3 k=1 , by inverting the nonlinear system,

P K k T k (κ, θ, λ) = Π K k T k k = 1, 2, 3 (9)
with a root-finding algorithm. Here {T k , K k } 3 1 are given and used to compute

{Π K k T k } 3 k=1
with the Heston semi-analytical formula; Heston's formula with maturity T and strike K defines a non-linear mapping {κ, θ, λ} → P K T (κ, θ, λ). And indeed it works when the root-finding iterative method is initialized not too far from the solution. An example in python is given in Appendix 6. An equally good identification was found from the synthetic prices computed with T = 2, K = 90 or K = 105 or K = 110. However the computing time takes 4 forbidding minutes on a Mac pro 15" core i7, 2017. Naturally, stability and uniqueness is not guaranteed.

Solution by optimization

In quantitative finance nothing ensures that the data follows Heston's model, so only an approximate calibration can be envisaged. For practical purpose, knowing M values of an option for a different strikes K and maturities T what are the parameters for Heston's model that reproduce best these market values? In the world of inverse problems [START_REF] Tarantola | Inverse Problem Theory[END_REF] involving a PDE such problems are solved by

[κ, θ, λ] = argmin [κ,θ,λ]∈U ad M k=1 P k T (κ, θ, λ) -Π k T 2
| subject to P k given by (6). [START_REF] Goodfellow | Deep Learning[END_REF] For stability it is wise to add a penalization term, but here there is no theoretical need for it as this optimization problem has always a solution because it is in R 3 and the solution of the PDE depends continuously on its coefficients, provided that U ad be compact and in the range for which the solution exists. Evidently one may use methods, other than the PDE, to compute Heston prices.

Solution with CMA-ES

CMA-ES [START_REF] Hansen | The CMA Evolution Strategy : A Comparing Review[END_REF] is a powerful generic stochastic optimizer. We have applied it with a criteria for the minimization built from a noisy modification of the solution of the PDE at final time ω(x, y)u(x, y, T) with x, y restricted to the lower right quarter of the domain, i.e (x, y) ∈ (1 2 X max , X max × (0, 1 2 V max); 20 × 20 values uniformly distributed in this rectangle are taken (M=400). The noise is uniform in (0.99, 1). All financial and numerical parameters are easily readable from the freefem program in Appendix 6. The results are very good but too many iterations were needed for this method to be CPU-time competitive.

Solution with Levenberg-Marquardt Least-squares

A fully functional python program is available at [2] with explanations using the Jupyter note-book. The method computes the prices with Heston's semi-analytical formula (implemented with QuantLib[17]); implied volatilities are computed and the optimization problem is solved by the Levenberg-Marquardt [START_REF] Marquardt | An Algorithm for Least-Squares Estimation of Nonlinear Parameters[END_REF] quasi Newton algorithm. We reproduce in Table 1 some computed values (for a different set of parameters) computed after calibrating κ, θ, λ, ρ, V 0 . With pix=20, neurons=50 and 9900 samples an excellent precision was obtained in less than a minute. The biggest CPU cost is the generation of samples; the learning phase of the Network is a few minutes. For example in one test the loss function was decreased from 0.0210 to 1.2106e -04 in 358 iterations/epochs and the average absolute errors computed on 32 test cases is

E [κ, θ, λ] N N -[κ, θ, λ] true L ∞ = [0.00941, 0.00211, 0.00477]
The average relative error is [0.5%, 4%, 2%].

But then the convolution layer will be problematic for problems which do not have a cartesian structured input. It turns out that equally precise results are obtained without the convolution layer; i.e. without the instruction model.add(Conv2D... above, on the condition that the number of neurons is increased; neurons=1000 in our tests. Now that it is no longer necessary to have a structured data set for input we can reduce the number of data point as follows: we pick M d × M d points randomly in the set of 20 × 20 points x, y for which u(x, y, T) is computed by the PDE solver. When M d = 10 (i.e. 100 put values) the performance of the neural network is still good: after 263 epochs, the absolute error is [0.0142, 0.00238, 0.00443] (see Table 2). But with M d = 7 (i.e. 49 put values) the performance of the neural network deteriorates: after 217 epochs the precision is [0.0224, 0.00448, 0.00705]. (see Table 2) A configuration with an auto-encoder type of architecture was tested: one hidden layer with 100 neurons, another with 10 and a third one with 100. The results are not better : average absolute error=[0.026521170.004858640.00668083], average relative error= [1.4%, 8.9%, 2.3%].

Remark 2. So these are calibration problems using options prices which correspond to different asset prices X 0 and different initial volatilities V 0 . As said in the introduction it is equivalent to a set of strikes and initial volatilities. Later we will take for data sets of strikes and maturities.

Calibration with historical data

Can Heston model be calibrated with the values at different Maturities of a call or put with all other parameters equal, same strikes, same V 0 and same ρ, etc? To check we generated 9900 solutions of the PDE and stored for each one the values of u(X 0 , V 0 , jδt),j = 1, 2, .., T /N max . Then we took N < N max values at random in this set for each line of data and train the network with these.

For N max = 40 and N = 20, the average absolute and relative error are [0.18430, 0.0088, 0.0194] and [7%, 7%, 8%] Not too good!

Calibration of one parameter from historical data

Under the same conditions we trained the network to recover one of the 3 parameters from the knowledge of the 2 others and N=20 historical data randomly chosen from the 40 available {jδt} 40 0 . The precision is worse: hardly less than 11% (see Table 4).

Discussion

• A simple hidden layer does just as well as two convolution layers or 3 smaller hidden layers.

• It is difficult to improve the precision beyond a certain threshold: augmenting the number of samples does not improve much.

• Tabulating from historical data only is harder but doable, precision is less that with dat with a mix of financial parameters. Identification of one parameter only knowing the 2 others isn't more precise than identifying the 3 together.

High dimensional Heston Calibration

Let us consider a basket put option

P (X 0 , V 0 , 0) = e -rT E[(K - d 1 X i (T)) + |X 0 , V 0] (11
)
where X i t is a financial asset following

dX i t = X i t (rdt + σ i V t dW i t), with dV t = κ(θ -V t)dt + λ (V t)dW t (12
)
with E[dW i t dW t] = ρ i dt. In other words, each asset is given by the Heston model with the same unique equation for the stochastic volatility but the correlation parameter is different. The numerical simulations are done using the Monte-Carlo algorithm with Z paths and the Euler finite difference in time scheme with 100 time steps and the following parameters To solve the calibration problem with a neural network we need to feed in many cases (samples) with as much information as possible. Here each case is obtained by multiplying each values above for κ, θ, λ by uniformly random numbers between 0.5 and 1.5. For each case we compute N T × N K prices corresponding to maturities { jT N T } N T j=1 and strikes

{ jK N K } N K j=1 .
In all simulations below N T = 10 and N K = 5

Basket with 3 assets

The precision is a function of the number of samples given to the Neural Network and of the number of Monte-Carlo paths to compute the prices. The later is fixed at Z=10000 except for the first case (i.e. 1000 samples) where Z= 1000.

In Table 3

Basket with 6 assets

With the same model as above we now make the problem more difficult by assuming that there are 6 assets in the basket defining the put option. We used the following data For the identification of the parameters [κ, θ, λ] by a Neural Network, the results are shown in Table 7.

X 0 = [

Identificaton of ρ

Finally we turn our attention to the identification of the correlation parameters {ρ j } 6 1 . Due to the computing cost of the exercise we used only 1000 samples each computed with 1000 Monte-Carlo paths. These were generated by multiplying each component of the correlation vector[-0.3, -0.5, -0.2, -0.1, -0.6, -0.4] by a uniformly random number between 0.5 and 1.5. After 256 iterations the Neural Network reached an average absolute error of: [0.071, 0.080, 0.043, 0.020, 0.14, 0.086] and relative error [6%, 4%, 5%, 6%, 6%, 6%].

More results are shown in in Table 8.

Discussion

The following points can be made.

• The precision on the price of the put is not the same as the Neural Network error on the parameters; in general we observed a factor of two. For example, the first line of • The gain in precision obtained by augmenting the number of samples is disappointingly slow.

• The performance of the Neural Network is not really affected by the kind of solver used to compute the synthetic prices. Whether Heston's formula or the PDE or Monte-Carlo is used, the performance of the Network is the same. This could be attributed to the relative stability of neural networks with respect to noise in the data.'

• . Keras is a very friendly tool and the neural network optimization is almost the same for all examples.

Conclusion

In all our examples the simple Neural Network used here does the job of minimizing the loss function; it is made of an input layer, a single hidden layer with 1000 neurons and an output layer, hence it is very fast, hardly more than a minute even for multidimensional problems. The MNIST network with 2 convolution layers, which is adapted to the case of a regular array of price data, did not perform better. But there are two big limitations:

1. The cost of generating synthetic data with an Heston model solver is very CPU expensive. 2. We have not found a way to improve the precision beyond the sub-percent range, generally demanded by practitioners.

The two items are related because while 10.000 samples are hardly enough for the calibration of an option with a single asset, it is way too little for a mutliple assets basket option. And then the CPU times becomes very large. For a 3 assets basket the Monte-Carlo algorithm with 10000 paths required 7 hours to generate 10000 prices (for a set of maturities and strikes, but that doesn't count for much). Naturally multi-level and quasi-Monte-Carlo refinements would dramatically reduce the CPU time, but still, in the face of it, we need probably several hundreds of thousands of samples, it is taxing. Finally Keras is very well adapted to the task, in the three cases we considered: solutions of Heston models generated by Heston's semi-analytical formula or by the Feynman-Kac PDE or by Monte-Carlo, the difference between the first two and the last one is the presence of noise due to insufficient precision of Monte-Carlo for the prices.

In the end, even if we could solve the precision problem there is an imperative need to compare the prediction on market data and perhaps also use market data for the training of the Network. Work for the future!

##

 1 using the solver Broyden1 with initial values [κ, θ, λ] = [1.4, 0.03, 0.5]. From the knowledge of 3 synthetic Heston prices computed with [κ, θ, λ] = [1.5768, 0.0398, 0.575], with K = 100 and T = 1.8, or T = 2.1, or T = 2.2, the solver found the true values of the 3 parameters to 5 digits: [1.5768, 0.0398, 0.5750].

 3 and illustrated by Figure 1. Initial values for the optimizer are [κ, θ, λ] = [6, 0.05, 1]. The target solution for the criteria corresponds to [κ, θ, λ] = [3, 0.1, 0.2]. After 1000 function evaluations the exact solution [3, 0.1, 0.2] was found.

Fig. 1 :

 1 Fig. 1: Two solutions (calls with a right barrier at 120) of the Heston PDE: left κ = 1.4, θ = 0.03, λ = 0.5. Right: κ = 1.5768, θ = 0.0398, λ = 0.575. Other parameters are K=100, r=0.03, ρ = -0.5711, T=1. Note that even though the displays are not very different the optimizers can tract the differences.

• d = 3 ,

 3 T = 1, K = 600, r = 0.01 • κ = 10.9811, θ = 0.132331, λ = 4.018157, ρ = [-0.35156, -0.5, -0.2] • X 0 = [259.37, 100, 150], V 0 = 0.198778

 60, 100, 150, 25, 50, 70] and {ρ j } 6 1 = [-0.3, -0.5, -0.2, -0.1, -0.7, -0.4].[START_REF] Hernandez | Model Calibration with Neural Networks[END_REF]

 [κ, θ, λ] =[13.414, 0.157, 5.60] gives a price for the put P = 279.3±1 while [κ, θ, λ] = [13.65, 0.150, 5.565] gives P = 279.5 ± 1. Here the precision is masked by the accuracy of the Monte-Carlo algorithm.

Table 1 :

 1 Performance of the Levenberg-Marquardt implemented in[2] So the freefem program was run M=9900 times with uniformly random values for κ, θ and λ in (0, 3) × (0, 0.1) × (0, 0.2) and the results were store in a file together with the corresponding values of κ, θ, λ.To make it harder we multiplied each pixels values by a white noise as above and we stored in the file 20 × 20 equally spaced values of the lower right part of the image. In the end the Python-Keras program is very short (the full program is given in Appendix 6.4) and it is a minor modification of the MNIST example of Keras where the softmax activations are replaced by ReLU activations to change the classification problem of MNIST into an optimization problem. The core of the program is as follows:

	Strikes Market Value Model Value Relative Error (%)
	527.50	44.67893	44.46556	0.4775547
	560.46	55.05277	55.23288	0.3271670
	593.43	67.37152	67.66592	0.4369746
	626.40	80.93411	81.82830	1.1048434
	3.5. Solution with the MNIST Neural Network	
	MNIST (see [22] or [10]) is a well known test for character recognition; it takes as input
	M icon size images of a handwritten character to train a convolution neural network; once
	trained, the network is able to recognize very quickly a new character with impressive
	precision.			
	Keras [7] is a toolbox written by François Chollet over TensorFlow (by Google) which

provides an easy to use implementation of Yann Lecun's convolution network for MNIST. Observing the final state of the solution of the PDE at time T is, after all, like observing an image. To fit the MNIST standard all is needed is to downgrade the graphic image of the solution from 28 × 28 black and white image -MNIST stardard -to 20 × 20 color or B&W (see fig

1

).

Table 2 :

 2 Neural Network optimization using M d × M d values {u(X j 0 , V j 0 , T)} 400 j=1 corresponding to a uniform 20 × 20 grid in the X 0 , V 0 domain when M d = 20. Comparison between 5 Neural Network solutions and the true 5 solutions when 9900 samples are used. After 358 iterations (epochs) the average relative error on [κ, θ, λ] is [0.31%, 2.11%, 2.4%].. Then the same simulation is launched with M d = 10; 100 random points are used in the 20 × 20 grid for the Network; after 263 iterations (epochs) the average relative error on [κ, θ, λ] is [0.6%, 4%, 2%]. Finally with M d = 7, i.e. 49 random points in the grid are used to train the network; after 217 iterations (epochs) the average relative error on [κ, θ, λ] is [0.6%, 4%, 1.9%]

	M d	κ N N	θ N N	λ N N	κ true	θ true	λ true
	400	2.423	0.0448 0.1555	2.433	0.0446 0.1565
	--	2.709	0.0411 0.1158	2.715	0.0416	0.119
	--	2.360	0.100	0.1478	2.351	0.0989 0.1576
	--	1.900	0.0104	0.163	1.902 0.00872 0.169
	--	0.1662 0.0601 0.0242 0.1668 0.0665 0.0261
	100	2.594	0.0682 0.0813	2.578	0.066	0.0905
	--	1.835	0.0620 0.1874	1.794	0.062	0.1956
	--	1.938	0.100	0.1742	1.933	0.099	0.158
	--	0.1524	0.026	0.0148	0.130	0.0020 0.0193
	--	2.851	0.017	0.0498	2.850	0.0161 0.0563
	49	2.855 0.01960 0.0679 2.8505 0.0161 0.0563
	--	2.406 0.04613 0.163	2.433	0.0446	0.156
	--	2.667	0.0437	0.128	2.715	0.0416	0.119
	--	2.345	0.104	0.153	2.351	0.0989	0.157
	--	1.916	0.0125	0.178	1.902	0.0087	0.169

Table 3 :

 3 Calibration on historical data using 20 time values {u(X 0 , V 0 , t j)} 20 j=1 with t j (uniform) random in {jδt} 40 0 . Comparison between 4 Neural Network solutions and the true 4 solutions when 9900 samples are used. The average absolution error on [κ, θ, λ] is [7%, 7%, 8%]

	κ N N	θ N N	λ N N	κ true	θ true	λ true
	1.452 0.0338 0.0473	0.952 0.0255 0.00881
	0.948 0.0650 0.1221	0.679 0.0655 0.0943
	1.192 0.0328 0.0644	0.518 0.0278 0.0186
	1.960 0.0555 0.105	2.2991 0.0459	0.129

Table 4 :

 4 Calibration of one parameter only on historical data using 20 values {u(X 0 , V 0 , t j)} 20 j=1 with t j (uniform) random in 0.T . Comparison between 4 Neural Network solutions and the true 4 solutions when 9900 samples are used. The average relative error is 7% for the identification of κ, 6% for the identification of θ and 11% for the identification of λ.

	κ N N κ true	θ N N	θ true	λ N N	λ true
	1.395 0.952	0.0477 0.0459	0.188	0.197
	0.862 0.679	0.0812 0.0816	0.118	0.0974
	0.964 1.26	0.0847 0.0856	0.0544 0.0329
	2.372 2.299	0.0791 0.0770	0.111 0.09431

Table 5 :

 5 Basket of 3 Options: Results as a function of the number of samples. The data for each samples consists of 50 option prices computed with Monte-Carlo using Z = 10000 paths except when 1000 samples are used for which Z = 1000.

	Samples	κ N N	θ N N	λ N N	κ true	θ true	λ true
	1000	9.476542 0.13677481 3.0140927	8.312585 0.15803926 2.625773
	--	11.418259 0.16013892 5.845906	12.375428 0.14412636 5.858743
	--	10.904998 0.14866751 4.6934037	8.208858 0.16059723 4.3550353
	--	7.127512 0.11386083 2.9758203 7.4216833 0.0747664 3.3328052
	2000	8.878693 0.06084843 2.6711965	8.079459 0.11457606 2.5260932
	--	12.800058 0.10885634 3.043743	10.208906 0.18123053 2.771562
	--	9.325264 0.08825119	3.17426	9.705886 0.11318509 3.3946927
	--	5.1053705 0.06585675 3.025517	6.481651 0.07561707 3.335925
	5000	14.863845 0.12428152 3.7099943 15.191024 0.15111904 3.9258523
	--	7.4602294 0.09437443 5.7484875	7.507711	0.1756598	5.406438
	--	6.229864 0.08913025 2.8549767 6.3737087 0.14227197 2.5560155
	--	13.475615 0.06076711 3.8859534 14.284962 0.07732525 4.079917
	7000	13.528603 0.17181566 2.924739	14.82564 0.11166272 3.2351701
	--	9.166567 0.13196863 3.2088246	9.5206	0.09378843 3.3152626
	--	14.621558 0.21809958 2.440264	13.822117 0.16655973 2.6039271
	--	7.1853437 0.15212183 5.805213	7.188229 0.14879756 5.7630634

Table 6 :

 6 Basket with 3 assets. Influence of the number of samples on the average relative (in %) and

	absolute precision						
	Samples	κ	θ	λ	κ	θ	λ
	1000	3%	8%	4%	1.177 0.0313 0.312
	2000	2%	15%	2%	0.798 0.0490 0.209
	5000	1.5% 7% 1.8%	0.674 0.0408 0.263
	7000	1.9% 6%	1%	0.7380 0.0297 0.168

Table 7 :

 7 Basket with 6 assets: identification of the Heston parameters. Neural Network results when 1000 samples are used. The data for each samples consists of 50 option prices computed with Monte-Carlo using Z = 1000 paths. After 661 iterations the average absolute error on [κ, θ, λ] is [0.97531, 0.1171, 0.2626] and an average relative precision [2%, 25%, 3%] . Comparison between 5 Neural Network solutions and 5 true solutions are given in the table below.

	κ N N	θ N N	λ N N	κ true	θ true	λ true
	6.058073 -0.02947991 3.9451385	5.610405 0.19017245 3.6811452
	10.025507 0.04691502	2.866429	8.822984 0.11969639 2.8319445
	13.495879 0.02573741 4.7397323 15.226152 0.09759247 5.4014325
	10.919542 0.05577407	2.803923	9.267343 0.14904015 2.5582633
	14.163019	0.0266959	4.6819143 13.727917 0.1479749	4.781782

Table 5

 5 with 7000 samples is one of the worse case: [κ, θ, λ] = [13.529, 0.1718, 2.925] leads to P = 253 while [κ, θ, λ] = [14.83, 0.112, 3.24] leads to P = 238.5. One the other hand the last line of Table5is a good case:

Table 8 :

 8 Basket with 6 assets: identification of ρ. Neural Network results when 1000 samples are used. The data for each samples consists of 50 option prices for different maturity and strike, as before, computed with Monte-Carlo using Z = 1000 paths. After 265 iterations the average relative error is [6%, 4%, 5%, 6%, 6%, 6%]. Comparison between 5 Neural Network solutions and 5 true solutions are given below.

	ρ 1 N N	ρ 2 N N	ρ 3 N N	ρ 4 N N	ρ 5 N N	ρ 6 N N	ρ 1 true	ρ 2 true	ρ 3 true	ρ 4 true	ρ 5 true	ρ 6 true
	-0.265 -0.386 -0.164 -0.0992 -0.516 -0.353 -0.302 -0.321 -0.130 -0.132 -0.694 -0.268
	-0.313 -0.617 -0.223	-0.110 -0.651 -0.488 -0.333 -0.710 -0.171 -0.0963 -0.537 -0.521
	-0.329 -0.693 -0.243	-0.113 -0.696 -0.533 -0.334 -0.683 -0.292 -0.102 -0.318 -0.586
	-0.321 -0.656 -0.233	-0.112 -0.674 -0.511 -0.217 -0.720 -0.287 -0.126 -0.754 -0.324
	-0.273 -0.425 -0.1745 -0.101 -0.539 -0.376 -0.245 -0.360 -0.177 -0.0847 -0.378 -0.515

 6.4. The Keras/Python program to calibrate Heston model with a neural network

	import keras
	import numpy as np
	from keras.models import Sequential
	from keras.layers import Dense, Activation, Conv2D, Flatten
	from keras import losses
	from keras.callbacks import EarlyStopping
	Z = np.loadtxt('data.txt')
	n_test, n_train = 32,9900
	pix=20
	pix2 = pix*pix
	epochs = 1000
	batch_size=32
	num_classes = 3
	npoint=10 # to take the full image set npoint=pix
	id=np.random.uniform(0,pix2,size=npoint*npoint)
	pix,pix2 = npoint, npoint*npoint
	x_test = np.zeros([n_test,pix2],'float32')
	x_train = np.zeros([n_train,pix2],'float32')
	y_test= np.zeros([n_test, num_classes],'float32')
	y_train= np.zeros([n_train, num_classes],'float32')

Appendix: Programs 6.1. Calibration with the Heston solver """ @author: pironneau, August 2019 """ import numpy as np from scipy.optimize import broyden1 X0 = 95 V0 = 0.1 r = 0.03 kappa = 1.5768 theta=0.0398 lambd=0.575 rho=-0.5711 def heston(kappa,theta,lambd,T,K):

I=complex(0, T,K=2,100 call = heston(kappa,theta,lambd,T,K) print("call = ",call, " put = ", call-X0+K*np.exp(-r*T)) # example of calibration price1=heston(kappa,theta,lambd,T,90) price2=heston(kappa,theta,lambd,T,105) price3=heston(kappa,theta,lambd,T,110) [START_REF] Achdou | Computational methods for option pricing[END_REF]=theta0; cc [2]=lambda0; cout<<"exact solution "<<cc[0]<<" "<<cc [START_REF] Achdou | Computational methods for option pricing[END_REF]<< " "<<cc [2]<<endl; cost(cc); uref=u; plot(th,u,dim=3,fill=1,wait=1,ps="hestonE.eps"); cc[0]=2*kappa0; cc [START_REF] Achdou | Computational methods for option pricing[END_REF]=0.5*theta0; cc [2]=5*lambda0; cout<<"initial start "<<cc[0]<<" "<<cc [START_REF] Achdou | Computational methods for option pricing[END_REF]<< " "<<cc [2]<<endl; cost(cc); //plot(th,u,dim=3,fill=1,wait=1,ps="heston0.eps"); real minimum = cmaes(cost,cc,stopTolFun=0.1e-5,stopMaxFunEval=1000,stopMaxIter=100000); cout<<"minimum= "<<minimum<<" Solution: kappa= "<<cc[0]<<" theta= "<<cc [START_REF] Achdou | Computational methods for option pricing[END_REF]<<" lambda= "<<cc [2]<<endl; */

The Python program to generate samples by Monte-Carlo of Heston Baskets

""" Created on Sat Aug 10 12:20:09 2019 @author: pironneau """ import numpy as np import time def mc_heston(option_type,S0,K,T,initial_var,long_term_var,rate_reversion ,vol_of_vol,corr,r,num_reps,steps, ntime,nK): """ option_type:

'p' put option 'c' call option S0 [d]:

the spot price of underlying stock; d is size of S0 T:

the maturity of options initial_var:

the initial value of variance long_term_var: the long term average of price variance rate_reversion: the mean reversion rate for the variance vol_of_vol:

the vol of vol(the variance of the variance of stock price) corr [d]:

the correlation between W1[.] and W2 r:

the risk free rate reps:

the number of repeat for monte carlo simulation steps:

the number of steps in each simulation """ eps=0.0001 delta_t = T/float(steps) Vt=np.